Распространение радиоволн в свободном пространстве. Распространение радиоволн в пространстве

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) - это расстояние между соседними гребнями волны.
Амплитуда(а) - максимальное отклонения от среднего значения при колебательном движении.
Период(T) - время одного полного колебательного движения
Частота(v) - количество полных периодов в секунду

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»
Сверхдлинные волны - v = 3-30 кГц (λ = 10-100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны (ДВ) v = 150-450 кГц (λ = 2000-670 м).


Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500-1600 кГц (λ = 600-190 м).


Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3-30 МГц (λ = 100-10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны (УКВ) v = 30 МГц - 300 МГц (λ = 10-1 м).


Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц - 3 ГГц (λ = 1-0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц - 30 ГГц (λ = 0,1-0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM - FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM - амплитудная модуляция


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ - первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM - частотная модуляция


Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины
Интерференция - в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.


Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция - явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:
Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме. Распространение KB ионосферной волной происходит путем последовательного отражения от слоя F (иногда слоя Е) ионосферы и поверхности Земли. При этом волны проходят через нижнюю область ионосферы - слои Е и D, в которых претерпевают поглощение (рис. 5, а). Для осуществления радиосвязи на KB должны быть выполнены два условия: волны должны отражаться от ионосферы и напряженность электромагнитного поля в данном месте должна быть достаточной для приема, т. е. поглощение волны в слоях ионосферы не должно быть слишком большим. Эти два условия ограничивают диапазон применимых рабочих частот.

Для отражения волны необходимо, чтобы рабочая частота была не слишком высокой, а электронная плотность ионосферного слоя достаточной для отражения этой волны в соответствии с (3-44). Из этого условия выбирается максимальная применимая частота (МПЧ), являющаяся верхней границей рабочего диапазона.

Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере (см. рис. 5). Наименьшая применимая частота (НПЧ) определяется из условия, что при данной мощности передатчика напряженность электромагнитного поля должна быть достаточной для приема.

Электронная плотность ионосферы меняется в течение суток и в течение года. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток:

Днем работают на волнах 10-25 м, а ночью на волнах 35-100 м.

Необходимость правильного выбора длины волны для сеансов связи в различное время усложняет конструкцию станции и работу оператора.

Зоной молчания KB называют кольцевую область, существующую на некотором расстоянии от передающей станции, в пределах которой невозможен прием радиоволн. Появление зоны молчания объясняется тем, что земная волна затухает и не достигает этой области (точка 6 на рис. 3-39, а), а для ионосферных волн, падающих под малыми углами на ионосферу, не выполняются условия отражения (3-44). Пределы зоны молчания (ВС) расширяются при укорочении длины волны и снижении электронной плотности.

Замирания в диапазоне KB более глубоки, чем в диапазоне СВ. Основной причиной замираний является интерференция лучей, распространяющихся путем одного и двух отражений от ионосферы (рис. 3-39, о). Помимо этого замирания вызываются рассеянием радиоволн на неоднородностях ионосферы и интерференцией рассеянных волн (рис. 3-39,6), а также интерференцией обыкновенной и необыкновенной составляющих магниторасщепленной волны (рис. 3-39,в). Обработка измерений за короткие.интервалы времени (до 5 мин) показала, что ф-ции распределения амплитуд близки к распределению Рэлея (3-54). В течение больших интервалов времени наблюдений распределение ближе к логарифмически нормальному со среднеквадратичным отклонением 6±1,25 дБ. В обоих случаях разность между уровнями напряженности поля сигнала, превышаемыми в течение 10 и 90% времени, составляет 16±3,2 дБ.

