Многоуровневые системы клиент-сервер. Различные архитектурные решения, используемые при реализации многопользовательских субд. краткий обзор субд

Архитектура клиент - сервер (client-server architecture) - это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов. Рассматриваемая архитектура определяет два типа компонентов: серверы и клиенты .

Сервер - это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис - это процесс обслуживания клиентов.

Рисунок Архитектура клиент - сервер

Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.

Сервисная функция в архитектуре клиент - сервер описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.

Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом . Им может быть программа или пользователь. Клиенты - это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя . Интерфейсы пользователя это процедуры взаимодействия пользователя с системой или сетью.

Рисунок Модель клиент-сервер

Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.

В сетях с выделенным файловым сервером на выделенном автономном ПК устанавливается серверная сетевая операционная система . Этот ПК становится сервером. Программное обеспечение (ПО ), установленное на рабочей станции, позволяет ей обмениваться данными с сервером. Наиболее распространенные сетевые операционная системы:

Помимо сетевой операционной системы необходимы сетевые прикладные программы, реализующие преимущества, предоставляемые сетью.

Сети на базе серверовимеют лучшие характеристики и повышенную надежность. Сервервладеет главными ресурсами сети,к которым обращаются остальные рабочие станции.

В современной клиент - серверной архитектуре выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах на рабочих местах пользователей. Данные в основном хранятся в серверах. Сетевые службы являются совместно используемыми серверами и данными. Кроме того службы управляют процедурами обработки данных.

Сети клиент - серверной архитектуры имеют следующие преимущества:

Позволяют организовывать сети с большим количеством рабочих станций;

Обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;


Эффективный доступ к сетевым ресурсам;

Пользователю нужен один пароль для входа в сеть и для получения доступа ко всем ресурсам, на которые распространяются права пользователя.

Наряду с преимуществами сети клиент - серверной архитектуры имеют и ряд недостатков:

Неисправность сервера может сделать сеть неработоспособной, как минимум потерю сетевых ресурсов;

Требуют квалифицированного персонала для администрирования;

Имеют более высокую стоимость сетей и сетевого оборудования.

Преимущества

· Делает возможным, в большинстве случаев, распределение функций вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера не затрагивают клиентов.

· Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

· Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т. п.

Недостатки

· Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.

· Поддержка работы данной системы требует отдельного специалиста - системного администратора.

· Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

В компьютерных технологиях трёхуровневая архитектура, синоним трёхзвенная архитектура (англ. three-tier или Multitier architecture) предполагает наличие следующих компонентов приложения: клиентское приложение (обычно говорят «тонкий клиент» или терминал), подключенное к серверу приложений, который в свою очередь подключен к серверу базы данных.

Обзор архитектуры

Клиент - это интерфейсный (обычно графический) компонент, который представляет первый уровень, собственно приложение для конечного пользователя. Первый уровень не должен иметь прямых связей с базой данных (по требованиям безопасности), быть нагруженным основной бизнес-логикой (по требованиям масштабируемости) и хранить состояние приложения (по требованиям надежности). На первый уровень может быть вынесена и обычно выносится простейшая бизнес-логика: интерфейс авторизации, алгоритмы шифрования, проверка вводимых значений на допустимость и соответствие формату, несложные операции (сортировка, группировка, подсчет значений) с данными, уже загруженными на терминал.

Сервер приложений располагается на втором уровне. На втором уровне сосредоточена бо́льшая часть бизнес-логики. Вне его остаются фрагменты, экспортируемые на терминалы (см.выше), а также погруженные в третий уровень хранимые процедуры и триггеры.

Сервер базы данных обеспечивает хранение данных и выносится на третий уровень. Обычно это стандартная реляционная или объектно-ориентированная СУБД. Если третий уровень представляет собой базу данных вместе с хранимыми процедурами, триггерами и схемой, описывающей приложение в терминах реляционной модели, то второй уровень строится как программный интерфейс, связывающий клиентские компоненты с прикладной логикой базы данных.

В простейшей конфигурации физически сервер приложений может быть совмещён с сервером базы данных на одном компьютере, к которому по сети подключается один или несколько терминалов.

В «правильной» (с точки зрения безопасности, надёжности, масштабирования) конфигурации сервер базы данных находится на выделенном компьютере (или кластере), к которому по сети подключены один или несколько серверов приложений, к которым, в свою очередь, по сети подключаются терминалы.

Достоинства

По сравнению с клиент-серверной или файл-серверной архитектурой можно выделить следующие достоинства трёхуровневой архитектуры:

· масштабируемость

· конфигурируемость - изолированность уровней друг от друга позволяет (при правильном развертывании архитектуры) быстро и простыми средствами переконфигурировать систему при возникновении сбоев или при плановом обслуживании на одном из уровней

· высокая безопасность

· высокая надёжность

· низкие требования к скорости канала (сети) между терминалами и сервером приложений

· низкие требования к производительности и техническим характеристикам терминалов, как следствие снижение их стоимости. Терминалом может выступать не только компьютер, но и, например, мобильный телефон.

