Принцип записи данных на винчестер заключается в. Жёсткий диск, что это такое? Из чего состоит и как работает жёсткий диск. Плюсы и минусы HDD в сравнении с SSD. Как данные хранятся на жестком диске

Инструкция

Примените в качестве инструмента обычный файл-менеджер вашей операционной системы, если оптический диск используется для резервного копирования или переноса файлов. В этом случае структура хранения и форматы файлов на нем не имеют никаких особенностей. В ОС Windows менеджер файлов (Проводник) запускается автоматически при установке DVD в привод. Выделите в его окне все нужные объекты исходного диска и нажмите сочетание клавиш Ctrl + C, чтобы операционная система запомнила список копируемого. Затем перейдите на тот диск и ту папку в вашем компьютере, куда нужно поместить информацию, и нажмите сочетание клавиш Ctrl + V (команда вставки). После этого стартует процесс дублирования DVD-диска.

Процедура копирования исходного диска не будет отличаться от описанной в первом шаге и в том случае, если данные на нем записаны в DVD-формате и без использования какой-либо системы защиты. Если же защита есть, то придется воспользоваться программами, больше приспособленными к работе с оптическими дисками, чем обычный файл-менеджер. Например, это может быть приложение Slysoft CloneDVD или Slysoft AnyDVD, DVD Mate, DVD Decrypter и др. Последовательность действий при их использовании различна, но общий принцип совпадает - в формах программы вам нужно указать исходный диск и место сохранения информации, а все остальное приложение сделает самостоятельно.

Применяйте программы для создания и монтирования образов дисков, если хотите использовать виртуальные копии исходного DVD, сохраненного в вашем компьютере. Такие программы кроме копирования информации записывают в специальном формате и все подробности ее размещения на оптическом диске, а затем могут проделать обратную процедуру - воспроизвести точную копию оригинала виртуально или записать ее на пустую DVD-болванку. Наиболее популярными приложениями такого типа сегодня являются Alcohol 120%, Daemon Tools, Nero Burning ROM. При использовании этих программ общий принцип действий тоже одинаков: укажите исходный диск и место сохранения его образа, а остальное сделает программа. Например, в приложении Daemon Tools следует щелкнуть по кнопке «Создать образ диска», в открывшемся диалоге проследить, чтобы значение в поле «Привод» указывало на нужный DVD-привод и, если необходимо, изменить адрес сохранения в поле «Выходной образ». Кроме того, здесь можно поставить отметку в чекбоксе «Сжимать данные образа», если есть желание сэкономить немного места на винчестере. После нажатия кнопки «Старт» начинается сам процесс, который может потребовать нескольких часов - длительность зависит от объема информации на диске и скорости ее считывания в вашем DVD-приводе.

Принцип работы жесткого диска достаточно прост. Типичный винчестер состоит из нескольких основных узлов, как то:

  • корпус из ударопрочного сплава,
  • пластины с магнитным покрытием,
  • блок головок с устройством для позиционирования,
  • блок электроники и
  • электропривод.

Многие пользователи считают, что жесткие диски герметичны. Однако это не так - внутри требуется поддерживать постоянное давление при колебаниях температур. В связи с этим жесткий диск оснащен фильтром, который задерживает частицы диаметром до нескольких микрометров.

Блок электроники содержит собственное запоминающее устройство и несколько подблоков, которые отвечают за цифровую обработку сигнала, управление и работу с интерфейсом. Работа самого жесткого диска сильно напоминает структуру магнитофона. Рабочая поверхность диска движется с определенной скоростью относительно считывающей головки. Во время процедуры записи или чтения головки парят над поверхностью диска на воздушной подушке. Если в зазор между диском и головкой попадет пылинка, то головки могут удариться о поверхность, испортить диск и даже сгореть.

Магнитный диск может быть сделан не только из металла, но и из стекла, как это было в моделях от IBM . На поверхности диска находится магнитный слой, который и служит основой для записи информации. Биты информации записываются с помощью головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Изначально поверхность блина абсолютно пустая, то есть магнитные домены никак не ориентированы. Для ориентирования блока магнитных головок на магнитный диск наносятся специальные метки - серво-метки. Это осуществляется «родным» блоком магнитных головок, который управляется в свою очередь внешним устройством. После разметки жесткий диск сам в состоянии читать информацию и записывать на поверхность. При больших объемах винчестера в него устанавливается несколько магнитных дисков, которые закрепляются на шпиндельном двигателе, и образуют стопку блинов.

Характеристики

Интерфейс - в общем случае определяет место или способ соединения/соприкосновения/связи. Этот термин используется в разных областях науки и техники. Современные накопители могут использовать интерфейсы SATA , IDE, USB , IEEE 1394 и т. д.

Физический размер (форм-фактор) - установленный типоразмер жесткого диска. Накопители для персональных компьютеров и серверов имеют размер 3.5 дюйма. Винчестеры в формате 2.5 дюйма чаще применяются в ноутбуках. Другие распространённые форматы - 1.8 дюйма, 1.3 дюйма и 0.85 дюйма.