Скорость замирания (§ 3-6) лежит в пределах 6 - 16 замираний в минуту. На линиях протяженностью 3000 км скорость замираний в 2 - 6 раза меньше, чем на линии протяженностью 6000 км. Интервал времени корреляции колеблется в пределах?о = 4,5 - 1,5 с. Масштаб пространственной корреляции зависит от протяженности линии радиосвязи, рабочей частоты, характера неоднородностей ионосферы и лежит в пределах rо==210-560 м (10 - 25?). Для борьбы с замираниями применяется прием па разнесенные антенны. Направление разноса рекомендуется выбирать перпендикулярным к направлению трассы, расстояние разноса берут порядка масштаба корреляции 10?. Сигналы, принятые на разнесенные антенны, складывают после детектирования. Эффективным является разнесение по поляризации - прием на две антенны, имеющие взаимно перпендикулярную поляризацию. Используются также приемные антенны с
узкой диаграммой направленности, ориентированной на прием только одного из лучей.

При благоприятных условиях распространения KB могут огибать земной шар один и несколько раз. Тогда помимо основного сигнала может быть принят второй сигнал, запаздывающий примерно на 0,1 с и называемый радиоэхо. Радиоэхо оказывает мешающее действие, на линиях меридионального направления.

Под распространением радиоволны в свободном пространстве понимается распространение ее в атмосфере Земли, вдоль поверхности Земли, в космическом пространстве, т. е. в условиях, когда отсутствуют неоднородности трассы.

На процессы свободного распространения радиоволн оказывают влияние параметры среды распространения. Радиоволны принято классифицировать по двум основным признакам: по длине волны (частоте) и по способу (механизму) распространения.

Помимо перечисленных в таблице наименований волн и полос частот, пользуются также другими условными названиями: сверхдлинные волны (СДВ), длинные (ДВ), средние (СВ), короткие (KB), ультракороткие (УКВ).

По способу распространения различают четыре типа волн: прямые, поверхностные (земные), тропосферные и пространственные (ионосферные).

Прямыми называют волны, распространяющиеся в свободном пространстве, т. е. в пространстве, не заполненном каким-либо веществом, по прямолинейным траекториям. На практике принято считать, что трассы Земля — Космос, Космос — Земля также обеспечиваются прямыми волнами, хотя атмосфера Земли и оказывает небольшое влияние на условия распространения. Убывание амплитуды поля прямых волн связано не с наличием потерь (распространение происходит в свободном пространстве), а с естественным сферическим рассеянием энергии.

Рассмотренные типы трасс в настоящее время не являются определяющими для систем связи. В большинстве случаев приемная и передающая антенны располагаются на поверхности Земли или в непосредственной близости от нее. Очевидно, влияние на распространение, кроме полупроводящей почвы, будет оказывать и атмосфера, являющаяся неоднородной средой.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли, частично огибающие выпуклость земного шара вследствие дифракции, получили название поверхностных, или земных волн. Из курса физики известно, что дифракция наблюдается тогда, когда размеры препятствия соизмеримы с длиной волны. В данном случае препятствием является шаровой сегмент. Высота последнего зависит от расстояния между корреспондентами, поэтому ясно, что чем больше рабочая длина волны, тем на большее расстояние она может распространяться за счет дифракции. Дифрагируя вокруг сферической поверхности Земли, поверхностная волна частично поглощается полупроводящей землей, степень поглощения которой зависит от структуры почвы (песок, глина, камни и т. п.) и ее влажности. Атмосфера Земли оказывает малое влияние на условия распространения этой волны.

На распространение тропосферных и пространственных (ионосферных) волн основное влияние оказывает атмосфера Земли. Под атмосферой понимают газообразную оболочку Земли, простирающуюся на высоту до 800… 1000 км. В ней можно выделить три основных слоя: тропосферу - приземный слой высотой 10… 14 км; стратосферу-слой до 60 … 80 км; ионосферу - ионизированный воздушный слой малой плотности над стратосферой, переходящий в радиационные пояса Земли.

Однако каждый из слоев нельзя считать однородной средой. Электрические параметры тропосферы зависят от высоты над поверхностью Земли. Кроме того, в ней непрерывно дуют ветры, перемещая огромные воздушные массы и увеличивая их неоднородность.

