Безопасность IP-телефонии. Безопасность IP-телефонии через SIP. Шифрование VoIP, защита от взлома, VPN

Осталось в прошлом то время, когда операторы с опасением относились к использованию IP-телефонии, считая уровень защищенности таких сетей низким. Сегодня уже можно говорить о том, что IP-телефония стала неким стандартом де-факто в телефонных коммуникациях. Это объясняется удобством, надежностью и относительно невысокой стоимостью IP-телефонии по сравнению с аналоговой связью. Можно утверждать, что IP-телефония повышает эффективность ведения бизнеса и позволяет осуществлять такие ранее недоступные операции, как интеграция с различными бизнес-приложениями.

Если говорить о недостатках и уязвимостях IP-телефонии, прежде всего следует отметить те же «болезни», какими страдают другие службы, использующие протокол IP. Это подверженность атакам червей и вирусов, DoS-атакам, несанкционированному удаленному доступу и др. Несмотря на то, что при построении инфраструктуры IP-телефонии данную службу обычно отделяют от сегментов сети, в которых «ходят» не голосовые данные, это еще не является гарантией безопасности. Сегодня большое количество компаний интегрируют IP-телефонию с другими приложениями, например с электронной почтой. С одной стороны, таким образом появляются дополнительные удобства, но с другой — и новые уязвимости. Кроме того, для функционирования сети IP-телефонии требуется большое число компонентов, таких, как серверы поддержки, коммутаторы, маршрутизаторы, межсетевые экраны, IP-телефоны и т. д. При этом для поддержки функционирования IP-сети часто используются неспециализированные ОС. К примеру, большинство IP-УАТС построено на базе обычных и хорошо известных операционных систем (Windows или Linux), которые теоретически обладают всеми уязвимостями, характерными для данных систем.

В некоторых IP-УАТС применяется СУБД и веб-серверы, имеющие свои элементы уязвимостей. И хотя для универсальной операционной системы или стека протоколов можно использовать давно известные средства защиты — антивирусы, персональные межсетевые экраны, системы предотвращения атак и т. п., отсутствие «заточенности» таких средств под работу с приложениями IP-телефонии может негативно сказаться на уровне защищенности.

Среди основных угроз, которым подвергается IP-телефонная сеть, можно выделить:

  • регистрацию чужого терминала, позволяющую делать звонки за чужой счет;
  • подмену абонента;
  • внесение изменений в голосовой или сигнальный трафик;
  • снижение качества голосового трафика;
  • перенаправление голосового или сигнального трафика;
  • перехват голосового или сигнального трафика;
  • подделка голосовых сообщений;
  • завершение сеанса связи;
  • отказ в обслуживании;
  • удаленный несанкционированный доступ к компонентам инфраструктуры IP-телефонии;
  • несанкционированное обновление ПО на IP-телефоне (например, с целью внедрения троянской или шпионской программы);
  • взлом биллинговой системы (для операторской телефонии).

Это далеко не весь перечень возможных проблем, связанных с использованием IP-телефонии. Альянс по безопасности VoIP (VOIPSA) разработал документ, описывающий широкий спектр угроз IP-телефонии, который помимо технических угроз включает вымогательство через IP-телефонию, спам и т. д.

И все же основное уязвимое место IP-телефонии — это набивший оскомину человеческий фактор. Проблема защищенности при развертывании IP-телефонной сети часто отодвигается на задний план, и выбор решения проходит без участия специалистов по безопасности. К тому же специалисты не всегда должным образом настраивают решение, даже если в нем присутствуют надлежащие защитные механизмы, либо приобретаются средства защиты, не предназначенные для эффективной обработки голосового трафика (например, межсетевые экраны могут не понимать фирменный протокол сигнализации, использующийся в решении IP-телефонии). В конце концов, организация вынуждена тратить дополнительные финансовые и людские ресурсы для защиты развернутого решения либо мириться с его незащищенностью.

Что же строить?

Не будет открытием и то, что чем надежнее защищена IP-телефонная сеть, тем меньше вероятность взлома и злоупотреблений в такой сети. Прозвучит банально, но думать об обеспечении безопасности необходимо уже на этапе подготовки проекта IP-телефонии и именно на этом этапе необходимо договориться о том, какие механизмы защиты целесообразнее использовать в сети. Будет ли это набор встроенных механизмов? А может, особенности функционирования данной IP-сети таковы, что необходимы дополнительные и «навесные» средства защиты?

С точки зрения управляемости и производительности наиболее предпочтительной кажется такая архитектура IP-телефонии, где все компоненты защиты встроены в элементы самой сети. Если рассматривать IP-телефонную сеть без использования дополнительных средств защиты, то, применяя встроенные в сетевые коммутаторы защитные механизмы, можно добиться построения относительно стойкой защиты от атак на периметр. Встроенный функционал позволяет обеспечить:

  • возможность создания виртуальных локальных сетей (VLAN) с использованием встроенных возможностей коммутаторов;
  • применение встроенных механизмов фильтрации и контроля доступа;
  • ограничение и представление гарантируемой полосы пропускания, что позволяет эффективно подавлять DoS-атаки;
  • ограничение числа устройств с различными MAC-адресами, подключенными к одному порту;
  • предотвращение атак на расходование пула адресов DHCP-сервиса;
  • предотвращение засорения таблиц ARP и «воровство» адресов;
  • предотвращение атак с анонимных адресов;
  • применение списков контроля доступа, ограничивающих адреса узлов, которые могут передавать данные IP-телефонам.

Кроме того, встроенная в архитектуру IP-сети система управления вызовами, которая может подключаться к специальной выделенной локальной сети, изолированной от рабочей сети организации, представляет собой дополнительный «рубеж» в защите. К недостаткам можно отнести то, что встроенные в сетевое оборудование защитные функции не всегда обеспечивают надлежащий уровень безопасности и для его поднятия могут потребоваться дополнительные вложения в модернизацию оборудования.