Скорость вращения шпинделя - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Время произвольного доступа - Параметр своеобразной оценки скорости работы жесткого диска. В английском языке используется аналог random access time. Среднее время доступа для современных моделей колеблется от 3 до 15 мс. Чем меньше значение, тем лучше. Как правило, минимальным временем обладают серверные диски.

Рынок HDD

История

Название

Для словосочетания типа Hard Disk Drive (HDD) лингвисты используют название-ретроним – термин, придуманный лингвистами для уже нового названия существующего явления, чтобы отличать его от чего-то более нового, в данном случае от гибких дисков. И вот странная ситуация: гибких дисков нет, потребности различать гибкие диски от жестких нет, а ретроним остался, но теперь он служит для отличия HDD от твердотельных накопителей Solid State Drive/Disk (SSD), которые в общем и дисками то не являются.

Огромные магнитофоны

Успех дисков выглядит как некоторый казус. В механическом устройстве, ставшем неотъемлемой частью электронных систем, время перемещения головок измеряется совсем иными величинами, нежели скорость электронных процессов. На отсутствие гармонии в союзе между электроникой и механикой обратили внимание давно, еще в пятидесятые годы, когда создавались первые диски. Но тогда механике не было альтернативы, поскольку полупроводниковые технологии делали только первые шаги, пришлось сознательно пойти на неравный брак ради достижения цели, однако он оказался более чем успешным. Целью же был прямой доступ к большим (по тем меркам) объемам данным, который оставался невозможен до тех пор, пока данные считывались в потоке либо с ленты, либо с перфокарт. Считанные с носителя данные можно было разместить либо в крошечной оперативной памяти, либо делать своппинг и подкачивать данные с барабана. В некоторых операционных системах были утилиты для чтения файлов с лент, но это был ужасно медленный процесс.

На раннем этапе развития компьютерных систем типовые жесткие диски были лишь экспериментальными моделями. Компьютеры были похожи на огромные магнитофоны. В принципе запись и чтение информации ничуть не отличались от обыкновенного кассетника - данные располагались линейно. Те, кто также помнит ПК на основе носителей с магнитной пленкой, знают, каково это дожидаться загрузки очередного уровня - обыкновенной перемотки кассеты на нужное место.

Первые персональные компьютеры использовали в качестве накопителя обычный кассетный аудио магнитофон. Дисковод для них был непозволительной роскошью. Те пользователи, у которых вместе с ПК поставлялся дисковод, уже могли почувствовать некоторое подобие свободы действий. Первые компьютеры фирмы IBM поставлялись с одним или двумя дисководами.

Диски Рабинова

Идея диска как устройства с перемещающимся по пространству головками лежала на поверхности и попытки ее реализовать предпринимались многими компаниями. В Компьютерном музее в Маунтин Вью хранится несколько вариантов дисков. Коммерческий успех раньше других пришел к IBM , способной потратить на разработку больше остальных, поэтому во всех хрониках эволюции дисков в качестве начальной точки указывается дата 1956 год и накопитель на дисках, входивший в состав компьютера IBM 305 RAMAC (Random Access Method of Accounting and Control), в названии которого прямо указано на его уникальную по тому времени возможность произвольного доступа – Random Access Method.

Но IBM не была первой. Раньше всех работающий накопитель сделал самородок-изобретатель Яков Рабинов (1910-1999) в 1951 году, отдавший всю жизнь работе в Национальном бюро стандартов. Он родился в Харькове, в оригинале его фамилия была Рабинович, после революции в 1921 году он с родителями через Китай перебрался в , а потом почти 70 лет проработал в исследовательском подразделении Национального бюро стандартов. Рабинов не стал ученым, но он был гением практических изобретений, среди них, например, усовершенствованная технология чеканки, продлевающая срок жизни монет, изобретение принесло Государственному казначейству много миллиардов экономии на выпуске металлической мелочи. Однако, лишь одно из его изобретений – устройство, которое называлось Notched-Disk Magnetic Memory Device – не принесло ему ни денег, ни прижизненного признания. Оно состояло из десяти 18-ти дюймовых «блинов», так в последующем стали называть собственно диски, с вырезанным сегментом, чтобы их можно было менять на оси.

Эксперты из IBM изучали изобретение Рабинова и не скрывали приоритет. Проанализировав диск Рабинова, в 1953 году они выпустили отчет «Предложения по произвольному доступу к файлам данных» (A Proposal for Rapid Random Access File), который стал основой проекта RAMAC.

1956: IBM RAMAC - шкаф 975 кг

2000-е: Перпендикулярная магнитная запись

Когда производители HDD столкнулись с пределом вместимости в начале 2000-х, Toshiba и Seagate упорядочили расположение битов данных на пластине диска. Изменение с продольной на перпендикулярную магнитную запись увеличило емкость HDD ни много ни мало в 10 раз.