Ионосфера подвергается воздействию солнечного излучения, потока заряженных космических частиц, космической пыли и др., что вызывает расщепление молекул на электроны и ионы. Концентрация ионов и электронов на различных высотах различна.

В ионосфере можно выделить четыре слоя: слой D - высота 60 …90 км, концентрация электронов не более 103 эл/см3; слой Е - высота ПО… 130 км, концентрация - 2×104… 105 эл/см3, слой F1 - высота 200…300 км, концентрация 105… 5×105 эл/см3; слой F2 - высота 300… 400 км, концентрация - 5×105… 106 эл/см3. Состояние ионосферы непрерывно меняется, при этом наблюдаются периодические и случайные изменения. Области слоев характеризуются суточной периодичностью изменения концентрации электронов и высоты расположения, причем степень ионизации является различной в летнее и зимнее время. Эти особенности тропосферы и ионосферы и оказывают влияние на особенности распространения радиоволн. В неоднородной среде из-за различных скоростей распространения волн в различных по свойствам объемах в первую очередь наблюдается искривление или преломление волн, которое получило название рефракции. Кроме того, на неоднородности происходит рассеивание энергии радиоволн в различных направлениях, в том числе и по направлению к точке приема.

Радиоволны, распространяющиеся на значительные расстояния (до 1000 км) за счет рассеяния на неоднородностях тропосферы, а также за счет явления тропосферной рефракции, получили название тропосферных волн. Отметим, что тропосфера оказывает влияние только на электромагнитные волны, длина которых меньше 10 м.

Радиоволны, распространяющиеся на большие расстояния и даже огибающие земной шар в результате многократных отражений от ионосферы и поверхности земли (в диапазоне волн длиннее 10 м), а также волны, рассеивающиеся на неоднородностях ионосферы (в диапазоне короче 10 м), получили название пространственных, или ионосферных волн.

Механизм распространения, а следовательно, и тип распространяющейся волны определяется конкретными условиями на трассе и частотным диапазоном. Расчет распространения радиоволн сводится к определению напряженности поля в точке приема при заданных мощностях излучения, расстоянии, трассе прохождения волн, длине волны и т. д.

Распространение радиоволн

Реферат выполнил: Аникин С. В.

Дальневосточный Государственный Технический Университет (ДВПИ им. В. В. Куйбышева)

Владивосток 2008

Введение

Законы распространения радиоволн в свободном пространстве сравнительно просты, но чаще всего радиотехника имеет дело не со свободным пространством, а с распространением радиоволн над земной поверхностью. Как показывают и опыт и теория, поверхность Земли сильно влияет на распространение радиоволн, причем сказываются как физические свойства поверхности (например, различия между морем и сушей), так и ее геометрическая форма (общая кривизна поверхности земного шара и отдельные неровности рельефа - горы, ущелья и т. п.). Влияние это различно для волн разной длины и для разных расстояний между передатчиком и приемником. Способы распространения радиоволн существенно зависят от длины волны, от освещённости земной атмосферы Солнцем и от ряда других факторов.

Распространение радиоволн

В процессе распространения, радиоволны испытывают ослабление, связанное с рядом причин. По мере удаления от передатчика энергия распространяется все в большем объеме, следовательно, плотность потока энергии уменьшается. Среда, в которой распространяются радиоволны, также вызывает их ослабление. Это связано с поглощением энергии волн вследствие тепловых потерь и уменьшением напряженности поля волны при огибании препятствий в виде выпуклости земного шара или возвышенностей.

Рис. 1. Структура электромагнитных волн для некоторого момента времени.

В каждой точке пространства вектор напряженности электрического поля волны Е перпендикулярен вектору напряженности магнитного поля Н, и оба вектора перпендикулярны направлению распространения волны.

Распространение радиоволн подчиняется определенным общим законам:

Прямолинейное распространение в однородной среде, т.е. среде, свойства которой во всех точках одинаковы.

Отражение и преломление при переходе из одной среды в другую. Угол падения равен углу отражения.