Несмотря на использование в основе своей протокола IP, IP-телефония далеко не всегда может быть адекватно защищена традиционными решениями. Связано это с тем, что они не учитывают ее специфики — передачи трафика в реальном времени, контроля качества и трафика на прикладном уровне и т. д. Идеально, когда приложения IP-телефонии и их безопасность неразрывно связаны и интегрированы между собой в единую платформу, включающую и сетевую инфраструктуру. Это позволяет повысить эффективность защиты и снизить издержки на нее. В противном случае приходится строить четыре независимых или практически непересекающиеся инфраструктуры: ЛВС, IP-телефонная сеть, безопасность ЛВС и инфраструктура безопасности IP-телефонии.

Применение специализированных межсетевых экранов значительно повышает безопасность IP-телефонной сети, например, при помощи фильтрации трафика с учетом состояния соединения (stateful inspection ), что позволяет пропускать только необходимый трафик и соединения, установленные в определенном направлении (от сервера к клиенту или наоборот). Кроме того, межсетевой экран предоставляет возможности по:

  • фильтрации трафика управления установкой IP-телефонных соединений;
  • передаче трафика управления через NAT и сетевые туннели;
  • TCP-перехвату, который обеспечивает проверку закрытия TCP-сессий, что позволяет защищаться от ряда атак типа отказа в обслуживании (DoS).

При проектировании сети, в которой предполагается использование дополнительных средств защиты, например системы обнаружения или предотвращения атак, следует особое внимание уделить выбору производителя таких средств, поскольку вопрос об управлении гетерогенной IP-сетью не всегда может быть решен эффективно и быстро и практически всегда требует серьезных дополнительных вложений.

Предпочтителен выбор того производителя, на оборудовании которого уже функционирует сеть, так как поддержку и управление устройствами можно осуществлять в этом случае централизованно и с меньшими затратами.

Защита от прослушивания

Виртуальные ЛВС снижают в известной степени риск прослушивания телефонных разговоров, однако в случае перехвата речевых пакетов анализатором восстановление записи разговора для специалиста дело нехитрое. Главным образом, виртуальные ЛВС способны обеспечить защиту от внешних вторжений, но защитить от атаки, инициированной изнутри сети, могут быть не способны. Человек, находящийся внутри периметра сети, может подключить компьютер прямо к разъему настенной розетки, сконфигурировать его как элемент виртуальной ЛВС системы IP-телефонии и начать атаку.

Наиболее совершенный способ противодействия подобным манипуляциям — использование IP-телефонов со встроенными средствами шифрования. Кроме того, дополнительную защиту обеспечивает шифрование трафика между телефонами и шлюзами. На сегодняшний день практически все производители, такие как Avaya, Nortel и Cisco, предлагают встроенные средства шифрования для информационных потоков и сигнализации. Шифрование трафика является наиболее логичным решением для защиты от прослушивания разговоров, но такая функциональность несет и ряд трудностей, которые необходимо учитывать при построении защищенной связи. Основной проблемой может быть задержка, добавляемая процессом зашифровывания и расшифровывания трафика. При работе в локальной сети подобная проблема, как правило, не дает о себе знать, но при связи через территориально-распределенную сеть способна доставлять неудобства. К тому же шифрование сигнализации, происходящее на прикладном уровне, может затруднить работу межсетевых экранов. В случае применения потокового шифрования задержки гораздо ниже, чем при использовании блочных шифров, хотя полностью от них избавиться не удастся. Вариантом решения проблемы могут служить более быстрые алгоритмы или включение механизмов QoS в модуль шифрования.

QoS

Принято считать, что основное назначение механизмов QoS (Quality of Service ) — обеспечение должного качества связи. Но не стоит забывать, что они играют важнейшую роль и при решении задач безопасности. Для передачи речи и данных из логически отдельных виртуальных ЛВС используется общая физическая полоса пропускания. При заражении узла вирусом или червем может произойти переполнение сети трафиком. Однако если прибегнуть к механизмам QoS, настроенным соответствующим образом, трафик IP-телефонии будет попрежнему иметь приоритет при прохождении через общие физические каналы, и DoS-атака окажется безуспешной.

Защита от подмены телефонов и серверов управления

Многие элементы IP-телефонии имеют динамическую адресацию, что позволяет злоумышленникам использовать это в своих целях. Они могут «выдать себя» за IP-телефон, сервер управления звонками и т. д. Для защиты от устройств, пытающихся замаскироваться под авторизованные IP-телефоны или несанкционированно подключенных к сетевой инфраструктуре, можно воспользоваться правилами контроля доступа на маршрутизаторах и межсетевых экранах. Кроме того, могут пригодиться средства строгой аутентификации всех абонентов инфраструктуры IP-телефонии. Для подтверждения подлинности абонентов могут применяться различные стандартизированные протоколы, включая RADIUS, сертификаты PKI x.509 и т. д.

Защита от DoS-атак

Атаки типа «отказ в обслуживании» на приложения IP-телефонии (например, на серверы обработки звонков) и среду передачи данных представляют собой довольно серьезную проблему. Если говорить об атаках на среду передачи данных, отметим, что за передачу данных в IP-телефонии, как правило, отвечает протокол RTP (Real-Time Protocol ). Он уязвим для любой атаки, которая перегружает сеть пакетами или приводит к замедлению процесса их обработки конечным устройством (телефоном или шлюзом). Следовательно, злоумышленнику достаточно «забить» сеть большим количеством RTP-пакетов либо пакетов с высоким приоритетом обслуживания, которые будут конкурировать с легитимными RTP-пакетами. В таком случае для защиты можно использовать как встроенные в сетевое оборудование механизмы обеспечения информационной безопасности, так и дополнительные решения:
  • разделение корпоративной сети на непересекающиеся сегменты передачи голоса и данных, что предотвращает появление в «голосовом» участке распространенных атак, в том числе и DoS;
  • специальные правила контроля доступа на маршрутизаторах и межсетевых экранах, защищающих периметр корпоративной сети и отдельные ее сегменты;
  • систему предотвращения атак на сервере управления звонками и ПК с голосовыми приложениями;
  • специализированные системы защиты от DoS- и DDoS-атак;
  • специальные настройки на сетевом оборудовании, предотвращающие подмену адреса и ограничивающие полосу пропускания, не позволяющую вывести из строя атакуемые ресурсы большим потоком бесполезного трафика.