2012: Плотность размещения информации на дисках может удвоиться к 2016 году

Максимальная плотность размещения информации на жестких дисках может удвоиться к 2016 году, по данным очередного исследования IHS iSuppli , опубликованного в 2012 году. Ранее с аналогичным прогнозом уже выступил производитель жестких дисков компания Seagate . По мнению аналитиков, это расширит возможности использования HDD в системах с большими объемами данных, в том числе аудио и визуальных системах.

Увеличить плотность жестких дисков позволят ряд технологий, над которым сейчас работают вендоры, в частности, технология тепло-магнитной записи (heat-assisted magnetic recording, HAMR), которую Seagate запатентовала еще в 2006 году. Компания также заявила, что сможет выпустить 3,5-дюймовый диск на 60 Тб к 2016 году. Диски ноутбуков могут к этому же времени достичь уже 10-20 Тб, говорится в прогнозе IHS iSuppli.

Аналитики также отмечают, что плотность записи вырастет до максимальных 1800 Гбит на квадратный дюйм к 2016 году, на 2011 год аналогичный показатель составлял 744 Гбит. По данным IHS iSuppli, плотность записи информации на диск увеличится к 2016 году до 1800 Гбит на квадратный дюйм с 744 Гбит в 2011 году. С 2011 по 2016 год увеличение плотности записи на HDD будет увеличиться в среднем на 19% в год.

На дату выхода исследования HDD с максимальной плотностью выпущен Seagate в сентябре 2011 года: на нем помещается 4Тб данных, размер диска – 3,5 дюйма. Плотность диска составляет 625 Гбит на квадратный дюйм.

HAMR HDD , который использует лазер на головке чтения\записи жесткого диска чтобы более плотно располагать меньшие биты на вращающемся диске по сравнению с традиционной магнитной записью.

Современное представление о дисках

Диски эволюционировали по нескольким магистральным направлениям:

Нынешняя волна публичного интереса к SDD не должна вводить в сомнение относительного будущего HDD, эти диски жили и будут жить, постоянно развиваясь и совершенствуясь. В ближайшее время появится диск емкостью 20 Тб, а общий выпуск растет постоянно на 1–3% в год.

повышение скорости и емкости дисков; совершенствование доступа к записанным на них данным; поиск альтернативных твердотельных технологий;

Развитие по первому направлению привело к появлению таких HDD, которые способны хранить терабайтные объемы и поддерживать высокие скорости обмена.

По второму – к созданию поддерживающих работу дисков аппаратных и программных средств: файловых систем, способных поддерживать терабайтные диски и абстрагирования от физики хранения, в т.ч. скоростных интерфейсов, RAID-массивов, обеспечивающих высокую надежность хранения, сетей хранения SAN и сетевых накопителей NAS.

По третьему – к появлению совсем недавно созданных твердотельных устройств корпоративного уровня (Solid State Device, SSD) в сочетании с ориентированным на эти устройства интерфейсом NVMe. Теперь открылась возможность «умного хранения», то есть автоматического оптимального по затратам перераспределения хранения данных между SSD, HDD и лентами в зависимости от востребованности данных.

Жёсткий диск («винчестер», hdd, hard disc drive — eng.) — накопитель информации основанный на магнитных пластинах и эффекте магнетизма.

Применяется повсеместно в персональных компьютерах, ноутбуках, серверах и так далее.

Устройство жёсткого диска. Как жёсткий диск работает.



В полу герметичном блоке находятся двусторонние пластины, с нанесённым на них магнитным слоем , посаженные на вал двигателя и вращающиеся со скоростью от 5400 оборотов в минуту.Блок не совсем герметичен, но самое главное он не пропускает мелкие частицы и не допускает перепадов влажности . Всё это пагубно сказывается на сроке службы и качестве работы жёсткого диска.

В современных жёстких дисках, для вала используются . Это даёт меньший шум при работе, значительно увеличивает долговечность и уменьшает шанс заклинивания вала из-за разрушившегося .

Считывание и запись производится с помощью блока головок .

В рабочем состоянии, головки парят над поверхностью диска на расстоянии ~10нм . Они имеют аэродинамическую форму и поднимаются над поверхностью диска за счёт восходящего потока от крутящейся пластины. Магнитные головки могут находится с двух сторон пластины, если с каждой стороны магнитного диска нанесены магнитные слои.

Соединённый блок головок имеет фиксированное положение , то есть головки перемещаются все вместе.

Всеми головками, управляет специальный привод основанный на электромагнетизме .

Неодимовый магнит создаёт магнитное поле , в котором с высокой скоростью реакции под воздействием тока, может перемещаться блок головок. Это лучший и самый быстрый вариант перемещения блока головок, а ведь когда то блок головок перемещался механически, с помощью шестерёнок.

Когда диск выключается, чтобы головки не опустились на диск и не повредили его, они убираются в зону парковки головок (парковочная зона, parking zone).