Недостатки

Недостатки вытекают из достоинств. По сравнению c клиент-серверной или файл-серверной архитектурой можно выделить следующие недостатки трёхуровневой архитектуры:

· более высокая сложность создания приложений;

· сложнее в разворачивании и администрировании;

· высокие требования к производительности серверов приложений и сервера базы данных, а, значит, и высокая стоимость серверного оборудования;

· высокие требования к скорости канала (сети) между сервером базы данных и серверами приложений.

БД В АРХИТЕКТУРЕ «КЛИЕНТ-СЕРВЕР»

План лекции

1. Клиенты и серверы локальных сетей

2. Системная архитектура клиент-сервер

3. Модели рабочих нагрузок в архитектуре клиент/сервер

4. Уровни и модели архитектуры «клиент-сервер»

Т. Конноли. Базы данных. Проектирование, реализация и сопровождение. Теория и практика.: Пер. с англ. – М.: Изд. дом «Вильямс», 2006. – 1440 с.

1 Клиенты и серверы локальных сетей

В основе широкого распространения локальных сетей компьютеров лежит известная идея разделения ресурсов. Развитие этой идеи приводит к функциональному выделению компонентов сети: рабочих станций и серверов локальной сети. Сервер локальной сети (server) предоставляет ресурсы (услуги) рабочим станциям и/или другим серверам. Рабочая станция (клиeнты (client)) - кoмпьютepы, ocyщecтвляющиe дocтyп к ceтeвым pecypcaм, пpeдocтaвляeмым cepвepoм.

В связи с ориентацией на подход открытых систем, правильнее говорить о логических серверах (имея в виду набор ресурсов и программных средств, обеспечивающих услуги над этими ресурсами). Примерами логических серверов могут служить:

· файловый сервер, поддерживающий общее хранилище файлов для всех рабочих станций и в случае запроса фaйл или дaнныe цeликoм кoпиpyютcя нa зaпpaшивaющий кoмпьютep;

· сервер приложений выпoлняет пpиклaдныe чacти клиeнт-cepвepныx пpилoжeний, a тaкжe содержит дaнныe, дocтyпныe клиeнтaм;

2 Системная архитектура «клиент-сервер»

Основные принципы системной архитектуры "клиент-сервер" заключаются в следующем: ИС разбивается на две части, которые могут выполняться в разных узлах сети - клиентскую и серверную части.

Серверная сторона функционирует на специализированном аппаратном комплексе, включающем в себя мощные аппаратные средства, требуемый набор стандартного программного обеспечения , систему управления базами данных и БД.

Прикладная программа или конечный пользователь взаимодействуют с клиентской частью системы, которая в простейшем случае обеспечивает просто надсетевой интерфейс. Клиентская сторона приложения функционирует на рабочем месте пользователя, в роли которого в подавляющем числе случаев выступает персональный компьютер.

Клиентская часть системы при необходимости обращается по сети (локальной или глобальной) к серверной части. При этом с точки зрения клиента и сервера взаимодействие осуществляется прозрачно. Сетевой компонент, реализующий это взаимодействие включает в себя совокупность необходимого сетевого оборудования, набор программных технологий, обеспечивающих передачу данных между узлами сети, а также собственно интерфейсный программный слой (протокол или протоколы) для обмена запросами и результатами их выполнения. В качестве основного интерфейса между клиентской и серверной частями выступает язык баз данных SQL.

Наиболее простая форма архитектуры «клиент-сервер» - это разделение вычислительной нагрузки между двумя отдельными процессами: клиентом и сервером. Причем между двумя этими процессами распределяются пять групп функций стандартного интерактивного приложения:

1) функции диалога (Presentation Logic, PL) или компонент визуализации . Компонент визуализации прикладной задачи осуществляет ввод информации пользователем с помощью тех или иных средств, а также вывод информации на экран и печать. Компонент визуализации для архитектуры клиент-сервер всегда исполняется на рабочем месте пользователя (поскольку должен же он наблюдать какие-либо результаты работы программы). Для организации презентационной логики преимущественно используется модель графического интерфейса пользователя GUI (User Interface Graphical) или Web-интерфейс;

2) прикладные функции или это часть кода приложения с алгоритмами обработки данных (Business Logic, BL). Компонент прикладной логики решает собственно ту или иную задачу, связанную с обработкой данных в той или иной предметной области и представляет собой алгоритмы реакции приложения на действия пользователя или на внутренние события, правила обработки данных. Этот компонент может быть распределен между клиентской и серверной частью различным образом в зависимости от применяемой модели. Обычно этот код программируется на языках программирования высокого уровня: C, C++, Visual Basic, Object Pascal и т. п.;

3) функции обработки данных внутри приложения (Database Logic, DL) - это часть кода приложения, связанная с выборкой и манипулированием данными (данными управляет собственно СУБД). Подъязыком является язык SQL.