Защита IP-телефонов

IP-телефоны содержат целый ряд специальных настроек, препятствующих несанкционированному доступу к ним. К таким настройкам относятся, например, доступ к функциям телефона только после предъявления идентификатора и пароля или запрет локального изменения настроек и т. д. С целью предотвращения загрузки на IP-телефон несанкционированно модифицированного программного обеспечения и конфигурационных файлов, их целостность может контролироваться цифровой подписью и сертификатами X.509.

Защита от мошенничества в IP-телефонной сети

Среди основных типов мошенничества, встречающегося в IP-телефонной сети, можно отметить кражу услуг, фальсификацию звонков, отказ от платежа и другие виды. Защититься от мошенничества в сетях IP-телефонии можно, используя возможности сервера управления IT-инфраструктурой. Так, для каждого абонента можно заблокировать звонки на определенные группы номеров; заблокировать звонки с нежелательных номеров; заблокировать возможность переадресации звонков на различные типы номеров — городские, мобильные, междугородные и международные; отфильтровать звонки по различным параметрам. Все действия могут осуществляться независимо от того, с какого телефонного аппарата абонент осуществляет звонок, — это реализуется путем аутентификации каждого абонента, получающего доступ к IP-телефону. В случае если пользователь не проходит процесс подтверждения своей подлинности, он может звонить только по заранее определенному списку номеров, например, только по внутренним номерам телефонов и в экстренные муниципальные службы.

Стандарты в IP-телефонии

Сегодня протокол SIP приходит на смену протоколам H.323, при этом многие разработчики устройств, поддерживающих SIP, фокусируют свои силы на увеличении числа функций, а не на безопасности. В отличие от стандарта H.323, в рамках которого разработана спецификация H.235, описывающая различные механизмы безопасности, протокол SIP практически лишен каких бы то ни было серьезных защитных функций. Это заставляет сомневаться в безоблачном будущем IP-телефонии, которое многие эксперты связывают именно с протоколом SIP. Определенные надежды возлагаются на сформированный в июле 2005 года альянс по безопасности IP-телефонии , целью которого является проведение исследований, повышение осведомленности, обучение и разработка бесплатных методик и инструментов для тестирования в области защищенности IP-телефонии. Но пока единственным результатом работы данного альянса стало создание таксономии атак и уязвимых мест IP-телефонии.

Заключение

В заключение хотелось бы еще раз отметить, что основной постулат эффективной системы безопасности IP-телефонии — на этапе проектирования думать о том, каким образом будет строиться система защиты такой сети, с целью максимального соответствия особенностям IP-коммуникаций в организации. Не следует забывать и о том, что IP-телефония — это приложение, которое работает в IP-сети, и адекватные меры по защите IP-сети в целом лишают злоумышленника дополнительных возможностей по организации прослушивания, реализации DoS-атак и использованию ресурсов сети в качестве лазейки в IP-телефонную сеть.

Среди первоочередных требований к обеспечению безопасности IP-телефонной сети следует назвать необходимость разделения голосовых и обычных данных. То есть IP-телефония должна быть отделена от сети, где передаются другие данные при помощи VLAN. Сегментация позволяет создать дополнительный рубеж, предупреждающий атаки и злоупотребления, в том числе и те, источник которых находится во внутренней сети. Кроме того, при проектировании IP-телефонной сети важно обеспечить соответствующую полосу пропускания и не забывать о применении механизмов QoS для приоритизации IP-телефонного трафика.

И наконец, использование средств защиты, ориентированных на особенности работы IP-телефонии, поможет избежать не только «дыр» в безопасности построенной сети, таких как «непонимание» средствами защиты IP-трафика, но и дополнительных финансовых расходов на модернизацию существующего оборудования или приобретение новых защитных устройств.

Проблема обеспечения безопасности современных информационных технологий (а к ним относится и IP-телефония) сейчас находятся в центре внимания многих – и это особо актуально для любых коммерческих структур. Никто не захочет столкнуться с новыми угрозами и рисками после внедрения новомодного ИТ-решения, призванного оптимизировать бизнес-процессы компании. Именно поэтому сейчас информационная безопасность становится во главу угла при выборе новых ИТ-систем – в частности, при переходе к IP-телефонии.

Решение проблемы безопасности – комплексный подход

Универсального средства безопасности IP-телефонии не существует как такового, но решение этой задачи должно стать составной частью Вашей общей стратегии безопасности. Технология VoIP - это приложение, работающее в IP-сети, где должны быть реализованы надлежащие методы защиты, т.е. нужно четко понимать: чем выше безопасность Вашей сети в целом, тем труднее будет злоумышленнику организовать подслушивание, атаку типа «отказ в обслуживании» (DoS), «взломать» ОС или приложение системы VoIP. И специалисты «Интеркомпьютер Системс» готовы помочь Вам!

Спектр угроз IP-телефонии

Наиболее распространенными угрозами, которым подвержены IP-сети, можно назвать:

  • регистрацию чужого терминала, позволяющую делать звонки за чужой счет;
  • подмену абонента;
  • внесение изменений в голосовой или сигнальный трафик;
  • снижение качества голосового трафика;
  • перенаправление голосового или сигнального трафика;
  • перехват голосового или сигнального трафика;
  • подделка голосовых сообщений;
  • завершение сеанса связи;
  • отказ в обслуживании;
  • удаленный несанкционированный доступ к компонентам инфраструктуры IP-телефонии;
  • несанкционированное обновление программного обеспечения на IP-телефоне (например, с целью внедрения троянской или шпионской программы);
  • взлом биллинговой системы (для операторской телефонии).

И это далеко не весь перечень возможных проблем, связанных с использованием IP-телефонии. Значит – при всех преимуществах IP-телефонии – нужно сразу рассматривать вопрос организации системы защиты своих сетей, что позволит в полной мере использовать выгоды от перехода к технологиям VoIP.

Архитектура IP-телефонии включает несколько основных структурных элементов, каждый из которых может быть подвержен атаке злоумышленников. Поэтому требуется применение комплексного подхода при реализации задачи по обеспечению максимального уровня безопасности корпоративной телефонии. Специалисты компании «Интеркомпьютер Системс» помогут Вам предотвратить утечки информации и обеспечить комплексную защиту инфраструктуры IP-телефонии. Причем не только от угроз заражения вредоносными программами (внедрение и распространение червей, вирусов, троянов и других типов вредоносного ПО), но и от прослушивания и перехвата информации.

