Модель взаимодействия открытых сетей osi. Что такое сетевая модель OSI. Уровни модели OSI

Понятие «открытая система»

В широком смысле открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми спецификациями.

Напомним, что под термином «спецификация» (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик. Понятно, что не всякая спецификация является стандартом. В свою очередь, под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стандартам и принятые в результате достижения согласия после всестороннего обсуждения всеми заинтересованными сторонами.

Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или программные средства расширения и модификации, а также создавать программно-аппаратные комплексы из продуктов разных производителей.

Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. Например, открытость семейства операционных систем Unix заключается, кроме всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии. Еще одним примером частичной открытости является применение в достаточно закрытой операционной системе Novell NetWare открытого интерфейса Open Driver Interface (ODI) для включения в систему драйверов сетевых адаптеров независимых производителей. Чем больше открытых спецификаций использовано при разработке системы, тем более открытой она является.

Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, определяющих формат, содержание и значение принимаемых и отправляемых сообщений.

Если две сети построены с соблюдением принципов открытости, то это дает следующие преимущества:

    возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;

    возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;

    возможность легкого сопряжения одной сети с другой;

    простота освоения и обслуживания сети.

Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах. Само название стандартов, определяющих работу сети Internet - Request For Comments (RFC), что можно перевести как «запрос на комментарии», - показывает гласный и открытый характер принимаемых стандартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.

Модель OSI

Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.

В модели OSI взаимодействие делится на семь уровней или слоев (рис. 1.1). Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

Рис. 1.1. Модель взаимодействия открытых систем ISO/OSI

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Следует иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Приложение конечного пользователя может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машине, но и просто для получения услуг того или иного сетевого сервиса, например, доступа к удаленным файлам, получение почты или печати на разделяемом принтере.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню. Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д. Некоторые реализации протоколов предусматривают наличие в сообщении не только заголовка, но и концевика. Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

Кроме термина "сообщение" (message) существуют и другие названия, используемые сетевыми специалистами для обозначения единицы обмена данными. В стандартах ISO для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram).

Функции уровней модели ISO/OSI

Физический уровень . Этот уровень имеет дело с передачей битов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных на кабеле, и другие характеристики среды и электрических сигналов.

Канальный уровень. На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка - точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP-B.

Сетевой уровень. Этот уровень служит для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами. Рассмотрим функции сетевого уровня на примере локальных сетей. Протокол канального уровня локальных сетей обеспечивает доставку данных между любыми узлами только в сети с соответствующейтиповой топологией . Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи данных для типовых топологий, а с другой стороны, допустить использование произвольных топологий, используется дополнительный сетевой уровень. На этом уровне вводится понятие "сеть". В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень.

Сообщения сетевого уровня принято называтьпакетами (packets) . При организации доставки пакетов на сетевом уровне используется понятие"номер сети" . В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами.Маршрутизатор - это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того, чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называетсямаршрутизацией и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту, оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время, как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией . С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень. На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является вся система транспортировки данных в сети. Так, например, если качество каналов передачи связи очень высокое, и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок - с помощью предварительного установления логического соединения, контроля доставки сообщений с помощью контрольных сумм и циклической нумерации пакетов, установления тайм-аутов доставки и т.п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Сеансовый уровень. Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Уровень представления. Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень. Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message) .

Существует очень большое разнообразие протоколов прикладного уровня. Приведем в качестве примеров хотя бы несколько наиболее распространенных реализаций файловых сервисов: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, сервисами, предоставляемыми на верхних уровнях и прочими параметрами.

Архитектура открытых систем

Термин «архитектура связи» подразумевает, что отдельные подзадачи сети выполняются различными архитектурными элементами, между которыми устанавливаются пути передачи информации (каналы связи и интерфейсы). Способ, с помощью которого сообщение обрабатывается структурными элементами и передаются по сети, называется сетевым протоколом . Проблемы совмещения и стыковки различных элементов ВС привели Международную организацию стандартизации (ISO - International Organization for Standards) к созданию модели архитектуры вычислительной сети, которая называется моделью взаимодействия открытых систем 1977 г. (ВОС/OSI).