Типовая структура приложения «клиент-сервер»

4) функции управления информационными ресурсами (Database Manager System, СУБД). Компонент хранения базы данных осуществляет физические операции, связанные с хранением данных, чтением информации из БД и записью в нее, связанных с решаемой приложением прикладной задачей. В архитектуре клиент-сервер этот компонент всегда выполняется на сервере;

5) служебные функции, играющие роль связок между предыдущими группами функций.

3 Модели рабочих нагрузок в архитектуре клиент/сервер

«Клиент-серверные» системы могут опираться на несколько типов распределения обязанностей между клиентом и сервером:

· «интеллектуальные» клиенты (толстый клиент - тонкий сервер);

· «интеллектуальный» сервер (тонкий клиент - толстый сервер);

· смешанные системы;

· многоуровневые системы.

DIV_ADBLOCK80">

«Интеллектуальные» серверы . Перенеся все бизнес-правила на SQL Server, где они реализуются в виде хранимых процедур и триггеров БД, создается «интеллектуальный» сервер», сервер также отвечает за хранение и функционирование БД. Интеллект сервера проявляется, также, в способности манипулировать данными (выполнять SQL-запросы) и возвращать клиенту результирующий набор данных.

На компьютере-клиенте реализуется только логика представления данных.

Достоинства:

· увеличение производительности работы ИС: бизнес-логика выполняется в том же адресном пространстве, что и код доступа к базе данных, и, кроме того, тесно интегрирован с механизмом поиска данных. Это означает, что данные не нужно перемещать или копировать перед обработкой, а значит, сетевой трафик минимизируется;

· на сервере легче обеспечить целостность данных;

· при необходимости бизнес-логика модифицируется централизованно, без изменения клиентов.

Недостатки:

· повышение требований к ресурсам сервера, где выполняются все запросы и манипуляции с данными.

Смешанные системы . Возможны и смешанные варианты, обладающие достоинствами, как интеллектуальных серверов, так и интеллектуальных клиентов. На сервере обычно разворачивают СУБД, логику манипулирования данными, и ту часть бизнес-логики, которая является общей для многих клиентов. На клиенте разворачивают логику представления данных и часть бизнес-логики, которая характерна именно для этого клиента.

Достоинства смешанных систем:

· серверный код одновременно доступен многим клиентам, что снижает накладные расходы при выполнении однотипных запросов;

· эффективность работы клиентов меньше зависит от сетевого трафика.

Недостатки:

· бизнес-логика распределена между клиентом и сервером и при модернизации приложения требуется распространение новых версий клиентской части среди широкой аудитории.

Многоуровневая система (ее иногда называют трехуровневой) позволяет разделить пользовательский интерфейс, бизнес-правила и базу данных. В многоуровневой системе бизнес-правила помещают на сервере приложений – программный компонент, который размещают между сервером БД и клиентами. Клиент отвечает только за интерфейс с пользователем, сервер БД – за поддержание и функционирование самой БД. Промежуточный слой является для пользователя сервером, а для системы управления базами данных - клиентом. Клиенты при необходимости обращаются к серверу приложений, а тот в свою очередь обращается к серверу БД за данными, необходимыми для реализации запросов клиентов.

Достоинства многоуровневых систем:

· разделение компонентов интерфейса, бизнес-правил и хранения данных, что повышает производительность работы сервера БД и его защиту от несанкционированного доступа;

· централизованная модификация бизнес-правил;

Недостатки:

· увеличивается сетевой трафик.

· подобные системы намного сложнее в разработке, внедрении и эксплуатации и требуют значительных затрат и высококвалифицированного персонала.

4 Уровни и модели архитектуры «клиент-сервер»

С точки зрения количества составных частей клиент-серверные системы делятся на двухуровневые и трехуровневые.

Двухуровневые системы состоят только из клиента и сервера К двухуровневым моделям архитектуры «клиент-сервер» относятся:

1) модель файлового сервера (FS-модель);

2) модель удаленного доступа (RDA-модель);

3) модель активного сервера (DBS-модель).

Трехуровневая модель представлена разновидностью архитектуры «клиент-сервер», основанной на схеме «клиент - сервер приложений». Такая архитектура позволяет более гибко распределять функции системы и нагрузку между компонентами программно-аппаратного комплекса, а также может снизить требования к ресурсам рабочих мест пользователей.

Архитектура «файл-сервер»

В архитектуре «файл-сервер» (File Server, FS-модель) все основные функции приложения информационной системы (презентационная логика, бизнес-логика и функции обработки и управления данными) располагаются на клиенте (рис. 2).

На сервере находятся файлы с данными и поддерживается доступ к файлам.