В качестве «первой линии обороны» мы предлагаем: системы обнаружения и предотвращения атак, принцип действия которых заключается в разграничении доступа к инфраструктуре IP-телефонии и осуществлении регулярного мониторинга системы. Также рекомендуем использование стандартных антивирусов и межсетевых экранов.

Использование этих технологий предоставляет возможности по:

  • фильтрации трафика управления установкой IP-телефонных соединений;
  • передаче трафика управления через NAT и сетевые туннели;
  • TCP-перехвату, который обеспечивает проверку закрытия TCP-сессий, что позволяет защищаться от ряда атак типа отказа в обслуживании (DoS).

Предотвращение DoS атак

Распространенные атаки DoS успешно блокируются на уровне архитектуры IP-телефонии путем:

  • разделения корпоративной сети на не пересекающиеся сегменты передачи голоса и данных, что предотвращает появление в «голосовом» участке распространенных атак, в том числе и DoS;
  • установки специальных правил контроля доступа на маршрутизаторах и межсетевых экранах, защищающих периметр корпоративной сети и отдельные ее сегменты;
  • внедрения системы предотвращения атак на узлах;
  • внедрения специализированные системы защиты от DoS- и DDoS-атак;
  • использования специальных настроек на сетевом оборудовании, предотвращающих подмену адреса, часто используемую при DoS-атаках, и ограничивающих полосу пропускания, что не позволяет вывести из строя атакуемые ресурсы большим потоком бесполезного трафика.

«Вторая линия обороны» — защита путем использования протоколов шифрования и организации мер обеспечения безопасности по использованию устройств системы IP-сети (начиная от сервера, до самих IP-телефонов).

Именно специализированная конфигурация политик безопасности IP-системы, прав авторизации и доступа внутренних абонентов, установление ограничений на рабочий функционал системы послужат одной из наиболее эффективных инициатив по оптимизации уровня безопасности и работы корпоративной IP-системы. Риски, связанные с угрозой несанкционированного вторжения злоумышленника в систему администрирования IP-телефонией также могут быть практически сведены к нулю. Поскольку сама инфраструктура IP-телефонии является достаточно разветвленной системой, то управление конфигурацией IP-телефонов и взаимодействие их с сервером управления должно осуществляться по защищенному от несанкционированного доступа каналу, позволяющему предотвратить любые попытки прочтения или модификации управляющих команд. Для защиты канала управления могут использоваться различные протоколы — IPSec, SSL, TLS и т. д.

Шифрование трафика

Это один из важнейших компонентов безопасности IP-телефонии. Большинство существующих VoIP-решений ещё не поддерживают криптографическое шифрование. Тем не менее, безопасное телефонное соединение намного проще внедрить в рамках VoIP-технологии, чем в традиционных телефонных линиях. При отсутствии шифрования относительно несложно установить прослушивание VoIP-звонков (это можно сделать при помощи анализатора трафика), а при некоторых ухищрениях даже изменить их содержание. Решение данной проблемы – шифрование трафика и использование специальных протоколов. Благодаря шифрованию все данные, которые транспортируются через IP-сеть будут иметь уникальные коды шифрования, которые «прочитать» сможет только конечный получатель – при этом даже в случае перехвата информации злоумышленниками, они не смогут ею воспользоваться без ключа для декодировки.

IP-телефония и использование системы VoIP является вполне безопасным – отвечая нуждам и требованиям современного бизнеса, при грамотном подходе к настройке системы и ее конфигурирования с позиции сетевой защиты, VoIP существенно повышает уровень конкурентоспособности компании, способствует рационализации использования ресурсов и повышению мобильности и продуктивности сотрудников. При этом нужно помнить: максимально эффективными меры безопасности могут быть тогда, когда они покрывают все уровни сетевой инфраструктуры.

Специалисты нашей компании помогут Вам обеспечить безопасность Вашей инфраструктуры IP-телефонии!

Для справки:

Важно помнить, что атаки со стороны злоумышленников (прослушка, фальсификация абонента, неавторизированное проникновение в систему, перехват информации, перегрузка линий) применимы как для традиционной, так и для IP-телефонии. Вопрос состоит в том, что обнаружение, локализация и предотвращение угроз в системе IP-телефонии – намного более простая и менее затратная задача. При этом, затраты на IP-телефонию существенно ниже, чем на аналоговую. Задача состоит в правильном внедрении и настройке IP-системы и обеспечении ее бесперебойной работы с минимальной подверженностью рискам.

Безопасность IP-телефонных решений в связи с их растущей популярностью и спросом является решающим фактором при построении телекоммуникационной IP-инфраструктуры, и требует особого внимания – так же как такие стандартные факторы, как цена самого оборудования, производительность, функциональность и т.д.

Возникли вопросы? Обращайтесь к нам за консультацией и получением детальной информации о возможностях организации защиты IP-телефонии!

IP-телефонии :
  1. Прослушивание . В момент передачи конфиденциальной информации о пользователях (идентификаторов, паролей) или конфиденциальных данных по незащищенным каналам существует возможность прослушивания и злоупотребления ими в корыстных целях злоумышленником.
  2. Манипулирование данными . Данные, которые передаются по каналам связи, в принципе можно изменить.
  3. Подмена данных о пользователе происходит в случае попытки выдачи одного пользователя сети за другого. При этом возникает вероятность несанкционированного доступа к важным функциям системы.
  4. Отказ в обслуживании (denial of service - DoS) является одной из разновидностей атак нарушителей, в результате которой происходит вывод из строя некоторых узлов или всей сети. Она осуществляется путем переполнения системы ненужным трафиком, на обработку которого уходят все системные ресурсы. Для предотвращения данной угрозы необходимо использовать средство для распознавания подобных атак и ограничения их воздействия на сеть.

Базовыми элементами в области безопасности являются:

  • аутентификация;
  • целостность;
  • активная проверка.

Применение расширенных средств аутентификации помогает сохранить в неприкосновенности вашу идентификационную информацию и данные. Такие средства могут основываться на информации, которую пользователь знает ( пароль ).

