Теоретические аспекты линейного программирования. Модель линейного программирования

Модели линейного программирования

Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными. К таким задачам относятся:

Задача об оптимальном использовании ограниченных ресурсов (сырьевых, трудовых, временных);

Задача сетевого планирования и управления;

Задачи массового обслуживания;

Задачи составления расписания (календарного планирования);

Задачи выбора маршрута и другие.

Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшие решения в некотором смысле при ограничениях, налагаемых на природные, экономические и технологические возможности. Такие решения называются оптимальными, а задачи и соответствующие им модели позволяющие найти эти решения - оптимизационными (оптимальными). Математическим аппаратом задач оптимального планирования является математическое программирование.

Математическое программирование - область математики, разрабатывающая теорию и численные методы решения многомерных экстремальных задач с ограничениями, т. е. задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных.
Функцию, экстремальное значение которой нужно найти в условиях экономических возможностей, называют целевой, показателем эффективности или критерием оптимальности. Экономические возможности формализуются в виде системы ограничений. Все это составляет математическую модель. Математическая модель задачи - это отражение оригинала в виде функций, уравнений, неравенств, цифр и т. д. Модель задачи математического программирования включает:
1) совокупность неизвестных величин, действуя на которые, систему можно совершенствовать. Их называют планом задачи (вектором управления, решением, управлением, стратегией, поведением и др.);
2) целевую функцию (функцию цели, показатель эффективности, критерий оптимальности, функционал задачи и др.). Целевая функция позволяет выбирать наилучший вариант - из множества возможных. Наилучший вариант доставляет целевой функции экстремальное значение. Это может быть прибыль, объем выпуска или реализации, затраты производства, издержки обращения, уровень обслуживания или дефицитности, число комплектов, отходы и т. д.;
Эти условия следуют из ограниченности ресурсов, которыми располагает общество в любой момент времени, из необходимости удовлетворения насущных потребностей, из условий производственных и технологических процессов. Ограниченными являются не только материальные, финансовые и трудовые ресурсы. Таковыми могут быть возможности технического, технологического и вообще научного потенциала. Нередко потребности превышают возможности их удовлетворения. Математически ограничения выражаются в виде уравнений и неравенств. Их совокупность образует область допустимых решений (область экономических возможностей). План, удовлетворяющий системе ограничений задачи, называется допустимым . Допустимый план, доставляющий функции цели экстремальное значение, называется оптимальным. Оптимальное решение, вообще говоря, не обязательно единственно, возможны случаи, когда оно не существует, имеется конечное или бесчисленное множество оптимальных решений.
Оптимизационная задача, в которой целевая функция и неравенства (уравнения), входящие в систему ограничений являются линейными функциями, называется задачей линейного программирования, а соответствующая ей экономико-математическая модель – оптимизационной моделью линейного программирования

Методы и модели линейного программирования широко применяются при оптимизации процессов во всех отраслях народного хозяйства: при разработке производственной программы предприятия, распределении ее по исполнителям, при размещении заказов между исполнителями и по временным интервалам, при определении наилучшего ассортимента выпускаемой продукции, в задачах перспективного, текущего и оперативного планирования и управления; при планировании грузопотоков, определении плана товарооборота и его распределении; в задачах развития и размещения производительных сил, баз и складов систем обращения материальных ресурсов и т. д. Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление смесей, раскрой материалов), производственно-транспортных и других задач.
Начало линейному программированию было положено в 1939 г. советским математиком-экономистом Л. В. Канторовичем в работе «Математические методы организации и планирования производства». Появление этой работы открыло новый этап в применении математики в экономике. Спустя десять лет американский математик Дж. Данциг разработал эффективный метод решения данного класса задач - симплекс-метод. Общая идея симплексного метода (метода последовательного улучшения плана) для решения ЗЛП состоит в следующем:
1) умение находить начальный опорный план;
2) наличие признака оптимальности опорного плана;
3) умение переходить к нехудшему опорному плану.

Лекция №1

Тема: Модели линейного программирования.

1. Понятие модели и моделирования. Классификация математических моделей.

2.Общая задача линейного программирования. Различные формы моделей задач линейного программирования.

3.Постановка и ЭММ задачи планирования производства.