Дифракция. Встречая на своем пути непрозрачное тело, радиоволны огибают его. Дифракция проявляется в разной мере в зависимости от соотношения геометрических размеров препятствия и длины волны.

Рефракция. В неоднородных средах, свойства которых плавно изменяются от точки к точке, радиоволны распространяются по криволинейным траекториям. Чем резче изменяются свойства среды, тем больше кривизна траектории.

Полное внутреннее отражение. Если при переходе из оптически более плотной среды в менее плотную, угол падения превышает некоторые критические значения, то луч во вторую среду не проникает и полностью отражается от границы раздела сред. Критический угол падения называют углом полного внутреннего отражения.

Интерференция. Это явление наблюдается при сложении в пространстве нескольких волн. В различных точках пространства получается увеличение или уменьшение амплитуды результирующей волны в зависимости от соотношения фаз складывающихся волн.

Радиоволны, распространяющиеся у поверхности земли и, вследствие дифракции, частично огибающие выпуклость земного шара, называются поверхностными волнами. Распространение поверхностных волн сильно зависит от свойств земной поверхности.

Радиоволны, распространяющиеся на большой высоте в атмосфере и возвращающиеся на землю вследствие отражения от атмосферных неоднородностей, называются пространственными волнами.

Область существенная для распространения волн

При распространении радиоволн в однородном безграничном пространстве различные области этого пространства неодинаково влияют на процесс формирования поля в точке приема. Чтобы определить существенную область пространства, которая играет определяющую роль, обратимся к принципу волноводной оптики – принципу Гюйгенса-Френеля.

Предположим, что в точке А расположен точечный излучатель: требуется определить напряженность электрического поля EB точке В на расстоянии R от излучателя. Проведем мысленно вокруг излучателя произвольную замкнутую поверхность S (рис.2).

Согласно принципу Гюйгенса – Френеля: каждую точку на поверхности S можно считать источником вторичных сферических волн (виртуальным источником), а поле в точке В можно определить в результате векторного суммирования полей всех таких вторичных излучателей на поверхности S. Каждый из вторичных излучателей обладает диаграммой направленности, максимум его излучения совпадает с нормалью к поверхности S в данной точке.

Чтобы проследить процесс формирования поля в точке В, предположим, что на расстоянии R1 от точки В перпендикулярно линии АВ расположен экран, непрозрачный для радиоволн бесконечных размеров. Замкнутую вокруг точки А поверхность S выберем состоящей из плоскости экрана и бесконечно удаленной полусферы, охватывающей точку А и опирающейся на экран. Если отверстия в экране нет, то из-за непрозрачности экрана поле в точке В будет равно 0

Рис.2 Распространение радиоволн в однородном безграничном пространстве

Рис. 3. Формирование поля радиоволн

Влияние поверхности Земли на распространение радиоволн

Влияние поверхности Земли на распространение радиоволн зависит от расположения радиотрассы относительно её поверхности. Распространение радиоволн - пространственный процесс, захватывающий большую область. Но наиболее существенную роль в этом процессе играет часть пространства, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах которого А и В расположены передатчик и приёмник (рис. 4).

Рис. 4. Область, существенная при распространении радиоволн: А - передающая антенна; В - приёмная; Z1 и Z2 - их высоты над поверхностью Земли.

Большая ось эллипсоида практически равна расстоянию R между передатчиком и приёмником, а малая ось ~. Чем меньше , тем уже эллипсоид, в оптическом диапазоне он вырождается в прямую линию (световой луч). Если высоты Z1 и Z2, на которых расположены антенны передатчика и приёмника относительно поверхности Земли, велики по сравнению с , то эллипсоид не касается поверхности Земли (рис. 4, а). Поверхность Земли не оказывает в этом случае влияния на распространение радиоволн (свободное распространение). При понижении обеих или одной из конечных точек радиотрассы эллипсоид коснётся поверхности Земли (рис. 4, б) и на прямую волну, идущую от передатчика к приёмнику, належится поле отражённой волны. Если при Z1>> и Z2>>, то это поле можно рассматривать как луч, отражённый земной поверхностью по законам геометрической оптики. Поле в точке приёма определяется интерференцией прямого и отражённого лучей. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля (рис. 5). Условие Z1 и Z2>> практически может выполняться только для метровых и более коротких волн, поэтому лепестковая структура поля характерна для ультракоротких волн (УКВ).