Целостность информации - это способность средств вычислительной техники или автоматизированной системы обеспечивать неизменность информации в условиях случайного и (или) преднамеренного искажения (разрушения). Под угрозой нарушения целостности понимается любое умышленное изменение информации, хранящейся в вычислительной системе или передаваемой из одной системы в другую. Когда злоумышленники преднамеренно изменяют информацию, говорится, что целостность информации нарушена. Целостность также будет нарушена, если к несанкционированному изменению приводит случайная ошибка программного или аппаратного обеспечения.

И, наконец, активная проверка означает проверку правильности реализации элементов технологии безопасности и помогает обнаруживать несанкционированное проникновение в сеть и атаки типа DоS. Активная проверка данных действует как система раннего оповещения о различных типах неполадок и, следовательно, позволяет принять упреждающие меры, пока не нанесен серьезный ущерб .

8.2. Методы криптографической защиты информации

Основой любой защищенной связи является криптография . Криптография - это набор методов защиты информационных взаимодействий, то есть отклонений от их нормального, штатного протекания, вызванных злоумышленными действиями различных субъектов, методов, базирующихся на секретных алгоритмах преобразования информации. Кроме того, криптография является важной составляющей для механизмов аутентификации, целостности и конфиденциальности. Аутентификация является средством подтверждения личности отправителя или получателя информации. Целостность означает, что данные не были изменены, а конфиденциальность создает ситуацию, при которой данные не может понять никто, кроме их отправителя и получателя. Обычно криптографические механизмы существуют в виде алгоритма (математической функции) и секретной величины (ключа ). Причем чем больше битов в таком ключе, тем менее он уязвим.

До сих пор не разработаны подходящие методики оценки эффективности кpиптогpафических систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа , или мощность множества ключей (М) . По сути это то же самое, что и кpиптостойкость . Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей.

Однако этот критерий не учитывает других важных требований к криптосистемам :

  • невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры;
  • совершенство используемых протоколов защиты;
  • минимальный объем используемой ключевой информации;
  • минимальная сложность реализации (в количестве машинных операций), ее стоимость;
  • высокая оперативность.

Желательно, конечно, использование некоторых интегральных показателей, учитывающих указанные факторы.

Три основных криптографических метода используются в системах обеспечения безопасности:

  • симметричное шифрование ;
  • асимметричное шифрование ;
  • односторонние хэш-функции .

Все существующие технологии аутентификации, целостности и конфиденциальности созданы на основе именно этих трех методов.

Технология шифрования с секретным ключом (симметричный алгоритм ) требует, чтобы оба участника зашифрованной переписки имели доступ к одному и тому же ключу. Это необходимо, так как отправитель использует ключ для зашифровки сообщения, а получатель применяет этот же ключ для расшифровки. Как следствие, возникает проблема безопасной передачи этого ключа. Алгоритмы симметричного шифрования используют ключи не очень большой длины и могут быстро шифровать большие объемы данных. Порядок использования систем с симметричными ключами выглядит следующим образом:

  1. Безопасно создается, распространяется и сохраняется симметричный секретный ключ.
  2. Отправитель использует симметричный алгоритм шифрования вместе с секретным симметричным ключом для получения зашифрованного текста.
  3. Отправитель передает зашифрованный текст. Симметричный секретный ключ никогда не передается по незащищенным каналам связи.
  4. Для восстановления исходного текста получатель применяет к зашифрованному тексту тот же самый симметричный алгоритм шифрования вместе с тем же самым симметричным ключом , который уже есть у получателя.

Наиболее широко распространенным шифром симметричного шифрования является DES ( Data Encryption Standard ), разработанный IBM в 1976 г. и рекомендованный Национальным бюро стандартов США к использованию в открытых секторах экономики.

Алгоритм DES работает следующим образом. Данные представляются в цифровом виде и разбиваются на блоки длинной 64 бита, затем поблочно шифруются. Блок разбивается на левую и правую части. На первом этапе шифрования вместо левой части блока записывается правая, а вместо правой - сумма по модулю 2 (операция XOR ) левой и правой частей. На втором этапе по определенной схеме выполняются побитовые замены и перестановки. Ключ DES имеет длину 64 бита, из которых 56 битов - случайные, а 8 - служебные, используемые для контроля ключа.


Рис. 8.1.

DES имеет два режима работы: ECB (Electronic Code Book ) и CBC ( Cipher Block Chaining ). Режим СВС отличается от обычного тем, что перед шифрованием очередного блока к нему применяется операция "исключающее ИЛИ" с предыдущем блоком. В ситуациях, когда надежность алгоритма DES кажется недостаточной, используется его модификация - Triple DES ( тройной DES ). Строго говоря, существует несколько вариантов Triple DES . Наиболее простой - перешифрование: открытый текст шифруется на первом ключе, полученный шифротекст - на втором, и, наконец, данные, полученные после второго шага, - на третьем. Все три ключа выбираются независимо друг от друга.

IDEA ( International Data Encryption Algorithm ) - еще один блочный шифр с длиной ключа 128 бит . Этот европейский стандарт (от ЕТН, Цюрих) предложен в 1990 г. Алгоритм IDEA по скорости и стойкости к анализу не уступает алгоритму DES .

CAST - это блочный шифр , использующий 128-битовый ключ в США и 40-битный - в экспортном варианте. CAST применяется компанией Northern Telecom (Nortel).

Шифр Skipjack, разработанный Агентством национальной безопасности США ( National Security Agency - NSA ), использует 80-битовые ключи. Это часть проекта Capstone , цель которого - разработка общедоступного криптографического стандарта, удовлетворяющего требованиям правительства США. Capstone включает четыре основных компонента: шифр Skipjack; алгоритм цифровой подписи на базе стандарта DSS ( Digital Signature Standard ); хэш-функцию на базе алгоритма SHA ( Secure Hash Algorithm ); микросхему, реализующую все вышеизложенное (например, Fortezza - PCMCIA -плата, основанная на этой микросхеме).

Шифры RC2 и RC4 разработаны Роном Рейвестом - одним из основателей компании RSA Data Security , и запатентованы этой компанией. Они применяют ключи разной длины, а в экспортируемых продуктах заменяют DES . Шифр RC2 - блочный, с длиной блока 64 бита; шифр RC4 - поточный. По замыслу разработчиков, производительность RC2 и RC4 должна быть не меньше, чем у алгоритма DES .