Это также, позволяет без особых ограничений транспортировать выключенные жёсткие диски. В выключенном состоянии, диск может выдержать большие нагрузки и не повредиться. Во включенном состоянии, даже небольшой толчёк под определённым углом может разрушить магнитный слой пластины или повредить головки при касании о диск.

Помимо герметичной части, у современных жёстких дисков есть наружная плата управления . Когда то, все платы управления были вставлены в материнскую плату компьютера в слоты расширения. Это было не удобно в плане универсальности и возможностей. Сейчас у жёстких дисков, вся управляющая диском электроника, и интерфейса расположены на небольшой плате в нижней части жёсткого диска. Благодаря этому, можно настроить каждый диск под определённые, выгодные с точки зрения его строения параметры, давая ему выигрыш в скорости, либо более тихую работу к примеру.

Для подключения интерфейса и питания используются стандартные общепринятые разъёмы / и Molex /Power SATA .

Особенности.

Жёсткие диски являются самыми ёмкими хранителями информации и относительно надёжными . Объёмы дисков постоянно растут, но в последнее время это связано с некоторыми сложностями и для дальнейшего расширения объёма, требуются новые технологии. Можно сказать, что жёсткие диски практически вышли на прямую в достижении максимальных возможностей. Распространению жёстких дисков в основном поспособствовало соотношение ценаобъём . В большинстве случаев, гигабайт объёма диска стоит меньше чем 2.5 рубля .

Плюсы и минусы жёстких дисков в сравнении с .

До появления твёрдотельных SSD (solid state drive ) — накопителей, у жёстких дисков не было конкурентов. Теперь у жёстких дисков есть направление куда нужно стремиться.

Минусы жёстких дисков (hard drive)(ssd) накопителями:

  • низкая скорость последовательного чтения
  • низкая скорость доступа
  • низкая скорость чтения
  • немного более низкая скорость записи
  • вибрации и небольшой шум при работе

Хотя с другой стороны, у жёстких дисков есть другие, более весомые преимущества, к которым SSD накопителям стремиться и стремиться.

Плюсы жёстких дисков (hard drive) в сравнении с твёрдотельными (ssd) накопителями:

  • значительно лучший показатель объёмцена
  • лучший показатель надёжности
  • больший максимальный объём
  • при выходе из строя, в разы больший шанс восстановить данные
  • лучший вариант для использования в медиа центрах, благодаря компактности и большому объёму 2.5 накопителей

О том, на что стоит обращать внимание при выборе жёсткого диска, можно посмотреть в нашей статье ««. Если вам необходим ремонт жесткого диска или восстановление информации, можно обратиться к .

Как выглядит современный жёсткий диск (HDD) внутри? Как его разобрать на части? Как называются части и какие функции в общем механизме хранения информации выполняют? Ответы на эти и другие вопросы можно узнать здесь, ниже. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жёстких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.


Зелёная закреплённая винтами пластина с проступающим узором дорожек, разъёмами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она выполняет функции электронного управления работой жёсткого диска. Её работу можно сравнить с укладкой в магнитные отпечатки цифровых данных и распознание обратно по первому требованию. Например, как прилежный писарь с текстами на бумаге. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA). В среде специалистов принято называть его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату (понадобиться отвертка «звёздочка» T-6) и изучим размещённые на ней компоненты.


Первым в глаза бросается большой чип, расположенный посередине – Система на кристалле (System On Chip, SOC). В ней можно выделить два крупных составляющих:

  1. Центральный процессор, который производит все вычисления (Central Processor Unit, CPU). Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.
  2. Канал чтения/записи (read/write channel) – устройство, преобразующее поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Так же выполняет слежение за позиционированием головок. Иными словами, создает магнитные образы при записи и распознает их при чтении.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объём памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки (firmware). Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько известно, только производитель HGST указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, о реальном объёме кэша остаётся только гадать. В спецификации ATA составители не стали расширять ограничение, заложенное в ранних версиях, равное 16 мегабайт. Поэтому, программы не могут отобразить объем более максимального.

Следующий чип – контроллер управления шпиндельным двигателем и звуковой катушкой, перемещающий блок головок (Voice Coil Motor and Spindle Motor controller, VCM&SM controller). На жаргоне специалистов – это «крутилка». Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Так же при отключении питания переключает останавливающийся двигатель в режим генерации и полученную энергию подает на звуковую катушку для плавной парковки магнитных головок. Ядро VCM-контроллера может работать даже при температуре в 100°C.

Часть программы управления (прошивки) диска хранится во флэш-памяти (на рисунке обозначено: Flash). При подаче питания на диск микроконтроллер загружает сначала маленькое boot-ПЗУ внутри себя, а дальше переписывает содержимое флэш-чипа в память и приступает к исполнению кода уже из ОЗУ. Без корректно загруженного кода, диск даже не пожелает запускать двигатель. Если на плате отсутствует флэш-чип, значит, он встроен в микроконтроллер. На современных дисках (где-то с 2004 года и новее, однако исключение составляют жёсткие диски Samsung и они же с наклейками от Seagate) flash-память содержит таблицы с кодами настроек механики и головок, которые уникальны для данного гермоблока и не подойдут к другому. Поэтому операция «перекинуть контроллер» всегда заканчивается либо тем, что диск «не определяется в BIOS», либо определяется заводским внутренним названием, но все равно доступ к данным не даёт. Для рассматриваемого диска Seagate 7200.11 утрата оригинального содержимого flash-памяти приводит к полной потере доступа к информации, так как подобрать или угадать настройки не получится (во всяком случае, автору такая методика не известна).