В этой модели клиент обращается к серверу с запросом к данным. Запрос клиента формулируется в командах ЯМД. СУБД переводит этот запрос в последовательность файловых команд, Система управления файлами (СУФ) считывает запрашиваемые данные из БД и поблочно передает эти данные клиентскому приложению, далее на клиенте СУБД анализирует полученную информацию, и если в полученном блоке не содержится ответ на запрос, то принимается решение о перекачке следующего блока информации и т. д. Фактически, FS-модель предполагает автономную работу программного обеспечения ИС на разных машинах в сети. Компоненты ИС взаимодействуют только за счет наличия общего хранилища данных. Безусловно, таким хранилищем должна быть хорошо спроектированная БД под управлением СУБД, поддерживающей FS-модель, например, СУБД Informix SE. Такого рода СУБД нельзя считать «истинным сервером».

Модель архитектуры файлового сервера

При использовании FS-модели копия СУБД создается для каждого инициированного пользователем сеанса работы с СУБД, которая выполняется на том же процессоре, что и пользовательский процесс.

В целом в архитектуре ИС «файл-сервер» мы имеем «толстого» клиента и очень «тонкий» сервер в том смысле, что почти вся работа выполняется на стороне клиента, а от сервера требуется только достаточная емкость дисковой памяти.

К недостаткам архитектуры «файл-сервер» можно отнести:

· высокий сетевой трафик, который связан с передачей по сети множества блоков и файлов, необходимых приложениям клиентов;

· ограниченное множество команд манипулирования данными, фактически это только файловые команды;

· низкая производительность (зависит от производительности сети, сервера, клиента);

· плохая возможность подключения новых клиентов;

· отсутствие развитых средств защиты данных (только на уровне файловой системы).

К несомненным достоинствам следует отнести

· высокую эффективность работы с небольшими объемами данных в однопользовательском режиме.

· удобство централизованного управления доступом;

· низкая стоимость разработки;

· высокая скорость разработки;

· невысокая стоимость обновления и изменения ПО.

FS-модель не отвечает современным представлениям о технологии «клиент-сервер» в общепринятом смысле, поэтому, этот способ организации распределенных вычислений рассматривается как отдельная архитектура файлового сервера.

Модель удаленного доступа к данным, RDA ( Remote Data Access , RDA )

Исторически эта модель была разработана самой первой. В этой модели серверная часть осуществляет только хранение данных, здесь же размещается ядро СУБД и реализуется логика манипулирования данными, а всю прикладную логику реализует клиентская часть. При этом клиент будет передавать серверу запросы на получение данных, а сервер возвращать клиенту те или иные выборки. Самым распространенным средством общения между клиентом и сервером в этом случае является SQL (структурированный язык запросов) - стандартный непроцедурный язык, ориентированный на обработку данных.

Клиент заметно «похудел» по сравнению с FS-моделью, зато значительно расширились функции сервера, сократился сетевой трафик, а самое главное достоинство модели RDA: появился язык SQL с расширенным множеством команд определения данных и манипулирования данными, который унифицировал интерфейс клиент-сервер.

Модель архитектуры удаленного доступа к данным

Достоинства RDA-модели:

· перенос Business Logic на клиента существенно разгружает сервер БД, сводя к минимуму общее число процессов в операционной системе;

· сервер БД освобождается от несвойственных ему функций, а значит процессор можно целиком загрузить операциями обработки запросов, данных и транзакций;

· резко уменьшается загрузка сети так как по ней от клиентов к серверу передаются не запросы на ввод-вывод в файловой терминологии, а запросы на SQL, и их объем существенно меньше. В ответ на запросы клиент получает только данные, релевантные запросу, а не блоки файлов, как в FS-модели.

Недостатки RDA-модели:

· по-прежнему высокий сетевой трафик, особенно при большом количестве клиентов и их интенсивной работе в интерактивном режиме;

· излишнее дублирование кода приложения, например повторение бизнес-логики для каждого клиента;

· усложнение клиентских приложений в части контроля за информационными ресурсами. Сервер играет пассивную роль. Действительно, например, если нам необходимо выполнять контроль страховых запасов товаров на складе, то каждое приложение, которое связано с изменением состояния склада, после выполнения операций модификации данных, имитирующих продажу или удаление товара со склада, должно выполнять проверку на объем остатка, и в случае, если он меньше страхового запаса, формировать соответствующую заявку на поставку требуемого товара. Это усложняет клиентское приложение

Модель сервера БД (иногда называют активный сервер)

Модель сервера (Data Base Server, DBS) - концепция, в соответствии с которой прикладной компонент (бизнес-логика) частично или полностью располагается на сервере базы данных (рис.4). Бизнес-логика реализована в виде хранимых программных единиц (ПрЕ), триггеров, пользовательских типов данных, которые хранятся в БД, а управляются сервером. В базе данных также накапливаются данные и формируется база метаданных (БМД). Клиентское приложение обращается к серверу с командой запуска ПрЕ, а сервер при необходимости выполняет её и фиксирует изменения в БД. Сервер возвращает результат запроса клиенту либо для вывода на периферийное устройство, либо для выполнения части бизнес-логики, которая расположена на клиенте. При таком способе распределения обработки данных сетевой трафик резко уменьшается.