Базовая эталонная модель взаимодействия открытых систем

Цель разработки этой модели заключалась в определении логических ограничений для сетевых стандартов, приемлемых для всех изготовителей, что позволило бы им создавать уникальные и конкурентоспособные изделия, которые тем не менее стыковались с изделиями других изготовителей. Модель OSI является обобщенной и применима как к глобальным, так и к локальным ВС.

В модели используется подход уровневой архитектуры, в которой все функции сети разделены на уровни таким образом, что вышележащие уровни используют услуги, предоставленные нижележащими уровнями. Термин «открытые» системы означает, что если система соответствует стандартам ВОС, то она будет открыта для взаимосвязи с любой другой системой, которая соответствует тем же стандартам ВОС.

Услуги каждого уровня ВОС определяют в абстрактном виде интерфейс между двумя смежными уровнями, не задавая при этом способа его реанимации. Услуги уровня определяют его функциональные возможности. Запрос услуг и оповещение о результатах их выполнения происходит путем обмена примитивами - элементарными абстрактными единицами взаимодействия между П. и исполнителем (И) услуг. Определено 4 типа примитивов:

Запрос - выдается П. для инициации услуги;

Индикация - выдается И. Для указания на то, что удаленный П. инициировал выполнение услуги;



Ответ - выдается П. как реакция на примитив индикация;

Подтверждение - выдается И. Для сообщения о результатах выполнения услуги.

Протоколы определяют логику взаимодействия удаленных логических объектов одного уровня. При этом задается формат и кодирование протокольных блоков данных (ПБД), с помощью которых осуществляется такое взаимодействие - интерпретация запросов на услуги от верхнего уровня и правила пользования услугами нижележащего уровня.

Модель OSI - это набор протоколов для определения и стандартизации всего процесса передачи данных, разработанного Международной организацией стандартизации (ISO).

Процесс передачи данных делится на 7 уровней, в пределах которых устанавливаются стандартные протоколы, разработанные ISO и некоторыми фирмами, причем количество этих протоколов велико.

Модель OSI не является единственным описанием процесса передачи данных, а говорит, что

1) есть способ разбиения процесса передачи данных на уровни и существуют определенные протоколы, которые можно применять на любые уровни.

2) любой последовательный уровень модели OSI взаимодействует с предыдущим.

3) любой уровень обладает свойством модульности: замена одного протокола другим в рамках уровня не влияет на работу протоколов верхнего или нижнего уровня.

Взаимосвязь между узлами сети:

уровни Оконечная система 1 Протоколы уровней Оконечная система 2 Основные функции уровней
Прикладной процесс Прикладной процесс
Прикладной (SMTP, FTP, TELM) Службы пользователей, сетевые службы и т.д.
Представительный Преобразование структурированных данных и манипулирование ими.
Сеансовый (BIOS) Установление соединений, координация и синхронизация диалога.
Транспортный (TCP/IP) Обеспечение независящего от передающей среды транспортного сервиса между оконечными системами.
Сетевой (X.25) Коммутация и маршрутизация в сети.
Канальный (HDLC, SDLC, X.25) Управление передачей данных по каналу. Контроль ошибок, возникающий из-за физической среды передачи.
Физический (IEEE 802.3, 802.4, 802.5) Предоставление средств для управления физическими соединениями в канале.
Физическая среда для соединения систем

Уровни OSI реализуют следующие сетевые функции:

  1. Физический уровень . Обеспечивает физический путь для электрических сигналов, представляющих биты переданной информации. Он также устанавливает характеристики этих сигналов (например, значения напряжения и тока). Он определяет механизм свойства кабелей и разъемов. Физический уровень представляет средства, позволяющие подсоединяться к физической предающей среде и управлять ее использованием. Это единственное реальное взаимосвязь между узлами сети.