На youtube-канале R.Lab есть несколько примеров перестановки платы с перепайкой микросхемы c неисправной платы на исправную:
PC-3000 HDD Toshiba MK2555GSX PCB change
PC-3000 HDD Samsung HD103SJ PCB change

Датчик удара (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. Ещё при падении может заклинить шпиндельный двигатель, но об этом позже. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшие механические колебания. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено, кроме основного, ещё два дополнительных датчика вибрации. На нашей плате дополнительные датчики не припаяны, но места под них есть - обозначены на рисунке как «Vibration sensor».

На плате имеется ещё одно защитное устройство – ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Электроника для старых дисков была менее интегрированная, и каждая функция была разделена на одну и более микросхем.


Теперь рассмотрим гермоблок.


Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится вакуум. На самом деле это не так. Воздух нужен для аэродинамического взлета головок над поверхностью. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.


Сама крышка не представляет собой ничего интересного. Это просто стальная пластина с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.


Информация хранится на дисках, называемых также «блинами», магнитными поверхностями или пластинами (platters). Данные записываются с двух сторон. Но иногда с одной из сторон головка не установлена, либо физически головка присутствует, но отключена на заводе. На фотографии вы видите верхнюю пластину, соответствующую головке с самым большим номером. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между пластинами, а также над верхней из них, мы видим специальные вставки, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны. Ниже приведен пример модели прохождения потока воздуха внутри гермоблока.


Вид на пластины и сепараторы сбоку.


Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона – это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.


На некоторых накопителях, парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.


Парковочная площадка накопителя Western Digital 3.5”

В случае парковки головок внутри пластин для съёма блока магнитных головок нужен специальный инструмент, без него снять БМГ очень сложно без повреждения. Для внешней парковки можно вставить между головками пластиковые трубочки, подходящие по размеру, и вынуть блок. Хотя, и для этого случая так же есть съемники, но они более простой конструкции.

Жёсткий диск – механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин


Теперь снимем верхний магнит и посмотрим, что скрывается под ним.


В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом – удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача – ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жёстких дисках. На нашем накопителе второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.


Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок образуют позиционер (actuator) – устройство, которое перемещает головки.

Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Он бывает двух типов: магнитный и воздушный (air lock). Магнитный работает как простая магнитная защёлка. Высвобождение осуществляется подачей электрического импульса. Воздушная защёлка освобождает БМГ после того, как шпиндельный двигатель наберёт достаточное число оборотов, чтобы давление воздуха отодвинуло фиксатор с пути звуковой катушки. Фиксатор защищает головки от вылета головок в рабочую область. Если по какой-то причине фиксатор со своей функцией не справился (диск уронили или ударили во включенном состоянии), то головки прилипнут к поверхности. Для дисков 3.5“ последующее включение из-за большей мощности мотора просто оторвет головки. А вот у 2.5“ мощность мотора меньше и шансы восстановить данные, высвободив «из плена» родные головки, довольно высоки.

Теперь снимем блок магнитных головок.


Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.


Подшипник.


На следующей фотографии изображены контакты БМГ.


Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для предотвращения окисления. А вот со стороны платы электроники окисление случается частенько, что приводит к неисправности HDD. Удалить окисление с контактов можно стирательной резинкой (eraser).


Это классическая конструкция коромысла.


Маленькие чёрные детали на концах пружинных подвесов называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки – это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью магнитных дисков. На современных жёстких дисках головки двигаются на расстоянии 5-10 нанометров от поверхности. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Ещё попадание пыли может вызвать царапины. От них образуются новые пылинки, но уже магнитные, которые прилипают к магнитному диску и вызывают новые царапины. Это приводит к тому, что диск быстро покрывается царапинами или на жаргоне «запиливается». В таком состоянии ни тонкий магнитный слой, ни магнитные головки уже не работают, и жёсткий диск стучит (клик смерти).

Сами считывающие и записывающие элементы головки находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп. Ниже приведен пример фотографии (справа) через микроскоп и схематическое изображение (слева) взаимного расположения пишущего и читающего элементов головки.


Рассмотрим поверхность слайдера поближе.


Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.


Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель – это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.


Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок, очень слаб. На современных дисках он имеет частоту более 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления. Установить же усилитель прямо на голове нельзя, так как она существенно нагревается во время работы, что делает не возможным работу полупроводникового усилителя, вакуумно-ламповых усилителей таких малых размеров ещё не придумали.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.