Всем системам открытого шифрования присущи следующие основные недостатки. Во-первых, принципиальной является надежность канала передачи ключа второму участнику секретных переговоров. Иначе говоря, ключ должен передаваться по секретному каналу. Во-вторых, к службе генерации ключей предъявляются повышенные требования, обусловленные тем, что для n абонентов при схеме взаимодействия "каждый с каждым" требуется n x (n-1)/2 ключей, то есть зависимость числа ключей от числа абонентов является квадратичной.

Для решения вышеперечисленных проблем симметричного шифрования предназначены системы с асимметричным шифрованием, или шифрованием с открытым ключом, которые используют свойства функций с секретом, разработанных Диффи и Хеллманом.

Эти системы характеризуются наличием у каждого абонента двух ключей: открытого и закрытого (секретного). При этом открытый ключ передается всем участникам секретных переговоров. Таким образом, решаются две проблемы: нет нужды в секретной доставке ключа (так как при помощи открытого ключа нельзя расшифровать сообщения, для этого же открытого ключа зашифрованные, и, следовательно, перехватывать открытый ключ нет смысла); отсутствует также квадратичная зависимость числа ключей от числа пользователей - для n пользователей требуется 2n ключей.

Первым шифром, разработанным на принципах асимметричного шифрования , является шифр RSA .

Шифр RSA назван так по первым буквам фамилий его изобретателей: Рона Райвеста (Ривеста), Ади Шамира и Леонарда Элдемана (Алдемана) - основателей компании RSA Data Secutity. RSA - не только самый популярный из асимметричных шифров, но, пожалуй, вообще самый известный шифр . Математическое обоснование RSA таково: поиск делителей очень большого натурального числа, являющегося произведением двух простых, - крайне трудоемкая процедура. По открытому ключу очень сложно вычислить парный ему личный ключ . Шифр RSA всесторонне изучен и признан стойким при достаточной длине ключей. Например, 512 битов для обеспечения стойкости не хватает, а 1024 битов считается приемлемым вариантом. Некоторые утверждают, что с ростом мощности процессоров RSA потеряет стойкость к атаке полным перебором. Однако же увеличение мощности процессоров позволит применить более длинные ключи, что повысит стойкость шифра.


Рис. 8.2.

Шифр действует по следующему алгоритму:

  • Первый шаг: случайно выбираются два простых очень больших числа р и q .
  • Второй шаг: вычисляются два произведения: n = pq , m = (p-1)(q-1) .
  • Третий шаг: выбирается случайное целое Е , не имеющее общих сомножителей с m .
  • Четвертый шаг: находится D , такое, что DE = 1 по модулю m .
  • Пятый шаг: исходный текст разбивается на блоки длиной Х не более n .
  • Шестой шаг: для шифрования сообщения необходимо вычислить С = ХE по модулю n .
  • Седьмой шаг: для дешифрования вычисляется Х = СD по модулю n .

Для шифрования необходимо знать пару чисел Е, n , для дешифрования - D, n . Первая пара - открытый ключ , вторая - закрытый. Зная открытый ключ , можно вычислить значение закрытого ключа . Необходимым промежуточным действием этого преобразования является нахождение сомножителей p и q , для чего нужно разложить n на сомножители; эта процедура занимает очень много времени. Именно с огромной вычислительной сложностью связана криптостойкость шифра RSA .

Другим шифром, применяющим асимметричное шифрование , является

В современном мире информация является одним из ценнейших ресурсов, поэтому ее защита - важная задача. Немалую роль в работе организации любого уровня играют телефонные переговоры. В силу возрастающей популярности IP-телефонии, все острее встает вопрос обеспечения ее безопасности в общем и конфиденциальности разговоров в частности.

Знание основных источников опасности для сетей IP-телефонии, а также понимание методов устранения этих угроз поможет сохранить репутацию и финансовые ресурсы компании. Не смотря на то, что в статье описаны решения под бесплатную платформу Asterisk, проблематика актуальна для любых других платформ IP-телефонии.

Основные виды угроз для VoIP-сетей:

  • Перехват и манипулирование данными

Наиболее часто встречаемая уязвимость телефонных сетей, особенно опасная для IP-телефонии. В случае применения IP-телефонии злоумышленнику не нужен физический доступ к линии передачи данных. Находящееся внутри корпоративной сети устройство перехвата, скорее всего, может быть обнаружено, внешнее прослушивание отследить практически невозможно. Кроме того, перехваченные данные или голос могут быть переданы далее с изменениями. В таких условиях весь незашифрованный голосовой поток необходимо считать небезопасным.

  • Подмена и взлом пользовательских данных

Отказ от использования или упрощение механизмов аутентификации и авторизации в IP-телефонии открывает для злоумышленника возможность не санкционированно получить доступ к системе, подменив данные о пользователе своими. Возможен также взлом учетных данных пользователей посредством перебора или прослушивания незащищенных каналов связи. Подобная уязвимость может быть использована для совершения дорогостоящих звонков за счет жертвы, сводя на нет всю возможную выгоду от использования IP-телефонии. Также эта брешь в безопасности может применяться для приема звонков, предназначенных взломанной либо записи перехваченных звонков на носители злоумышленника с целью применения данной информации в корыстных целях.

  • Ограничение доступности

Одной из разновидностей атак является «отказ в обслуживании» (Denial of Service, DoS). Эта атака нацелена на превышение предельной нагрузки на систему большим количеством коротких звонков или информационного мусора. Без постоянного отслеживания признаков подобных атак и применения пассивных средств защиты, это приводит к тому, что серверы IP-телефонии не справляются с возросшей нагрузкой и не в состоянии обслуживать подключенных абонентов.

Безопасность IP-телефонии – комплексный подход!

При проектировании любой коммуникационной системы важно понимать, что ни одно из самостоятельных технических решений безопасности не в состоянии обеспечить абсолютную защиту от всех возможных угроз.

Проанализировав основные источники угроз безопасности IP-телефонии, можно выделить ключевые критерии защищенности:

  • Конфиденциальность

Необходимость обеспечения защиты траффика IP-телефонии для предотвращения перехвата или прослушивания телефонных звонков, внесения изменений в передаваемую информацию, кражи учетных данных пользователей.