Триггер - механизм отслеживания специальных событий, которые связаны с состоянием БД. Триггер в БД является как бы некоторым тумблером, который срабатывает при возникновении определенного события в БД. Ядро СУБД проводит мониторинг всех событий, которые вызывают созданные и описанные триггеры в БД, и при возникновении соответствующего события сервер запускает соответствующий триггер => триггер - это программа, которая выполняется над БД и вызывает хранимые процедуры.

Данная модель сервера является активной, потому что не только клиент, но и сам сервер используют механизм триггеров.
Достоинства:

DBS-модель поддерживает большинство современных СУБД: Oracle, Sybase, Ingres, Informix, MS SQL Server, хотя функциональные возможности у них разные.


Достоинства DBS-модели:

· возможность централизованного администрирования прикладных функций;

· снижение сетевого трафика за счет возможностей удаленного вызова процедур;

· возможность разделения процедур несколькими приложениями и экономия ресурсов компьютера за счет использования единожды созданного плана выполнения SQL-запроса. (так как хранимые процедуры и триггеры хранятся в словаре БД и могут быть использованы несколькими клиентами => уменьшается дублирование алгоритмов обработки данных в разных клиентских приложениях).

Недостатки:

Функции сервера:

1. Осуществляет мониторинг событий, связанных с описанными триггерами;

2. Обеспечивает автоматическое срабатывание триггеров при возникновении связанных с ними событий;

3. Обеспечивает исполнение внутренней программы каждого триггера;

4. Запускает хранимые процедуры по запросам пользователей;

5. Запускает хранимые процедуры из триггеров;

6. Возвращает требуемые данные клиенту;

7. Обеспечивает все функции СУБД: доступ к данным, контроль и поддержка целостности данных в БД, контроль доступа, обеспечение корректной работы всех пользователей с единой БД.

Действительно, сервер выполняет большой набор функций и обслуживает множество клиентов. Для разгрузки сервера были разработаны многоуровневые модели и, в частности трехуровневая модель.

Сервер приложений

Сервер приложений (Application server , AS ) - разновидность многоуровневой архитектуры «клиент-сервер», основанный на схеме «клиент - сервер приложений».

В данной модели вводится дополнительный промежуточный уровень между клиентом и сервером. Этот промежуточный уровень содержит один или несколько серверов приложений. Отсюда и идентичное название - «модель сервера приложений» AS (Application Server).

В этой модели все компоненты ИС делятся между тремя исполнителями.

Клиент реализует интерфейс с пользователем, обеспечивает презентационную логику приложения, запускает локализованный на клиентской машине код клиентского приложения, который выполняет коммуникационные функции доступа в локальную или глобальную сеть, интерфейс авторизации , алгоритмы шифрования, проверку вводимых значений на допустимость и соответствие формату, несложные операции (сортировка, группировка, подсчет значений) с данными, уже загруженными на интерфейсный (обычно графический) компонент, то есть собственно приложение для конечного пользователя. Клиент и сервер приложений общаются посредством API, а сервер приложений и сервер БД общаются посредством языка запросов SQL.

Модель сервера приложений

Серверы приложений исполняют наиболее общие правила бизнеса, поддерживают доменную среду, обеспечивают обмен сообщениями между компонентами приложений. Прикладные функции сервера приложений оформлены как отдельные службы или сервисы (Service). Служба предоставляет некоторые услуги всем программам, которые желают и могут ими воспользоваться. В архитектуре ИС серверов приложений может быть несколько, и каждый из них предоставляет определенный набор сервисов. Любая программа, которая пользуется ими, рассматривается как клиент сервера приложений AC (Application Client). Детали реализации прикладных функций в сервере приложений полностью скрыты от клиента приложения. АС обращается с запросом к конкретному сервису, а не к AS. Запросы выстраиваются в очередь к AS-процессу, который передает их для обработки конкретной службе согласно установленным приоритетам.

Серверы БД в этой модели занимаются исключительно функциями СУБД.

В простейшей конфигурации физически сервер приложений может быть совмещен с сервером базы данных на одном компьютере, к которому по сети подключается один или несколько клиентов.

В "правильной" (с точки зрения безопасности, надежности, масштабирования) конфигурации сервер базы данных находится на выделенном компьютере (или кластере), к которому по сети подключены один или несколько серверов приложений, к которым, в свою очередь, по сети подключаются клиенты.

Достоинства AS-модели:

· повышение производительности за счет разгрузки сервера;

· удешевление эксплуатации ИС;

· возможность усложнения бизнес-логики без потери производительности;

· улучшение свойств переносимости и масштабируемости ИС за счет использования стандартных языков программирования, например С, С++, Borland Pascal, Small Talk, Java, для реализации большей части бизнес-логики.

· клиентское ПО не нуждается в администрировании;

· конфигурируемость – изолированность уровней друг от друга позволяет быстро и простыми средствами переконфигурировать систему при возникновении сбоев или при плановом обслуживании на одном из уровней;

· высокая безопасность;

· высокая надежность;

· низкие требования к скорости канала (сети) между клиентами и сервером приложений;

· низкие требования к производительности и техническим характеристикам клиентов, как следствие снижение их стоимости.