На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.


Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).


Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).


Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.


Теперь понятно, за счёт чего создается пространство для головок – между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо – высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.


Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.


Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха. Однако, если жёсткий диск поместить в воду, то она наберется внутрь через фильтр! И это совсем не означает, что попавшая внутрь вода будет чистая. На магнитных поверхностях кристаллизуются соли и наждачка вместо пластин обеспечена.

Немного подробнее про шпиндельный двигатель. Схематически его конструкция показана на рисунке.


Внутри spindle hub закреплен постоянный магнит. Обмотки статора, меняя магнитное поле, заставляют ротор вращаться.


Моторы бывают двух видов, с шариковыми подшипниками и с гидродинамическими (Fluid Dynamic Bearing, FDB). Шариковые перестали использовать более 10 лет назад. Это связано с тем, что у них биение высокое. В гидродинамическом подшипнике биения намного ниже и работает он значительно тише. Но есть и пару минусов. Во-первых, он может заклинить. С шариковыми такого явления не происходило. Шариковые подшипники если и выходили из строя, то начинали громко шуметь, но информация хоть медленно, но читалась. Сейчас же, в случае клина подшипника, нужно при помощи специального инструмента снять все диски и установить их на исправный шпиндельный двигатель. Операция очень сложная и редко приводит к удачному восстановлению данных. Клин может возникнуть от резкого изменения положения за счет большого значения силы Кориолиса, действующей на ось и приводящей к ее сгибанию. Например, есть внешние 3.5” диски в коробочке. Стояла коробочка вертикально, задели, упала горизонтально. Казалось бы, не далеко улетел то?! А нет - клин двигателя, и никакой информации уже не достать.

Во-вторых, из гидродинамического подшипника может вытечь смазка (она там жидкая, ее довольно много, в отличие от смазки-геля, используемой шариковых), и попасть на магнитные пластины. Чтобы предотвратить попадание смазки на магнитные поверхности используют смазку с частицами, имеющими магнитные свойства и улавливающими их магнитные ловушки. Еще используют вокруг места возможной протечки абсорбционное кольцо. Вытеканию способствует перегрев диска, поэтому важно следить за температурным режимом эксплуатации.


Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.


Обновление 2018, Сергей Яценко

Перепечатка или цитирование разрешены при условии сохранения ссылки на перво

Каждый из нас ежедневно сталкивается с различными компьютерными терминами, знания о которых являются поверхностными, а некоторые термины нам вообще незнакомы. Да и зачем что-то знать о том, что нас не касается или не беспокоит. Не так ли? Известная истина: пока какое-нибудь оборудование (в т.ч. и жесткий диск) нормально и беспроблемно функционирует, то никто и никогда не будет забивать свою голову тонкостями его работы, да это и ни к чему.

Но, в моменты, когда в процессе работы любого устройства системного блока начинаются сбои, или просто внезапно понадобилась помощь с компьютером, очень многие пользователи тут же берут отвертку и книгу «азы компьютерной грамотности, или как реанимировать компьютер в домашних условиях». И пытаются самостоятельно решить проблему, не прибегая при этом к помощи специалиста. И чаще всего это заканчивается очень плачевно для их компьютера.

  • Понятия "жесткий диск" или "винчестер" и их возникновение

Определение и возникновение понятия "винчестер"

Итак, темой нашей очередной статьи на этот раз будет такая запчасть системного блока как жесткий диск. Мы с вами подробно рассмотрим само значение этого понятия, кратко вспомним историю его развития, и более подробно остановимся на внутреннем строении, разберем основные его типы, интерфейсы и подробности его подключения. Кроме этого немного заглянем в будущее, а может даже уже почти и в настоящее, и расскажем, что постепенно приходит на смену старым добрым винтам. Забегая вперед, скажем, что это твердотельные накопители, работающие по принципу USB-флешек - SSD-устройства.

Самый первый в мире жесткий диск, такого типа, как мы привыкли видеть его сейчас и каким привыкли пользоваться, изобрел сотрудник IBM Кеннет Хотон в 1973 году. Эта модель называлась загадочным сочетанием цифр: 30-30, точно так же, как калибр у всем известной винтовки Winchester, Не трудно догадаться, что отсюда и пошло одно из названий - винчестер, которое популярно в среде айтишников до сих пор. А, возможно, кто-то его сейчас прочитал вообще в первый раз.

Перейдем к определению: жесткий диск (а, если вам удобно, то хард, винчестер, HDD или винт) – это запоминающее устройство компьютера (или ноутбука), на которое при помощи специальных головок чтения/записи информация записывается, хранится и удаляется по мере необходимости.

"А чем же это все отличается от простых дискет или CD-DVD?" - просите вы. А все дело в том, что в отличие от гибких или оптических носителей, здесь данные записываются на жесткие (отсюда и название, хотя кто-то может уже и догадался сам) алюминиевые или стеклянные пластины, на которые нанесен тонкий слой ферромагнитного материала, чаще всего для этих целей используется хром диоксид.