  • Целостность

Обеспечение уверенности, что передаваемая информация не подвергается правке со стороны неавторизованных пользователей, что запросы на выполнение определенных задач или функций (например, совершение звонка или внесение изменений в настройки системы IP-телефонии ) инициированы авторизованными пользователями или приложениями.

  • Доступность

Бесперебойное функционирование корпоративной системы IP-телефонии в условиях DoS-атак, различных «червей», «вирусов» и т.п.

Как защитить IP-телефонию?

Рассмотрим наименее защищенный и, при этом, один из самых распространенных примеров реализации IP-телефонии.


Рисунок 1 - Реализация IP-телефонии


Сервер телефонии на базе IP-АТС Asterisk имеет прямой выход в сеть интернет для обслуживания удаленных филиалов и связи с SIP-провайдером, предоставляющим доступ к внешним линиям связи. Аутентификация пользователей происходит по IP-адресам.

Решение задач информационной безопасности должно быть комплексным, поскольку каждый способ защиты не только закрывает свою часть информационного периметра, но и дополняет другие решения.

Настройка сервера телефонии

Последним рубежом защиты является сам сервер IP-телефонии. Существует несколько классических методов защиты сервера от атак.

Метод защиты

Описание

Применение политики сложных паролей

Получение учетных данных методом перебора (bruteforce) требует значительных затрат времени и вычислительных ресурсов, усложнение паролей позволит сделать данный метод атак нецелесообразным

Отключение гостевых звонков

Разрешение на совершение исходящих звонков имеют только пользователи системы. Этой настройкой можно отсечь попытки позвонить извне без предварительной авторизации

Отключение ответа о неверном пароле

По умолчанию Asterisk выдает одну ошибку о неверном пароле для существующего аккаунта и другую для несуществующего аккаунта. Существует множество программ для подбора паролей, поэтому злоумышленнику не составит труда проверить все короткие номера и собирать пароли лишь к существующим аккаунтам, которые ответили «неверный пароль»

Использование систем блокировки доступа после неудачных попыток регистрации

Просмотр отчетов системы на предмет обнаружения попыток взлома позволят выделить и блокировать IP-адрес атакующего. Таким образом, можно сократить количество мусорного SIP трафика и защититься от множественных попыток взлома

Ограничение направлений звонков, доступных абонентам, применение схемы «запрещено все, кроме разрешенного»

В случае получения злоумышленником учетных данных пользователя системы, он сможет совершать звонки только по определенным направлениям. Это позволит избежать несанкционированного совершения дорогостоящих международных звонков

Регулярные проверки системы на предмет попыток взлома, контроль параметров

Организация системы мониторинга состояния системы позволит улучшить качество IP-телефонии и отметить типовые для данной конфигурации параметры. Отклонения этих параметров от полученных типовых значений поможет выявить проблемы с оборудованием, каналами связи и выявить попытки вторжения злоумышленников

Применение межсетевых экранов

Межсетевой экран пропускает исходящий трафик от сервера телефонии к SIP-провайдеру и фильтрует входящий по определенным правилам. Рациональным решением можно считать закрытие на межсетевом экране всех сетевых портов для IP-телефонии, кроме необходимых для ее корректной работы и администрирования. Этот же метод защиты целесообразно применять на самом сервере телефонии, чтобы защитить его от внутренних атак.

Таким образом, сервер телефонии доступен из внешних сетей только по определенным служебным портам, подключение к которым, из соображений безопасности, будет выполняться с применением шифрования.

Шифрование телефонных разговоров

Для защиты конфиденциальных переговоров и минимизации возможности попадания конфиденциальной или коммерческой информации в руки злоумышленника необходимо защитить передаваемые по открытым каналам связи данные от перехвата и прослушивания.

Поскольку для совершения звонка клиент и сервер предварительно обмениваются служебными данными для установления соединения, данную проблему можно разделить на две составляющих – защиту служебных данных IP-телефонии и защиту голосового трафика. В качестве средства защиты могут быть использованы протокол TLS (Transport Layer Security) для защиты SIP сигналов и протокол SRTP (Secure Real Time Protocol) для защиты голосового трафика.


Рисунок 2 - Шифрование IP-телефонии


TLS — криптографический протокол, обеспечивающий защищённую передачу данных между узлами в сети, является стандартным методом для шифрования SIP-протокола. TLS обеспечивает конфиденциальность и целостность передаваемой информации, осуществляет аутентификацию.

После установления защищенного соединения начинается передача голосовых данных, обезопасить которые позволяет применение протокола SRTP.

Протокол SRTP считается одним из лучших способов защиты IP телефонии на базе IP-АТС Asterisk. Основное преимущество этого протокола – отсутствие какого-либо влияния на качество связи. Схема работы протокола SRTP выглядит так: каждому совершаемому вами звонку присваивается уникальный код, который делает подслушивание разговоров неавторизированными в системе пользователями практически невозможным. Благодаря этому протокол SRTP выбирают как для обычных, так и для конфиденциальных звонков.

Не следует забывать о необходимости защиты подключения сервера телефонии к внешним каналам связи (мобильная связь, телефонные сети общего пользования).

Применение шифрованных туннелей VPN

В случае необходимости организации систем с повышенными требованиями к защите IP-телефонии, возможно подключение удаленных пользователей посредством виртуальных частных сетей (VPN). Содержание перехваченных пакетов, отправленных по шифрованным VPN туннелям понятно только владельцам ключа шифрования. Этот же метод применим для защиты подключений к поставщикам услуг IP-телефонии. На текущий момент многие VoIP провайдеры предлагают возможность VPN-подключения.


Рисунок 3 - Схема работы IP-телефонии через VPN-туннель


Однако технология VPN имеет ряд недостатков, ограничивающих ее применение:

  • снижение качества связи из-за задержек, создаваемых шифрованием;
  • повышенная нагрузка на каналы связи и оборудование, вызванная необходимостью шифрования;
  • усложнение сетевой структуры.

Применение перечисленных методов защиты сервера позволит свести к минимуму вероятность взлома, а при успешном обходе системы безопасности минимизировать ущерб.