Недостатки:

· растет сложность серверной части и, как следствие, затраты на администрирование и обслуживание;

· более высокая сложность создания приложений;

· сложнее в разворачивании и администрировании;

· высокие требования к производительности серверов приложений и сервера базы данных, а, значит, и высокая стоимость серверного оборудования;

· высокие требования к скорости канала (сети) между сервером базы данных и серверами приложений.

Популярную сейчас архитектуру Веб систем можно представить в трехзвенном варианте.

Являются неравноправными составляющими информационной сети. Одни владеют каким-то ресурсом, поэтому называются серверами, другие обращаются к этим ресурсам и называются клиентами. Рассмотрим, как же они взаимодействуют между собой и что собой представляет клиент-серверная архитектура.

Клиент-серверная архитектура

Архитектура «Клиент-Сервер» представляет собой взаимодействие структурных компонентов в сети на основе определенных данной сети, где структурными компонентами являются сервер и узлы-поставщики определенных специализированных функций (сервисов), а также клиенты, которые пользуются данным сервисом. Специфические функции принято делить на три группы на основе решения определенных задач:

  • функции ввода и представления данных предназначены для взаимодействия пользователя с системой;
  • прикладные функции - для каждой имеется собственный набор;
  • функции управления ресурсами предназначены для управления файловой системой, различными базами данных и прочими компонентами.

Например, компьютер без сетевого подключения, представляет компоненты представления, прикладного назначения и управления на различных уровнях. Такого рода уровнями считаются операционная система, прикладное и служебное программное обеспечение, различные утилиты. Точно так же и в сети представлены все вышеуказанные компоненты. Главное - правильно обеспечить сетевое взаимодействие между этими составляющими.

Принцип работы клиент-серверной архитектуры

Клиент-серверная архитектура наиболее часто используется для создания корпоративных баз данных, в которых информация не только хранится, но и периодически поддается обработке различными методами. Именно база данных является главным элементом любой корпоративной информационной системы, а на сервере располагается ядро этой базы. Так, на сервере происходят наиболее сложные операции, касающиеся ввода, хранения, обработки и модификации данных. Когда пользователь (клиент) обращается к базе данных (серверу), происходит обработка запроса: непосредственно обращение к базе данных и возврат ответа (результата обработки). Результат обработки - это сообщение сети об успешном проведении операции или ошибке. Серверные компьютеры могут обрабатывать одновременно обращение нескольких клиентов к одному и тому же файлу. Такая работа и по сети позволяет ускорить работу используемых приложений.

Клиент-серверная архитектура: применение технологии

Данная архитектура используется для доступа к различным ресурсам с использованием сетевых технологий: баз данных, почтовые серверы, файрволы, прокси-серверы. Разработка клиент-серверных приложений позволяет повысить безопасность, надежность и производительность используемых приложений и сети в целом. Наиболее часто клиент-серверные приложения используются для автоматизации бизнеса.

Технология клиент-сервер считается одним из "китов" современного мира компьютерных сетей. Но задачи, для решения которых она была разработана, уходят в прошлое. Новые задачи и технологии требуют переосмысления принципов клиент-серверных систем. Одна из таких технологий World Wide Web. Web-технология является развитием архитектуры клиент-сервера, т.е. с помощью одного клиента можно подключиться ко многим серверам. Информационная система, кроме интерфейса, должна иметь уровни обработки данных и их хранения. Проблема разработчиков интерсетей в согласовании работы Web с другими элементами системы, например базами данных. Одним из перспективных способов решения этой проблемы - многоуровневые системы клиент-сервер.

Классическая система клиент-сервер работает по схеме "запрос-ответ" (двухуровневая архитектура). Клиент выполняет активную функцию (запросы), сервер пассивно на них отвечает.


Любая информационная система должна иметь минимум три функциональные части - модули хранения данных, их обработки и интерфейса с пользователем.

Каждая из этих частей может быть реализована независимо от двух других.

Например . Не изменяя программ, используемых для хранения и обработки данных, можно изменить интерфейс с пользователем таким образом, что одни и те же данные будут отображаться в виде таблиц, графиков или гистограмм. Не меняя программ представления данных и их хранения, можно изменить программы обработки, изменив алгоритм полнотекстового поиска. Не меняя программ представления и обработки данных, можно изменить программное обеспечение для хранения данных, перейдя на другую файловую систему.