4.Постановка и ЭММ задачи оптимального составления смесей.

Цель: Дать общую характеристику предмету экономико-математического моделирования, показать классификацию видов моделирования и математических моделей. Дать постановку и математическую формулировку общей задачи линейного программирования, а также основных экономико-математических моделей.

1.Понятие модели и моделирования. Классификация математических моделей.

Основным методом исследования систем является метод моделирования , т.е. способ теоретического анализа и практического действия, направленный на разработку и использования моделей. Под моделью понимается образ реального объекта (процесса) в материальной или идеальной форме (т.е. описанный знаковыми средствами на каком-либо языке), отражающие существенные свойства моделируемого объекта (процесса) и замещающий его в ходе исследования и управления.

Математическая модель – это система математических соотношений, приближенно, в абстрактной форме, описывающих изучаемый процесс или систему.

Экономико-математическая модель – это математическая модель, предназначенная для исследования экономической проблемы.

Построение и расчет математической модели позволяют проанализировать ситуацию и выбрать оптимальные решения по управлению ею или обосновать предложенные решения. Применение математических моделей необходимо в тех случаях, когда проблема сложна, зависит от большого числа факторов, по-разному влияющих на её решение. Использование математических моделей позволяет осуществить предварительный выбор оптимальных или близких к ним вариантов решений по определенным критериям.

По числу критериев эффективности математические модели делятся на однокритериальные и многокритериальные. Многокритериальные математические модели содержат два и более критерия.

По учету неизвестных факторов математические модели делятся на детерминированные, стохастические и модели с элементами неопределенности. В детерминированных моделях неизвестные факторы не учитываются. Несмотря на кажущуюся простоту этих моделей, к ним сводят многие практические задачи, в том числе большинство экономических задач. В стохастических моделях неизвестные факторы – это случайные величины, для которых известны функции распределения и различные статистические характеристики. Для моделирования ситуаций, зависящих от факторов, для которых невозможно собрать статистические данные и значения, которых неопределенны, используются модели с элементами неопределенности.

2.Общая задача линейного программирования. Различные формы моделей задач линейного программирования.

    В общем виде задача линейного программирования ставится следующим образом: максимизировать (минимизировать) функцию:

при ограничениях:

где x j - управляющие переменные или решения задачи, j =1,… n

b i , a ij , c j - параметры i =1,… m ; j =1,… n

Z - целевая функция или критерий эффективности задачи.

Решить задачу линейного программирования – это значит найти значения управляющих переменных, удовлетворяющих заданным ограничениям (1-3), при которых целевая функция принимает максимальное или минимальное значение.

Задача линейного программирования в развернутом виде записывается следующим образом:

При условии, что все переменные неотрицательны, система ограничений состоит лишь из одних неравенств – такая задача линейного программирования называется стандартной , если система ограничений состоит из одних уравнений, то такая задача называется канонической (основной)

3. Постановка и ЭММ задачи планирования производства.

Постановка задачи планирования производства заключается в следующем: найти такой план выпуска продукции, удовлетворяющий системе ограничений по использованию ресурсов, при котором целевая функция достигает максимального значения.

Обозначим x j (j =1,… n ) - число единиц продукции j –вида, запланированной к производству, b i (i =1,… m ) - запас ресурса i вида; a ij -затраты i –го ресурса на изготовление единицы продукции j - вида; c j -прибыль от реализации единицы продукции j –вида. Тогда ЭММ задачи планирования производства примет вид

при условиях:

4. Постановка и ЭММ задачи оптимального составления смесей.

Постановка задачи составления смеси (рациона, диеты) заключается в следующем: составить смесь (рацион, диету), удовлетворяющую системе ограничений по сбалансированности питательных веществ, при котором стоимость смеси (рациона, диеты) будет минимальной.

Обозначим x j (j =1,… n ) - число единиц продукта (корма) j –вида, b i (i =1,… m ) – необходимый минимум содержания в рационе (смеси) питательного вещества i вида; a ij – число единиц питательного вещества i –го вида в единице продукта (корма) j - вида; c j – стоимость единицы продукта (корма) j –вида. Тогда ЭММ задачи примет вид

при условиях:

Вопросы для самоконтроля:

1. Что означает термин «моделирование»?