Рисунок 4 - Комплексная защита IP-телефонии


Абсолютную гарантию безопасности, к сожалению, не сможет дать ни один комплекс мер. Рассмотренные выше аспекты лишь частично решают задачу построения защищенной коммуникационной системы . На практике следует рассматривать всю инфраструктуру корпоративной сети, проводить глубокий анализ требуемого уровня защиты. Необходимо учитывать не только необходимость обеспечения безопасности IP-телефонии , но и выходов на внешние каналы связи (мобильная связь, телефонные сети общего пользования). Только такой подход, вместе с постоянным совершенствованием систем информационной безопасности , позволит создать надежную и защищенную систему.


Для создания полноценной защиты от прослушивания необходимо "спрятать" сервер IP-телефонии, для чего отлично подходит решение «Сервер в Израиле» .

Системная интеграция. Консалтинг

Так как технология VoIP базируется на технологии IP и использует Интернет, она так же наследует все её уязвимости. Последствия этих атак, умноженные на уязвимости, которые следуют из особенностей архитектуры сетей VoIP, заставляют задуматься о способах усиления защиты и тщательном анализе существующей сети IP . Более того, добавление любого нового сервиса, например, голосовой почты в недостаточно защищенную инфраструктуру может спровоцировать появление новых уязвимостей.

Риски и уязвимости, наследованные из IP сетей.

Плохой дизайн сети

Неправильно спроектированная сеть может повлечь за собой большое количество проблем, связанных с использованием и обеспечением необходимой степени информационной безопасности в VoIP сетях. Межсетевые экраны, к примеру, являются уязвимым местом в сети, по причине того, что для правильного функционирования VoIP сети необходимо открывать дополнительные порты, и межсетевые экраны, не поддерживающие технологию VoIP, способны просто оставлять открытыми ранее используемые порты даже после завершения вызовов.

Уязвимые IP АТС и шлюзы

Если злоумышленник получает доступ к шлюзу или АТС, он так же получает доступ к захвату целых сессий (по сути – возможность прослушать вызов), узнать параметры вызова и сети. Таким образом, на безопасность АТС необходимо обратить наибольшее внимание. Убытки от таких вторжений могут достигать значительных сумм.

Атаки с повторением пакетов

Атака с повторением пакета может быть произведена в VoIP сети путем повторной передачи серии корректных пакетов, с целью того, что бы приёмное устройство произвело повторную обработку информации и передачу ответных пакетов, которые можно проанализировать для подмены пакетов (спуфинга) и получения доступа в сеть. К примеру, даже при условии зашифрованных данных, существует возможность повторения пакета с логином и паролем пользователем пользователя, и, таким образом, получения доступа в сеть.

Риски и уязвимости, характерные для VoIP сетей

Подмена и маскировка пакетов
Использование подменных пакетов с неправильным IP-адресом источника могут использоваться для следующих целей:

Перенаправление пакетов в другую сеть или систему

Перехват трафика и атака «man-in-the-middle» (рисунок ниже)

  • Маскировка под доверенное устройство - «Перенос ответственности» за атаку на другое устройство
  • Фаззинг(Fuzzing) - Нагрузка системы пакетами с не полностью корректной информацией, что вызывает ошибки в работе системы при их обработке, например такие как задержки при работе, утечки информации и полный отказ системы
  • Сканирование на предмет возможных уязвимостей - Сканирование портов может дать злоумышленнику начальные данные для проведения полноценной атаки, такие как модели операционных систем, типы используемых сервисов и приложений. При нахождении уязвимого сервиса злоумышленник может получить доступ к управлению всей сетью, и, как следствию, к возможности причинить большой ущерб.
  • Низкая надежность по сравнению с традиционными сетям - Для достижения качественной связи, пакетам, содержащим голосовую и видео нагрузку присваивается высокий приоритет в механизмах качества обслуживания QoS (качества обслуживания). Однако, надежность VoIP и сетей передачи данных стремится к 99,9%, что ниже чем степени надежности в традиционных телефонных сетях, у которых данный параметр стремится к 99,999%. Конечно, разница не столь велика, однако за год эта разница выливается в дополнительные 8.7 часа, во время которых система не работает. Но необходимо понимать, что далеко не каждому предприятию это может повредить.
  • Атаки DDoS(Distributed Denial of Service) - Атаки DoS и DDoS происходят когда злоумышленник посылает крайне большие объемы случайных сообщений на одно или несколько VoIP устройств из одного или нескольких мест (DoS и DDoS соответственно). Атака из нескольких мест используется с помощью «зомби» - скомпрометированные сервера и рабочие станции, которые автоматически посылают вредоносные запросы в соответствии с потребностями злоумышленника. Успешной такая атака считается в момент, когда количество запросов превышает вычислительную мощность объекта, в следствие чего происходит отказ в обслуживании для конечных пользователей.

VoIP системы особенно уязвимы для таких атак, т.к они имеют высокий приоритет в технологии обеспечения качества обслуживания QoS, и для нарушения их работы требуется меньшее количество трафика нежели для обычных сетей передачи данных. Примером DoS атаки против именно VoIP сети может быть атака при множественной передачи сигналов отмены или установления вызова, которая так же имеет название SIP CANCEL DoS атака.


  • CID спуфинг - Один из типов атак с подменой пакетов построен на манипуляциях с идентификатором звонящего (Caller ID или CID), который используется для идентификации звонящего до ответа. Злоумышленник может подменить этот идентификатор текстовой строкой или телефонным номером и может использоваться для осуществления различных действий, вредящих сети или владельцу предприятия. Кроме того, в VoIP сетях нет возможности скрыть этот идентификатор, т.к телефонные номера включены в заголовках пакетов в протоколе SIP. Это позволяет злоумышленнику со сниффером пакетов, например tcpdump узнать телефонные номера даже если они имеют параметр «private» у сервисного провайдера.
  • Заключение - Использование IP-телефонии приносит огромное количество пользы для любой организации – решение на базе VoIP более масштабируемы, легко интегрируемы и их стоимость ниже классических решений. Однако, любая организация, внедрив VoIP решение должна быть в курсе возможных угроз и предпринимать всевозможные усилия для увеличения степени информационной безопасности в сети. Были перечислены лишь некоторые методы атак, но необходимо понимать, что часто используются комбинации атак и практически ежедневно разрабатываются новые атаки. Но понятно уже сейчас, что за данной технологией будущее и она вряд ли уступит пальму первенства другой технологии в обозримом будущем.