Надо заметить, что физическая среда как таковая не входит в эталонную модель, хотя очень важна для ее реализации. Это каналы связи, модемы, канальное оборудование (мультиплексоры, ЭВМ, контроллеры, терминалы и т.д.), совокупность кабелей, повторителей сигналов.

  1. Канальный уровень . Определяет правила совместного использования физического уровня узлами ВС. Информация передается адресованными порциями (кадрами) - по одному кадру в единицу времени. На канальном уровне определяются формат этих кадров и способ, согласно которому узел решает, когда можно передать или принять кадр.

Используется 2 основных типа кадров: пакеты и управляющие кадры.

Пакеты - кадры данных, которые содержат сообщения верхних уровней.

Управляющие кадры - маркеры, подтверждения.

Методы обнаружения и коррекции ошибок обеспечивают безошибочное прохождение пакетов от узлов источников к узлам назначения.

С точки зрения верхних уровней канального и физического уровней обеспечивают безопасную передачу пакетов данных.

  1. Сетевой уровень. Отвечает за буферизацию и маршрутизацию в сети.

Реализует функции связи между 2-мя отдельными сетями. Преобразование логических адресов в физические.

4. Транспортный уровень . С передающей стороны делит длинные сообщения на пакеты данных. С принимающей стороны - должен правильно собрать сообщения из набора пакетов, полученных через канальный и сетевой уровень.

5. Сеансовый уровень . Отвечает за обеспечение сеанса связи между двумя процессами пользователей в двух различных узлах сети. Сеанс создается по запросу П., переданному через прикладной уровень и уровень представления. Сеансовый уровень отвечает за определение возможности начала сеанса, за его поддержание и окончание. Устанавливает соглашения относительно формы обмена.

6. Уровень представления . Является самым простым с точки зрения взаимосвязи. Его функция заключается в преобразовании сообщений П. из формы, используемой прикладным уровнем, в форму, используемую более низкими уровнями. Целью преобразования сообщения (кодирования) является сжатие данных и их защита. Гарантирует, что данные, которыми обмениваются устройства, поступают на прикладной уровень или к устройствам П. в понятном для них виде. Это позволяет использовать в различных комплектах оборудования различные форматы данных без ущерба для взаимопонимания.

7. Прикладной уровень. Является границей между процессами сети OSI и прикладными (пользовательскими) процессами. Непосредственно поддерживает обмен информацией между пользователями, прикладными программами или устройствами. На этом уровне требуется несколько типов протоколов:

1) для конкретных специфичных приложений (передачи файлов, электронная почта)

2) общие протоколы для поддержки пользователей и сети (например, для вычислений, управления доступом, проверки полномочий пользователей)

Прикладной уровень дает определить адресата, сформировать запрос и послать его через сеть, передать и получить запрошенные данные, сделать их доступными для запрашивающего процесса.

Отдельные уровни могут быть совмещены или отсутствовать.

Реальная связь: физический уровень физический уровень

Информация проходит от прикладного уровня к физическому в узле источника и от физического к прикладному в узле назначения.

Между процессами на одинаковых уровнях существуют виртуальные связи

Необходимо еще пояснить некоторые понятия, относящиеся к эталонной модели OSI:

· упаковка

· фрагментация

Структура сообщений

Многоуровневая организация управления процессами в сети пораждает необходимость модификации на любом уровне передаваемых сообщений.

Схема модификации сообщений

Упаковка

Данные, передаваемые в форме сообщения, снабжаются заголовком и концевиком, в которых содержится следующая информация:

1. указатели типа сообщений

2. адреса отправителя, получателя, канала, порта

3. код обнаружения ошибок

Каждый уровень оперирует с собственными З и К, а находящаяся между ними информация рассматривается как данные более высокого уровня. Засчет этого обеспечивается независимость данных, относящихся к разным уровням управления передачей сообщений.

Фрагментация

Дает возможность разделить сообщение на меньшие части, которые затем обрабатываются и предаются независимо. На принимающем конце эти части должны быть собраны для воссоздания в форме исходного сообщения.