В классической архитектуре клиент-сервер три основные части приложения распределяются по двум физическим модулям. Обычно ПО хранения данных располагается на сервере (/: сервере базы данных), интерфейс с пользователем - на стороне клиента, а вот обработку данных приходится распределять между клиентской и серверной частями. В этом основной недостаток данной архитектуры. Разбиение алгоритмов обработки данных требует синхронизации действий обеих частей системы. Чтобы избежать несогласованности различных элементов архитектуры, пытаются выполнять обработку данных на одной из двух частей - либо на стороне клиента ("толстый" клиент), либо на сервере ("тонкий" клиент, или "2,5-уровневый клиент-сервер"). Каждый подход имеет свой недостаток: в первом случае неоправданно перегружается сеть, т.к. по ней передаются необработанные (избыточные) данные, усложняется поддержка и изменение системы, так как замена алгоритма вычислений или исправление ошибки требует одновременной полной замены всех интерфейсных программ, иначе последует несогласованность данных; во втором случае , когда вся обработка информации выполняется на сервере, возникает проблема описания встроенных процедур и их отладки (описание является декларативным и не допускает пошаговой отладки). Кроме того, систему с обработкой информации на сервере абсолютно невозможно перенести на другую платформу.

Большинство современных средств быстрой разработки приложений (RAD), которые работают с различными БД, реализует первую модель ("толстый" клиент), обеспечивающую интерфейс с сервером БД через язык SQL.. Этот вариант, кроме выше перечисленных недостатков, имеет низкий уровень безопасности.

Например. В банковских системах все операционисты имеют права на запись в основную таблицу учетной системы. Кроме того, данную систему почти невозможно перевести на Web-технологии, так как для доступа к серверу БД используется специализированное клиентское ПО.

Недостатки рассмотренных выше моделей:

1. "Толстый" клиент

F сложность администрирования;

F сложность в обновлении ПО, т.к. его замену необходимо производить одновременно по всей системе;

F сложность в распределении полномочий, так как разграничение доступа происходит не по действиям, а по таблицам;

F перегрузка сети из-за передачи по ней необработанных данных;

F слабая защита данных.

2. "Толстый" сервер

ð усложняется реализация, так как языки PL/SQL не приспособлены для разработки подобного ПО и нет средств отладки;

ð производительность программ на языках PL/SQL ниже, чем на других языках, что важно для сложных систем;

ð программы, написанные на СУБД-языках, работают ненадежно, что может привести к выходу из строя всего сервера БД;

ð созданные таким образом программы полностью непереносимы на другие системы и платформы.



Для решения перечисленных проблем используются многоуровневые (три и более) модели клиент-сервер.

Многоуровневые архитектуры клиент-сервер - более разумно распределяют модули обработки данных, которые выполняются на одном или нескольких отдельных серверах.

Эти программные модули выполняют функции сервера для интерфейсов с пользователями и клиента - для серверов БД. Кроме того, различные серверы приложений могут взаимодействовать между собой для более точного разделения системы на функциональные блоки, выполняющие определенные роли.

Например. Можно выделить сервер управления персоналом, который будет выполнять все необходимые для управления персоналом функции. Связав с ним отдельную БД, можно скрыть от пользователей все детали реализации этого сервера, разрешив обращаться только к его общедоступным функциям. Такая система проще адаптируется к Web, т.к. легче разработать html-формы для доступа пользователей к определенным функциям БД, чем ко всем данным.

В трехуровневой модели "тонкий" клиент не перегружен функциями обработки данных, а выполняет основную роль системы представления информации, поступающей с сервера приложений. (Такой интерфейс реализуется с помощью стандартных средств Web-технологии - браузера, CGI и Java). Это уменьшает объем данных, передаваемых между клиентом и сервером приложений, позволяя подключать клиентов с медленными телефонными каналами.

Трехуровневая модель клиент-сервер позволяет более точно назначать полномочия пользователей, так как они получают права не к самой БД, а к определенным функциям сервера приложений, что повышает защищенность системы.

Многоуровневые клиент-серверные системы легко можно перевести на Web-технологию - для этого достаточно заменить клиентскую часть универсальным браузером, а сервер приложений дополнить Web-сервером и небольшими программами вызова процедур сервера. В трехуровневой системе по каналу связи между сервером приложений и БД передается много информации, при этом не замедляются вычисления, так как для связи указанных элементов используются более скоростные линии. Это требует меньших затрат, так как оба сервера находятся в одном помещении. Но при этом встает проблема согласованности совместных вычислений, которую призваны решать менеджеры транзакций - новые элементы многоуровневых систем.

Менеджеры транзакций

МТ - позволяют одному серверу приложений одновременно обмениваться данными с несколькими серверами БД. Хотя серверы Oracle имеют механизм выполнения распределенных транзакций, но если пользователь хранит часть информации в БД Oracle, часть в БД Informix, а часть в текстовых файлах, то без МТ не обойтись. МТ используется для управления распределенными разнородными операциями и согласования действий различных компонентов информационной системы. Любое сложное ПО требует использования МТ.

Например. Банковские системы должны осуществлять различные преобразования представлений документов, т.е. работать одновременно с данными, хранящимися как в БД, так и в обычных файлах, - именно эти функции и помогает выполнять МТ.

МТ - это программа или комплекс программ, с помощью которых можно согласовать работу различных компонентов инф-ой системы.