Вся поверхность таких вращающихся магнитных пластин разделена на дорожки и секторы по 512 байт каждый. В некоторых накопителях есть всего один такой диск. Другие же содержат одиннадцать и более пластин, причем информация записывается на обе стороны каждой из них.

Внутреннее строение

Сама конструкция жесткого диска состоит не только из непосредственных накопителей информации, но и механизма, считывающего все эти данные. Все вместе это и есть главное отличие хардов от дискет и оптических накопителей. А в отличие от оперативной памяти (ОЗУ), которой необходимо постоянное питание, винчестер является энергонезависимым устройством. Его можно смело отключать от питания и брать с собой куда угодно. Данные на нем сохраняются. Это становится особенно важно, когда нужно восстановить информацию .

Теперь немного расскажем непосредственно о внутреннем строении жесткого диска. Сам винчестер состоит из герметичного блока, заполненного обычным обеспыленным воздухом под атмосферным давлением. Вскрывать его в домашних условиях мы не рекомендуем, т.к. это может привести к поломке самого устройства. Каким бы чистюлей вы не были, но пыль в комнате найдется всегда и она может попасть внутрь корпуса. В профессиональных сервисах, которые специализируются на восстановлении данных, есть специально оборудованная «чистая комната», внутри которой и производится вскрытие винчестера.

Также в состав устройства входит плата с электронной схемой управления. Внутри блока находятся механические части накопителя. На шпинделе двигателя привода вращения дисков закреплены один или несколько магнитных пластин.

В корпусе также расположен предусилитель-коммутатор магнитных головок. Сама же магнитная головка производит чтение или запись информации с поверхности одной из сторон магнитного диска. Скорость вращения которого достигает 15 тыс. оборотов в минуту - это что касается современных моделей.

При включении питания, процессор жесткого диска начинает с того, что тестирует электронику. Если всё в порядке, включается шпиндельный двигатель. После того, как достигнута определенная критическая скорость вращения, плотность прослойки воздуха, набегающей между поверхностью диска и головкой, становится достаточной, чтобы преодолеть силу прижима головки к поверхности.

В результате, головка чтения/записи «зависает» над пластиной на крошечном расстоянии всего в 5-10 нм. Работа головки чтения/записи схожа с принципом действия иголки в граммофоне, только лишь с одним отличием – у неё не происходит физического контакта с пластиной, в то время, как в граммофоне головка иголки соприкасается с пластинкой.

В моменты, когда питание компьютера выключается и диски останавливаются, головка опускается на нерабочую зону поверхности пластины, так называемую зону парковки. Поэтому не рекомендуется завершать работу компьютера аварийно - просто нажимая на кнопку выключения или выдергивая кабель питания из розетки. Это может привести к выходу из строя всего HDD. Ранние модели имели специальное программное обеспечение, которое инициировало операцию парковки головок.

В современных же HDD вывод головки в зону парковки происходит автоматически, когда снижается скорость вращения ниже номинальной или когда подается команда на отключение питания. Обратно в рабочую зону головки выводятся лишь тогда, когда будет достигнута номинальная скорость вращения двигателя.

Наверняка в вашем пытливом уме уже созрел вопрос – насколько герметичен сам блок дисков и какова вероятность того, что туда может просочиться пыль или другие мелкие частицы? Как мы уже писали выше, они могут привести к сбою в работе харда или вообще к его поломке и потере важной информации.

Но не стоит волноваться. Производители всё давным давно предусмотрели. Блок дисков с двигателем и головки находятся в специальном герметичном корпусе – гермоблоке (камере). Однако его содержимое не полностью изолировано от окружающей среды, обязательно необходимо перемещение воздуха из камеры наружу и наоборот.

Это нужно, чтобы выровнять давление внутри блока с внешним, чтобы предотвратить деформацию корпуса. Это равновесие достигается при помощи специального устройства, которое называется барометрический фильтр. Он размещен внутри гермоблока.

Фильтр умеет улавливать мельчайшие частицы, величина которых превышает расстояние между головкой чтения/записи и ферромагнитной поверхностью диска. Кроме выше упомянутого фильтра есть еще один – фильтр рециркуляции. Он улавливает частицы, которые присутствуют в воздушном потоке внутри самого блока. Они могут там появляться от осыпания магнитного опыления дисков (наверняка вы слышали когда-нибудь фразу, что «хард посыпался»). Кроме того, этот фильтр улавливает те частицы, которые «пропустил» его барометрический «коллега».

Интерфейсы подключения HDD

На сегодняшний день, чтобы подключить жесткий диск к компьютеру вы можете использовать один из трех интерфейсов: IDE, SCSI и SATA.

Первоначально в 1986 году интерфейс IDE разрабатывался только для подключения HDD. Затем его модифицировали в расширенный интерфейс ATA. В результате к нему можно подключать не только винчестеры, но и CD/DVD-приводы.

Интерфейс SATA – более быстрый, современный и производительный, нежели ATA.