(транспортый уровень - разбивка/сборка пакетов)

Использование небольших пакетов данных упрощает разработку протоколов нижних уровней.

В принципе не имеет значения, реализуется уровень аппаратным или программным способом (никаких требований OSI - модель не формирует) - лишь бы выполнялись функции, а формы соответствовали межуровневым интерфейсам.

Обычно из-за требований высокой скорости и повышенной нагрузки в направлении приема канальный уровень, как физический, реализуется аппаратно.

Более высокие уровни обычно реализуцется как процессы, принадлежащие ОС или активизируемые ОС.

(см. рис.)

Прикладной процесс в системе А (ур. 7) формирует сообщение прикладному процессу в системе В в соответствии с логикой взаимодействия этих двух прикладных процессов (но без учета организациии сети). Физически сообщения, формируемые процессом А, проходят последовательно через уровни 6,5,…,1, подвергаясь процедурам последовательного обрамления, предаются по каналу связи и затем через уровни 1,2,…,6, на которых с сообщений снимаются обрамления, поступают к процессу В. каждый уровень работает со своим заголовком и концевиком. Все, что между ними - рассматривается соответствующим уровнем как данные.

В заголовки помещаются команды для вызова функций в соответствующих уровнях другого узла связи:

Уровень N+1 вызывает функцию для формирования в передающем узле поле контроля последовательности.

Уровень N+1 принимающего узла производит проверку наличия ошибок при передаче на основе сравнения контрольного поля со значением счетчика приема.

Сервисная функция уровня N добавляет поле контроля последовательности в виде заголовка, который будет использоваться в принимающем N уровне для контроля ошибок.

На уровне N-1 производится сжатие данных. В принимающем узле эта функция (заголовок) используется как команда преобразования к исходнуму виду.

Заголовок - это управляющая информация протокола .

Концевик - управляющая информация интерфейса , кторый используется только между смежными уровнями одного и того же узла. Он содержит команды, которые должны быть выполнены нижележащим уровне. Например, это может быть команда обеспечить ускоренное прохождение через уровень, т.е. выполнить операции мультиплексирования на нижних уровнях.

При описании протокола принято выделять его логическую и процедурную характеристики.

Логическая характеристика протокола - это структура (формат) и содеоржание (семантика) сообщений. Логическая характеристика задается перечислением типов сообщений и их смысла. Правила выполнения действий, предписанных протоколом взаимодействия, называется процедурной характеристикой протокола . Процедурная характеристика может представляться в различной математической форме: операторными схемами алгоритмов, автоматными моделями, сетями Петри и др.

Таким образом, логика организации сети определяется протоколами, устанавливающими как тип и структуру сообщений, так и процедуры их обработки - реакцию на входящие сообщения и генерацию собственных сообщений.

Заключение

Протоколы, стандарты и интерфейсы нижних уровней относительно стабильны и отработаны. Они формируют устойчивую основу, на которой строятся верхние уровни.

Многие же протоколы высоких уровней находятся в различных стадиях разработки (хотя некоторые уже утверждены).

Завершить полностью разработку всех элементов верхних уровней вряд ли возможно из-за количества и разнообразия прикладных областей.

Управление процессом передачи и обработки данных в сети, требует стандартизации следующих процедур:

  • выделения и освобождения ресурсов компьютеров и системы телекоммуникации;
  • установления и разъединения соединений;
  • маршрутизации, согласования, преобразования и передачи данных;
  • контроля правильности передачи;
  • исправления ошибок и др.