2. Дайте определение «модели»

3. Как записывается общая задача линейного программирования.

4. Какие существуют формы записи задачи линейного программирования.

5. Запишите ЭММ задачи планирования производства.

6. Запишите ЭММ задачи оптимального составления смеси.

1.«Исследование операций в экономике» под редакцией профессора Кремера Н.Ш., М: Банки и биржи, 1997, стр17-26

2.Хазанова Л.Э. «Математическое моделирование в экономике» Учебное пособие, М: Изд. БЕК, 2005, стр11-20, 24-26

3.Покровский В.В. «Математические методы в бизнесе и менеджменте» Учебное пособие. М.: Финансы и статистика, 2008г

4.Рахметова Р.У. «Математические модели и методы экономики» Учебное пособие. А.:Экономика, 2008г

Лекция №2-3

Тема: Методы решения моделей линейного программирования.

1. Алгоритм метода последовательного улучшения опорного плана в симплексных таблицах (симплексный метод).

2. Алгоритм М-метода решения задач линейного программирования со смешанными ограничениями.

Цель: Дать характеристику методам решения задач линейного программирования.

1. Алгоритм метода последовательного улучшения опорного плана в симплексных таблицах (симплексный метод).

Впервые симплексный метод был предложен Данцигом в 1949 г. Симплекс – это выпуклый простейший многогранник в n -мерном пространстве. Алгоритм симплексного метода построен так, что достаточно найти одну из вершин многогранника допустимых решений, а далее с помощью перебора вершин симплекса план будет улучшаться до нахождения оптимального варианта. Решение экономико–математической задачи проводится в несколько этапов:

1) математическая формулировка условий задачи в виде неравенств и уравнений.

2) решение задачи симплексным методом:

а) приведение задачи к канонической форме и нахождение первоначального варианта допустимого плана соответственного одной из вершин выпуклого многогранника,

б) проверка найденного плана на оптимальность, если план оптимален, то решение получено, в противном случае план должен быть улучшен,

в) последовательное улучшение плана до получения оптимального,

3) экономический анализ оптимального плана.

В зависимости от характера ограничений задачи линейного программирования могут решаться симплексным методом с использованием естественного и искусственного базиса. Если ограничения задаются неравенствами типа , то задача решается с естественным базисом. Если ограничения заданы неравенствами  или , то решение ведется с искусственным базисом.

Условие задачи :

Для производства изделия «А» и «В» используется 3 вида сырья.

Вид сырья

Норма расхода сырья на одно изделие, кг

Общее количество сырья, кг

Прибыль от реализации 1 изд., д. ед.

Определить оптимальный план выпуска изделий, при котором прибыль от реализации будет максимальной.

x 1 -производство изделий вида «А», шт.

x 2 -производство изделий вида «В», шт.

Математическая модель задачи:

Для приведения задачи к каноническому виду в систему неравенств введем дополнительные неизвестные (x 3, x 4, x 5 ) – недоиспользование ресурсов.

Дополнительные переменные входят в целевую функцию с нулевой оценкой, так как недоиспользование ресурсов не приносит никакого дохода. Вынесем дополнительные переменные за знак равенства.

Дополнительные переменные x 3, x 4, x 5 называются базисными, а x 1 и x 2 – основными или небазисными. Находим базисное решение задачи. Для этого примем x 1 =0 x 2 =0.

Тогда x 3 =300, x 4 =120, x 5 =252, Z =0.

Решение проводится в симплексных таблицах на основе тождественных преобразований, путем последовательного исключения неизвестных из уравнений.

Модели линейного программирования используются: а) при коммерческих воздушных сообщениях для составления графиков полетов и графиков выходов летного состава;

б) для оптимизации составных частей смесей при разработке пищевых рационов;

в) дня оптимизации параметров производственных процессов в промышленности;

г) коммерческими банками при управлении финансовыми балансами;

д) при перспективном планировании производственных мощностей предприятия;

е) для оптимизации портфеля заказов фирм при инвестировании; ж) для оптимизации транспортных потоков.