Логически МТ делится на несколько частей:

· коммуникационный менеджер (контролирует обмен сообщениями между компонентами инф-ой системы;

· менеджер транзакций (управляет распределенными операциями);

· менеджер ведения журнальных записей (следит за восстановлением и откатом распределенных операций);

· менеджер блокировок (обеспечивает правильный доступ к совместно используемым данным).

Обычно М-коммуникационный объединен с М-авторизации, а М-транзакций с М-блокировок и системных записей. Причем такой М редко входит в комплект поставки, поскольку его функции (ведение записей, распределение ресурсов и контроль операций), как правило, выполняет сама БД (например, Oracle).

Наибольшие изменения произошли в М-коммуникации, так как в этой области появились новые объектно-ориентированные технологии (CORBA, DCOM и т.д.). Многоуровневая модель клиент-сервер позволяет существенно упростить распределенные вычисления, делая их не только более надежными, но и более доступными.

4.4. Системы технологической почты ­ -

это гарантированная доставка информации и средство для интеграции приложений

Проектирование информационных систем ставит перед системными аналитиками решения следующих проблем:

ð распределенность системы;

ð интеграция различных приложений;

ð удобство администрирования.

Современные ВС в основном являются распределенными, поэтому встает задача выбора способа взаимодействия между отдельными частями таких систем. Слияние нескольких информационных систем требует решения интеграции большого количества разнородных приложений. Такая (интегрированная) система должна обладать всей функциональностью объединяемых подсистем и сохранить простоту и удобство использования. Решение данной проблемы возможно осуществить с помощью систем технологической почты (СТП).

Термин «технологическая почта» используется для обозначения взаимодействия между приложениями ("электронная почта" - взаимодействие между людьми), передаваемая информация является технологической ее формирование и передача могут осуществляться без/или с минимальным участием человека.

Система технологической почты включает в себя два различных способа взаимодействия, используемых в современных распределенных системах.

Один из них основывается на концепции соединения (рис.1), а другой - на идее обмена сообщениями.

1


Рис.1. Механизм взаимодействия с установлением соединения

Процесс взаимодействия приложений и использованием установления соединения можно разделить на три фазы:

1. установление соединения;

2. передача информации;

3. закрытие соединения.

Такое взаимодействие требует наличие соединения всех трех фаз и одновременной работы приложений, что не всегда возможно.

Системы, построенные на принципе обмена сообщениями, используют при взаимодействии технологию очередей сообщений (рис.2).



Рис.2. Взаимодействие приложений с использованием технологии очередей сообщений

Приложения, которые обмениваются информацией, адресуют ее не напрямую друг другу, а в ассоциированные с приложениями очереди сообщений. Соединение между приложением и очередью происходит, как правило, в режиме on-line, что позволяет избежать затраты времени на установление соединения. Управляющее ПО может находиться как на одной машине с приложениями, так и на выделенном сервере. Системы, использующие технологию очередей сообщений, в Отличие от систем установления соединений, не требуют ни постоянного соединения в процессе взаимодействия, ни одновременной работы взаимодействующих приложений. Эти свойства обеспечивают им гибкость и приемлемость в различных областях применения.

Универсальность систем технологической почты позволяет им работать на гетерогенных (многообразие программно-аппаратных платформ, на которых работают отдельные компоненты СТП, а также многообразие способов соединения и протоколов взаимодействия, применяемых в системе) структурах. Гетерогенность достигается за счет разделения серверной и клиентских частей СТП. Клиентские части обладают небольшой функциональностью и могут быть перенесены на различные платформы. Т.о., для функционирования СТП не нужны затраты на дополнительное оборудование - система адаптируется к существующим средствам (как аппаратным и программным, так и к существующим каналам передачи данных) и не требует их замены.

Преимvшecтвa использования СТП:

Ø Гарантированность доставки сообщения. Серверы очередей сообщений

сами определяют, каким образом обеспечить гарантированность доставки при отказе отдельных частей системы: произвести повторную пересылку, найти альтернативный маршрут или применить другие способы. Так как СТП обеспечивают обмен информацией между приложениями, то факт недоставки сообщения должен быть отслежен и обработан (в отличие о электронной почты, где в случае недоставки сообщения, пользователь должен сам выполнить какие-либо корректирующие действия);

Ø Отсутствие блокировки приложения на время передачи информации, т.к. действует технология очередей сообщений, и выделение серверной части системы ТП, отвечающей за доставку сообщения. Отсутствие блокировки позволяет уменьшить время простоя приложений;

Ø Возможность установки приоритетов сообщений и опций при отправке. Приоритеты позволяют реализовать несколько параллельных систем передачи сообщений. При этом сообщения с более низким приоритетом не будут оказывать никакого влияния на процесс доставки сообщений с более высоким приоритетом. Это имеет положительное свойство при проектировании и настройке больших систем, а также при администрировании систем;

Ø Возможность обмена информацией в гетерогенной среде, где возможна модернизация как технических, так и программных средств.