В свою очередь, SCSI – высокопроизводительный интерфейс, который способен подключать различного рода устройства. Сюда входят не только накопители информации, но и различная периферия. Например, более быстрые SCSI-сканеры. Однако когда появилась USB-шина, необходимость подключения периферии посредством SCSI отпала. Так, что если вам посчастливится его где-то увидеть, то считайте, что вам повезло.

Сейчас давайте немного расскажем о подключении к IDE интерфейсу. В системе может быть два контроллера (первичный и вторичный), к каждому из которых можно подключить два устройства. Соответственно получаем максимум 4: первичный мастер, первичный подчиненный и вторичный мастер, вторичный подчиненный.

После того, как подключили устройство к контроллеру, следует выбрать режим его работы. Он выбирается при помощи установки специальной перемычки (она называется джампер) в определенное место в разъеме (рядом с разъемом для подключения шлейфа IDE).

При этом следует помнить, что более быстрое оборудование к контроллеру подключается первым и называется master. Второе называется slave (подчиненное). Последней манипуляцией будет подключить питание, для этого нам нужно выбрать один из кабелей блока питания. Данная информация вам пригодится, если у вас очень-очень старый компьютер. Так как в современных необходимость в подобных манипуляциях отпала.

Через SATA подключить гораздо проще. Кабель для него имеет одинаковые разъемы на обоих концах. SATA-диск не имеет перемычек, поэтому у вас нет необходимости выбирать режим работы устройств - справится даже ребенок. Питание подключается при помощи специального кабеля (3,3 В). Однако существует возможность подключиться через переходник к обычному кабелю питания.

Дадим один полезный совет: если к вам часто приходят друзья со своими винчестерами переписать новых фильмов или музыки (да-да, друзья у вас настолько суровые, что носят с собой не внешний HDD, а обычный внутренний), и вы уже устали все время раскручивать системный блок, рекомендуем приобрести специальный карман для жесткого диска (он называется Mobile Rack). Они есть и с IDE, и с SATA-интерфейсами. Чтобы подключить к вашему компьютеру еще один дополнительный хард, просто вставляем его в такой карман и готово.

SSD диски - новый этап в развитии

Уже сегодня (а может быть уже и вчера) начался следующий этап в развитии устройств-накопителей информации. На смену жестким дискам приходит новый тип - SSD. Далее расскажем о нем поподробней.

Итак, SSD (Solid State Disk) – твердотельный накопитель, который работает по принципу флеш-памяти USB. Одна из самых важных его отличительных черт от обычных винчестеров и оптических накопителей – в его устройство не входит никаких подвижных деталей и механических компонентов.

Накопители данного типа, как это часто бывает, изначально разрабатывались исключительно для военных целей, а также для высокоскоростных серверов, так как старые добрые харды для таких нужд уже являлись недостаточно быстрыми и надежными.

Перечислим наиболее важные преимущества SSD:

  • Во-первых, запись информации на SSD и чтение с него происходит намного быстрее (десятки раз), чем с HDD. Работу обычного винчестера очень сильно тормозит движение головки чтения/записи. А т.к. в SSD её нет, то и проблемы нет.
  • Во-вторых, благодаря одновременному использованию всех модулей памяти, установленных в SSD-накопитель, скорость передачи данных значительно выше.
  • В-третьих, не так восприимчивы к ударам. В то время как жесткие накопители могут потерять при ударе часть данных или же вообще выйти из строя, что и случается чаще всего - будьте осторожны!
  • В-четвертых, потребляют меньше энергии, что делает их удобными в использовании в устройствах, работающих от аккумуляторов - ноутбуках, нетбуках, ультрабуках.
  • В-пятых, данный тип накопителей при работе практически не производит никакого шума, тогда как при работе хардов мы слышим вращение дисков и движение головки. А, когда они выходят из строя, так и вообще сильный треск или стук головок.

Но не будем скрывать: пожалуй, есть два недостатка SSD – 1) за его определенную емкость вы заплатите значительно дороже, нежели за жесткий диск идентичного объема памяти (разница будет в несколько раз, хотя с каждым годом становится всё меньше и меньше); 2) SSD имеют относительно небольшое ограниченное количество циклов чтения/записи (т.е. изначально ограниченный срок службы).

Итак, мы с вами познакомились с понятием «жесткий диск», рассмотрели его строение, принцип работы и особенности различных интерфейсов подключения. Надеемся, предложенная информация оказалось несложной для восприятия, а главное, полезной.

Если у вас возникли трудности с выбором, если не можете определить, какой тип жестких дисков поддерживает ваша материнская плата, какой интерфейс подходит или какой объем HDD будет больше соответствовать вашим нуждам, то вы всегда можете обратиться за помощью в компьютерный сервис Комполайф на всей территории нашего обслуживания.

Наши специалисты помогут вам с выбором и заменой жесткого диска. Кроме этого, у нас вы можете заказать установку нового устройства в ваш системный блок или ноутбук.

Вызвать мастера