Рис. 5. Лепестковая структура поля в точке приёма.

При увеличении существенная область расширяется и пересекает поверхность Земли. В этом случае уже нельзя представлять волновое поле как результат интерференции прямой и отражённой волн. Влияние Земли на распространение радиоволн этом случае обусловлено несколькими факторами: земля обладает значительной электропроводностью, поэтому распространение радиоволн вдоль поверхности Земли приводит к тепловым потерям и ослаблению волны. Потери энергии в земле увеличиваются с уменьшением .

Рис.6. Распространение радиоволн.

Помимо ослабления, происходит также изменение структуры поля волны. Если антенна у поверхности Земли излучает поперечную линейно-поляризованную волну, у которой напряжённость электрического поля Е перпендикулярна поверхности Земли, то на больших расстояниях от излучателя волна становится эллиптически поляризованной 1 (рис. 6). Величина горизонтальной компоненты Ex значительно меньше вертикальной Ez и убывает с увеличением проводимости s земной поверхности. Возникновение горизонтальной компоненты позволяет вести приём земных волн на т. н. земные антенны (2 проводника, расположенные на поверхности Земли или на небольшой высоте). Если антенна излучает горизонтально-поляризованную волну (Е параллельно поверхности Земли), то поверхность Земли ослабляет поле тем больше, чем больше s, и создаёт вертикальную составляющую. Уже на небольших расстояниях от горизонтального излучателя вертикальная компонента поля становится больше горизонтальной. При распространении вдоль Земли фазовая скорость земных волн меняется с расстоянием, однако уже на расстоянии приблизительно нескольких от излучателя она становится равной скорости света, независимо от электрических свойств почвы.

Рис. 7. Высота шарового сегмента, характеризующая выпуклость Земли

Выпуклость Земли является своеобразным "препятствием" на пути радиоволн, которые, дифрагируя, огибают Землю и проникают в "область тени". Т. к. дифракция волн заметно проявляется тогда, когда размеры препятствия соизмеримы или меньше , а размер выпуклости Земли можно охарактеризовать высотой шарового сегмента h (рис. 7), отсекаемого плоскостью, которая проходит через хорду, соединяющую точки расположения приёмника и передатчика (см. табл. 1), то условие h выполняется для метровых и более длинных волн. Если учесть, что с уменьшением увеличиваются потери энергии в Земле, то практически только километровые и более длинные волны могут проникать глубоко в область тени (рис. 8).

Рис.8. График изменения напряжённости поля с расстоянием r (в км). По вертикальной оси отложена величина множителя ослабления, который определяется отношением напряжённости поля в реальных условиях распространения к величине напряжённости поля при распространении в свободном пространстве.

Высота шарового сегмента h для различных расстояний между передатчиком и приёмником

Таблица 1

Расстояние, км

Земная поверхность неоднородна, наиболее существенное влияние на распространение радиоволн оказывают электрические свойства участков трассы, примыкающих к передатчику и приёмнику. Если радиотрасса пересекает линию берега, т. е. проходит над сушей, а затем над морем, то при пересечении береговой линии резко изменится напряжённость поля (рис. 9), т. е. амплитуда и направление распространения волны (береговая рефракция). Однако береговая рефракция является местным возмущением поля радиоволны, уменьшающимся по мере удаления от береговой линии.