С точки зрения управления задачи линейного программирования - это задачи оптимального использования ресурсов. В каждом случае планирования производства необходимо иметь в виду, что различные производственные ресурсы (рабочая сила, сырье, материалы, орудия производства) ограничены, известная норма расхода этих ресурсов на различные виды продукции и возможны многочисленные варианты распределения производственных ресурсов. Задача состоит в том, чтобы найти оптимальное распределение производственных ресурсов. При этом критериями могут быть, например, максимум выпуска продукции, максимум прибыли, минимум производственных затрат и тому подобное.

Пример разработки модели линейного программирования для производства двух изделий

Предположим, что химический завод производит два вида товаров - А и Б в количестве, соответственно равной X и У. Менеджер проработали соответствующую информацию, получили данные, сведенные в таблицу 5.9. Его целью является получение максимальной прибыли (Пр). При этом целевая функция имеет вид:

Таблица 5.9. Стоимостные показатели товаров

ФОРМУЛИРОВКИ ОГРАНИЧЕНИЙ

Рабочее время оборудования при производстве товаров характеризуется следующими цифрами:

Рисунок 5.20. Графический решение линейной оптимизационной модели (5.17) - (5.22)

Привлекательность использования резервных переменных (в нашем случае - это продолжительность простоев оборудования) можно продемонстрировать на следующем примере. Предположим, что товара А произведено 9 единиц, а товара Б - 14 единиц. Тогда, на основе уравнения (5.23) получаем, что

Транспортная задача

Стоимость перевозок 1 т груза в гривнах с каждого пункта отправления А1 и А2 в каждый пункт назначения В1, В2 и ВЗ задана в таком виде (цифры условные):

Нужно составить такой план перевозок, при котором общая их стоимость была бы наименьшей.

Обозначим через Х1, Х2 и Х3 количество грузов, которые нужно перевезти из пункта А1, соответственно в пункты В1, В2 и В3, а через Y1, Y2 и Y3 - количество грузов, которые нужно перевезти из пункта А2 в пункты В1, В2 и В3 . Запишем это в таком виде:

Таким образом, математическая формулировка транспортной задачи (по критерию стоимости транспортных перевозок) имеет вид данной системы пяти уравнений первой степени с шестью неизвестными

ГЕОМЕТРИЧЕСКОЕ РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ

Рассмотрим систему (а). Если сложить почленно первые три уравнения и отнять четвертых, то получим пятый уравнения. Это означает, что в системе (а) пятую уравнения лишнее. О таком уравнения говорят, что оно - результат четырех уравнений, а о всей системе говорят, что она линейно зависима. Если исключить пятого уравнения, то четыре уравнения, оставшиеся являются линейно независимыми. Таким образом, получаем четыре линейно независимые уравнения первой степени с шестью неизвестными. В этих уравнениях четыре неизвестные можно выразить через два последние. В этом случае говорят, что система имеет четыре зависимые неизвестные и два свободных неизвестны. Выберем свободными неизвестными Х1 и Х2 и получаем:

Среди решений системы (а ") нужно найти такой, при котором линейная форма F приобретает малейшего значения. Для решения этой задачи возьмем на плоскости прямоугольную систему координат и построим многоугольник abсd возможных решений системы неравенств а "(рисунок 5.21). Запишем целевую функцию в матричном виде:

Рисунок 5.21. Графическое решение транспортной задачи

На рисунке 5.21 целевая функция изображена штриховыми линиями F. Значение функции уменьшается с увеличением абсолютной величины свободного члена в уравнении целевой функции. Смешивая линию целевой функции вправо параллельно самой себе и отдаляя ее при этом от начала координат, видим, что наименьшее значение она имеет в точке пересечения прямых (I) и (III). Это соответствует оптимальному решения: Х1 = 200, Х2 = 200 (точка С). При этом F = 12000. Из уравнений (а ") находим, что Х3 = 0, Y1 = 0, Y2 = 400, К3 = 200 Таким образом, оптимальным планом перевозки грузов такой доставка из пункта А1 по 200 т в В1 и в В2, а из пункта А2 400 т в В2 и 200 т в В3. Стоимость перевозок при этом наименьшее (12000 грн.).

Недостатком графического (ручного) метода решения модели линейного программирования является то, что он пригоден для задач только с двумя или максимум с тремя переменными. Для большего количества переменных нужно использовать так называемый симплекс-метод.

Модели линейного программирования применяют для определения оптимального способа распределения дефицитных ресурсов при наличии конкурирующих потребностей. Данный вид модели наиболее распространен на промышленных предприятиях. Он заключается в том, что помогает

максимизировать прибыль при наличии одного нескольких ресурсов, каждый из которых используется для производства нескольких видов товара. Обычно при решении оптимизации данного типа моделей обычно используется Симплекс-метод.

Имитационное моделирование

Имитационное моделирование означает процесс создания модели и ее экспериментальное использование для определения изменений реальной ситуации. Имитация используется в ситуациях, слишком сложных для математических методов типа линейного программирования. Экспериментируя на модели системы, можно установить, как она будет реагировать на определенные изменения или события, в то время, когда отсутствует возможность наблюдать эту систему в реальности.

Экономический анализ

Экономический анализ один из самых распространенных методов моделирования, хотя он и не воспринимается как моделирование. Экономический анализ вбирает в себя почти все методы оценки издержек и экономических выгод, а также относительной рентабельности деятельности предприятия. Экономический анализ включает в себя анализ безубыточности, определение прибыли на инвестированный капитал, величину чистой прибыли на данный момент времени и т.д. эти модели широко применяются в бухгалтерском и финансовом учете.

При принятии решения вне зависимости от применяемых моделей существуют некоторые правила принятия решений. Правило принятия решения – это критерий, по которому выносится суждение об оптимальности данного конкретного исхода. Существует два типа правил. Один использует численные значения вероятных исходов, второй – использует данные значения.

К первому типу относятся следующие правила принятия решений:Максимаксное решение –это решение,при котором принимается решениепо максимизации максимально возможных доходов. Данный метод очень оптимистичен, то есть не учитывает возможные потери и, следовательно, самый рискованный.

Максиминное решение –это решение,при котором максимизируетсяминимально возможный доход. Данный метод в большей степени учитывает отрицательные моменты различных исходов и является более осторожным подходом к принятию решений.

Минимаксное решение –это решение,при котором минимизируютсямаксимальные потери. Это наиболее осторожный подход к принятию решений и наиболее учитывающий все возможные риски. Под потерями здесь учитываются не только реальные потери, но и упущенные

возможности.

Критерий Гурвича. Данный критерий является компромиссом междумаксиминным и максимаксным решениями и является одним из самых оптимальных.

Ко второму типу принятия решений относятся решения, при которых кроме самих возможных доходов и потерь учитываются вероятности возникновения каждого исхода. К данному типу принятия решений относятся, например, правило максимальной вероятности и правило оптимизации математического ожидания. При данных методах обычно составляется таблица доходов, в которой указываются все возможные варианты доходов и вероятности их наступления. При использовании правила максимальной вероятности соответственно выбирается по одному из правил первого типа один из исходов, имеющий максимальную вероятность.

При использовании правила оптимизации математических ожиданий, высчитываются математические ожидания для доходов или потерь и затем выбирается оптимальный вариант.

Так как значения вероятностей со временем изменяются, при применении правил второго типа обычно используется проверка правил на чувствительность к изменениям вероятностей исходов.

Кроме того, для определения отношения к риску используется понятие полезности. То есть для каждого возможного исхода кроме вероятности рассчитывается полезность данного исхода, которая также учитывается при принятии решений.

Для принятия оптимальных решений применяются следующие методы:

платежная матрица;

дерево решений;

методы прогнозирования.

Платежная матрица –один из методов статистической теории решений,оказывающий помощь руководителю в выборе одного из нескольких вариантов. Особенно полезен в ситуации, когда руководитель должен установить, какая стратегий в наибольшей мере будет способствовать достижению целей. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически совершаются. Если событие или состояние природы не случается на деле, платеж неизменно будет другим.

В целом платежная матрица полезна, когда:

имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними.

То, что может случиться, с полной определенностью не известно. Результаты принятого решения зависят от того, какая именно выбрана альтернатива, и какие события в действительности имеют место.

Кроме того, руководитель должен иметь возможность объективно оценить вероятность релевантных событий и рассчитать ожидаемое значение такой вероятности.