Рис. 9. Изменение напряжённости электрического поля на границе двух сред

Рельеф земной поверхности также влияет на распространение радиоволн. Это влияние зависит от соотношения между высотой неровностей поверхности h, горизонтальной протяжённостью l и углом падения q волны на поверхность (рис. 7). Если выполняются условия:

(1)

то неровности считаются малыми и пологими. В этом случае они мало влияют на радиоволн. При увеличении q условия (1) могут нарушаться. При этом энергия волны рассеивается, и напряжённость поля в направлении отражённого луча уменьшается (возникают диффузные отражения).

Высокие холмы, горы и т.п., кроме того, сильно "возмущают" поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отражённых от поверхности Земли волн (рис. 10).

Рис. 10. Усиление радиоволн при дифракции на непологих неровностях.

Подземная и подводная радиосвязь.

Земная кора, а также воды морей и океанов обладают проводимостью и сильно поглощают радиоволны. Для осадочных пород в поверхностном слое земной коры удельная проводимость 10-3-10-2 Ом-1м-1. Кроме того, для сред с большой удельной проводимостью коэффициент поглощения увеличивается с ростом частоты. Поэтому для подземной радиосвязи используются в основном длинные и сверхдлинные волны. В подводной связи наряду со сверхдлинными волнами используют волны оптического диапазона.

Рис. 11. Принцип подземной радиосвязи.

В системах связи между подземными или подводными пунктами может быть использовано частичное распространение вдоль поверхности Земли или моря. Вертикально поляризованная волна, возбуждаемая подземной передающей антенной, распространяется до поверхности Земли, преломляется на границе раздела между Землёй и атмосферой, распространяется вдоль земной поверхности, и затем принимается подземной приёмной антенной (рис. 11). Глубина погружения антенн достигает десятков метров. Системы этого типа обеспечивают дальность до нескольких сотен километров и применяются, например, для связи между подземными пунктами управления при запуске ракет. Системы др. типа используют подземные волноводы - слои земной коры, обладающие малой проводимостью и, следовательно, малыми потерями. К таким породам относятся каменная соль, поташ и др. Эти породы залегают на глубинах до сотен метров и обеспечивают дальность распространения радиоволн до нескольких десятков километров. Дальнейшим развитием этого направления является использование твёрдых горных пород (гранитов, гнейсов, базальтов и др.), расположенных на больших глубинах и имеющих малую проводимость (рис. 12). На глубине 3-7 км удельная проводимость может уменьшиться до 10-11 Ом-1м-1. При дальнейшем увеличении глубины благодаря возрастанию температуры создаётся ионизация (обращенная ионосфера) и проводимость увеличивается. Образуется подземный волновод толщиной в несколько км, в котором возможно распространения радиоволн на расстоянии до нескольких тыс. км. Одна из основных проблем подземной и подводной связи - расчёт излучения и передачи энергии от антенн, расположенных в проводящей среде.

Рис. 12. Изменение проводимости Земли s с глубиной.

Преимущество систем подземной связи состоит в их независимости от бурь, ураганов и искусственных разрушений на поверхности Земли. Кроме того, благодаря экранирующему действию верхних проводящих осадочных пород системы подземной связи обладают высокой помехозащищенностью от промышленных и атмосферных шумов.

Список литературы

Фейнберг Е. Л., Распространение радиоволн вдоль земной поверхности, М., 1961;

Альперт Я. Л., Распространение электромагнитных волн и ионосфера, М., 1972;

Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973;

Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973;

Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967;

Чернов Л. А., Распространение волн в среде со случайными неоднородностями, М., 1958;

Гинзбург В. Л., Распространение электромагнитных волн в плазме, М., 1967;

Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972

Для подготовки данной работы были использованы материалы с сайта http://referat.ru/

1 Наклон фронта волны – при распространении радиоволны, которая обычно имеет круговую поляризацию над полупроводящей землей, вследствие неодинакового значения параметров почвы для электрической и магнитной составляющей радиоволны круговая поляризация переходит в эллиптическую. Чем выше проводимость почвы, тем больше эксцентриситет эллипса, и тем ближе поляризация к плоской.