Вероятность прямо влияет на определение ожидаемого значения – основного понятия платежной матрицы. Ожидаемое значение альтернативы или варианта – это сумма возможных значений, умноженных на соответствующие вероятности.

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может выбрать наиболее оптимальный вариант.

Дерево решений –метод науки управления–схематичное представлениепроблемы принятия решений – используется для выбора наилучшего направления действий из имеющихся вариантов.

Метод дерева решений может применяться как в ситуациях, в которых применяется платежная матрица, так и в более сложных ситуациях, в которых результаты одного решения влияют на последующие решения. То есть дерево решений – удобный метод для принятия последовательных решений.

Методы прогнозирования

Прогнозирование – метод, в котором используется как накопленный в прошлом опыт, так и текущие допущения насчет будущего с целью его определения. Результат качественного прогнозирования может служить основой планирования. Существуют различные разновидности прогнозов: экономические прогнозы, прогнозы развития технологии, прогнозы развития конкуренции, прогнозы на основе опросов и исследований, социальное прогнозирование.

Все типы прогнозов используют различные методы прогнозирования.

Методы прогнозирования включают в себя:

неформальные методы;

количественные методы;

качественные методы.

Неформальные методы включают в себя следующие виды информации:Вербальная информация –это наиболее часто используемая информация дляанализа внешней среды. Сюда относят информацию из радио- и телепередач, от поставщиков, от потребителей, от конкурентов, на различных совещаниях и конференциях, от юристов, бухгалтеров и консультантов. Данная

информация легкодоступна, затрагивает все основные факторы внешнего окружения, представляющие интерес для организации. Однако она очень изменчива и нередко неточна.

Письменная информация –это информация из газет,журналов,

информационных бюллетеней, годовых отчетов. Эта информация обладает

теми же достоинствами и недостатками, что и вербальная информация.

Промышленный шпионаж

Количественные методы прогнозирования используются,когда естьоснования считать, что деятельность в прошлом имела определенную тенденцию, которая может продолжиться и в будущем, и когда достаточно информации для выявления таких тенденций. К количественным методам относятся:

Анализ временных рядов. Он основан на допущении,согласно которомуслучившееся в прошлом дает достаточно хорошее приближение к оценке будущего. Проводится с помощью таблицы или графика. Причинно-следственное (казуальное) моделирование. Наиболеематематически сложный количественный метод прогнозирования. Используется в ситуациях с более чем одной переменной. Казуальное моделирование – прогнозирование путем исследования статистической зависимости между рассматриваемым фактором и другими переменными. Из казуальных прогностических моделей самыми сложными являются эконометрические модели, разработанные с целью прогнозирования динамики экономики.

Качественные методы прогнозирования подразумевает прогнозированиебудущего экспертами. Существует 4 наиболее распространенных метода качественного прогнозирования:

Мнение жюри –соединение и усреднение мнений экспертов в релевантныхсферах. Неформальная разновидность данного метода – «мозговой штурм». Совокупное мнение сбытовиков. Мнение дилеров или предприятий сбыта очень ценно, так как они имеют дело непосредственно с конечными потребителями и знают их потребности.

Модель ожидания потребителя –прогноз,основанный на результатахопроса клиентов организации.

Метод экспертных оценок. Он представляет собой процедуру,позволяющуюгруппу экспертов приходить к согласию. По данному методу эксперты из различных областей заполняют опросник по данной проблеме. Затем им дают опросники, заполненные другими экспертами, и просят пересмотреть свое мнение либо аргументировать первоначальное. Процедура проходит 3-4 раза, пока в результате не будет выработано общее решение. Причем все опросники анонимны, как и анонимны сами эксперты, то есть эксперты не

знают, кто еще входит в группу.

Ситуация с принятием стратегических решений усугубляется тем, что в республике еще нет достаточного количества высококвалифицированного управленческого персонала, то есть менеджеров, подготовленных управлять

и принимать решения в условиях рыночной экономики. Это касается как предприятий и организаций, так и Правительства. Кроме того, постоянно изменяющаяся правовая база не позволяет делать долговременных прогнозов, на основе которых могли бы приниматься стратегические решения.

База для обучения менеджеров только складывается, но из-за общего кризиса

и кризиса системы образования, ВУЗы не в состоянии подготовить достаточно квалифицированных менеджеров. Кроме всего прочего, чтобы быть настоящим менеджером необходимо иметь большой стаж работы. Что касается принятия тактических решений, то с этим ситуация складывается лучше. Тактические решения менее зависят от времени, следовательно, быстро изменяющаяся и не очень предсказуемая ситуация создают меньше препятствий для принятия правильного решения. Однако и здесь не все гладко. Это связано с тем, что из-за недостатка релевантной информации не всегда возможно принимать решения, используя научные методы (моделирование, прогнозирование, и т.д.). Большое количество руководителей вообще незнакомо с научными методами принятия решений, используемыми в науке управления.

Кроме того, в нашей стране отсутствует информационная инфраструктура, которая бы позволила в короткие сроки и с небольшими затратами получить информацию, необходимую для принятия решений. На достаточно низком уровне находится компьютерная грамотность. Недостаточно специализированных организаций по проведению различных исследований. Большим минусом также является несовершенная и постоянно изменяющаяся правовая база, наличие коррупции в структуре управления государством.

Однако не во всех отраслях экономики дела обстоят таким образом. В финансово-банковском секторе, жестко контролируемом НБМ, ситуация с принятием решений, несмотря на кризис, лучше. Это связано с тем, что в банках, наряду с поколением руководителей, получивших образование в период существования административно-командной системы управления, очень много молодых кадров (25-35 лет). Новое поколение, изучавшее менеджмент и результаты его применения в развитых странах, стремится использовать полученные знания. Недостаток опыта у них компенсируется наличием более опытных руководителей. Кроме того, здесь в большей степени используется принцип делегирования полномочий, что также увеличивает оптимальность принимаемых решений. Банки Молдовы

поддерживают связи с банками развитых стран, что позволяет руководителям различных уровней банковского сектора на практике ознакомиться с работой менеджеров в развитых странах.

Процесс принятия решений – процесс психологический. Люди, принимая решения, не всегда принимают логичные решения. Решения варьируются от спонтанных до высокологичных. Поэтому процессы принятия решений делятся на имеющий интуитивный, основанный на суждениях и рациональный характер, хотя решение редко относится к какой либо одной категории.

Интуитивное решение –это решение,принятое только на основе того,чторуководитель имеет ощущение того, что оно правильно. При этом руководитель не рассматривает все возможные варианты, не учитывает все их преимущества и недостатки и не нуждается в понимании ситуации. Решения, основанные на суждениях, часто кажутся интуитивными,так каких логика не очевидна. Такое решение – это выбор, обусловленный знаниями или накопленным опытом. Человек использует знание о том, что случалось в сходных ситуациях раньше для того, чтобы спрогнозировать результат альтернативных решений в существующей ситуации. Такой метод принятия решений обладает как положительными, так и отрицательными сторонами. Положительным является то, что действительно многие ситуации имеют тенденцию к повторению и применение такого метода принятия решений позволяет сэкономить время и деньги, так как решение принимается руководителем очень быстро и без сбора дополнительной информации и ее анализа. Однако такие решения принимаются на базе здравого смысла, который в истинном его понимании встречается очень редко. Кроме того, информация, на основе которой принимается данное решение, может быть искажена потребностями людей и другими факторами. Также суждения не позволяют принимать правильные решения в уникальных или абсолютно новых ситуациях, так как лицо, принимающее решение не обладает необходимым опытом для обоснования выбора. Так как суждение всегда опирается на опыт, оно смещает ориентацию принятия решения в направление, знакомое руководителю по предыдущим ситуациям. Это может привести к тому, что руководитель упустит новые альтернативы.

Решение принимается в условиях определенности, когда руководитель может

с точностью определить результат каждого альтернативного решения, возможного в данной ситуации. Сравнительно мало организационных или персональных решений принимается в условиях определенности. Однако они все-таки имеют место. Кроме того, элементы сложных крупных решений можно рассматривать как определенные. Уровень определенности при принятии решений зависит от внешней среды. Он увеличивается при наличии

твердой правовой базы, ограничивающей количество альтернатив и снижающей уровень риска.


Ее применяют для определения оптимального способа распределения дефицитных ресурсов при наличии конкурирующих потребностей. Согласно опросу журналом «Форчун» вице-президентов по производству из 500 фирм, модели линейного программирования и управления запасами пользуются в промышленности наибольшей популярностью. Линейное программирование обычно используют специалисты штабных подразделений для разрешения производственных трудностей. Некоторые типичные применения этого метода в управлении производством перечислены в табл. 4.

Таблица 4. Типичные варианты применения линейного программирования в управлении производством

Укрупненное планирование производства. Составление графиков производства, минимизирующих общие издержки с учетом издержек в связи с изменением ставки процента, заданных ограничений по трудовым ресурсам и уровням запасов.

Планирование ассортимента изделий. Определение оптимального ассортимента продукции, в котором каждому ее виду свойственны свои издержки и потребности в ресурсах (например, определение оптимальной структуры производства компонентов для бензина, красок, продуктов питания для человека, кормов для животных).

Маршрутизация производства изделия. Определение оптимального технологического маршрута изготовления изделия, которое должно быть последовательно пропущено через несколько обрабатывающих центров, причем каждая операция центра характеризуется своими издержками и производительностью.

Управление технологическим процессом. Сведение к минимуму выхода стружки при резке стали, отходов кожи или ткани в рулоне или полотнище.

Регулирование запасов. Определение оптимального сочетания продуктов на складе или в хранилище.

Календарное планирование производства. Составление календарных планов, минимизирующих издержки с учетом расходов на содержание запасов, оплату сверхурочной работы и заказов на стороне.

Планирование распределения продукции. Составление оптимального графика отгрузки с учетом распределения продукции между производственными предприятиями и складами, складами и магазинами розничной торговли.

Определение оптимального местоположения нового завода. Определение наилучшего пункта местоположения путем оценки затрат на транспортировку между альтернативными местами размещения нового завода и местами его снабжения и сбыта готовой продукции.

Календарное планирование транспорта. Минимизация издержек подачи грузовиков под погрузку и транспортных судов к погрузочным причалам.

Распределение рабочих. Минимизация издержек при распределении рабочих по станкам и рабочим местам.

Перегрузка материалов. Минимизация издержек при маршрутизации движения средств перегрузки материалов (например, автопогрузчиков) между отделениями завода и доставке материалов с открытого склада к местам их переработки на грузовых автомобилях разной грузоподъемности с разными технико-экономическими характеристиками.

Нижеследующий пример иллюстрирует простую ситуацию, в которой для принятия решения следует воспользоваться моделью линейного программирования. Управляющий производством должен решить, сколько галлонов краски каждого из трех ее типов следует производить, чтобы получить наивысшую прибыль. На решение налагается несколько ограничений:

1. В наличии имеется только 40 тыс. фунтов исходных реагентов - 10 тыс. фунтов реагента А, 18 тыс. фунтов реагента В и 12 тыс. фунтов реагента С.

2. Общее время работы оборудования 30 тыс. ч.

3. На один галлон краски типа 1 расходуется один фунт реагента А, 3/4 фунта реагента В и 1 1/2 фунта реагента С, а также 1/8 ч времени работы оборудования. На один галлон краски типа 2 требуется один фунт реагента А, 1/2 фунта реагента В и 3/4 фунта реагента С, а также 1/4 ч работы оборудования. На один галлон краски типа 3 идет 1 1/4 фунта реагента А, 1 1/4 фунта реагента В и 1 1/2 реагента С при 1/6 ч времени работы оборудования.

4. Чистая прибыль от продажи одного галлона краски типов 1,2 и 3 составляет 0,80, 0,65 и 1,25 долл. соответственно.

Задача проиллюстрирована рис. 7. С помощью модели линейного программирования управляющий может определить, какое количество краски каждого типа производить при известных запасах реагентов и имеющемся резерве времени работы оборудования, а также с учетом вклада в прибыль краски каждого типа. Не имея такой модели, крайне сложно принять оптимальное решение даже в сравнительно простой ситуации.

Рис. 7. Модель линейного программирования (линейное программирование применяется для решения задач с несколькими переменными, как например, задачи об ассортименте красок в тексте).