Указанные задачи решаются с помощью системы протоколов и стандартов, определяющих процедуры взаимодействия элементов сети при установлении связи и передаче данных. Протокол - это набор правил и методов взаимодействия объектов вычислитель­ной сети.
Необходимость стандартизации протоколов важна для понимания сетями друг друга при их взаимодействии.
Протоколы для сетей - то же самое, что язык для людей. Говоря на разных язы­ках, люди могут не понимать друг друга, - также и сети, использующие разные протоколы. От эффективности протоколов, их надежности, простоты зависит то, насколько эффективна и удобна вообще работа человека в сети.
Международной организацией по стандартизации (ISO) разработана система стандартных протоколов, получившая название модели взаимодействия открытых систем (OSI), часто называемая также эталонной семиуровневой логической моделью открытых систем.
Открытая система - система, доступная для взаимодействия с другими система­ми в соответствии с принятыми стандартами.
Эта система протоколов базируется на разделении всех процедур взаимодействия на отдельные мелкие уровни, для каждого из которых легче создать стандартные алгоритмы их по­строения.
Модель OSI представляет собой самые общие рекомендации для построения стан­дартов совместимых сетевых программных продуктов, она же служит базой для производителей при разработке совместимого сетевого оборудования. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью.
В общем случае сеть должна иметь 7 функциональных уровней (табл. 1.1).

Таблица 1.1. Уровни модели OSI

Уровень OSI

Назначение

Примеры протоколов

7 Прикладной

Обеспечивает прикладным процессам пользователя средства доступа к сетевым ресурсам; является интерфейсом между программами пользователя и сетью. Имеет интерфейс с пользователем

Х.400, NCR HTTP, SMTP, FTP, FTAM, SAP, DNS, Telnet и т. д.

6 Представления

Устанавливает стандартные способы представления данных, которые удобны для всех взаимодействующих объектов прикладного уровня. Имеет интерфейс с прикладными программами

5 Сеансовый

Обеспечивает средства, необходимые сетевым объектам для организации, синхронизации и административного управления обменом данных между ними

X.225, RPC, NetBEUI и т. д.

4 Транспортный

Обеспечивает надежную, экономичную и «прозрачную» передачу данных между взаимодействующими объектами сеансового уровня

Х.224, TCP, UDP, NSP, SPX, SPP, RH и т. д.

3 Сетевой

Обеспечивает маршрутизацию передачи данных в сети, устанавливает логический канал между объектами для реализации протоколов транспортного уровня

X.25, X.75, IP, IPX, IDP, TH, DNA-4 и т. д.

2 Канальный

Обеспечивает непосредственную связь объектов сетевого уровня, функциональные и процедурные средства ее поддержки для эффективной реализации протоколов сетевого уровня

LAP-B, HDLC, SNAP, SDLC, IEEE 802.2 и т.д.

1 Физический

Формирует физическую среду передачи данных, устанавливает соединения объектов сети с этой средой

Ethernet, Arcnet, Token Ring, IEEE 802.3, 5

Прикладной уровень (application) - управляет запуском программ пользователя, их выполнением, вводом-выводом данных, управлением терминалами, административным управ­лением сетью. На этом уровне обеспечивается предоставление пользователям раз­личных услуг, связанных с запуском его программ. На этом уровне функционируют технологии, являющиеся как бы надстройкой над передачей данных.
Уровень представления (presentation) - интерпретация и преобразование пере­даваемых в сети данных к виду, удобному для прикладных процессов. На практике многие функции этого уровня задействованы на прикладном уровне, поэтому про­токолы уровня представлений не получили развития и во многих сетях практи­чески не используются.
Сеансовый уровень (session) - организация и проведение сеансов связи между прикладными процессами (инициализация и поддержание сеанса между абонен­тами сети, управление очередностью и режимами передачи данных). Многие функции этого уровня в части установле­ния соединения и поддержания упорядоченного обмена данными на практике реализуются на транспортном уровне, поэтому протоколы сеансового уровня име­ют ограниченное применение.
Транспортный уровень (transport) - управление сегментированием данных и транспорти­ровкой данных от источника к потребителю (т.е. обмен управляющей информацией и установление между абонентами логического канала, обеспечение качества пе­редачи данных). Протоколы транспортного уровня развиты очень широко и интенсивно используются на практике. Большое внимание на этом уровне уделено контролю достоверности передаваемой информации.
Сетевой уровень (network) - управление логическим каналом передачи данных в сети (адресация и маршрутизация данных). Каждый пользователь сети обязательно использует протоколы этого уровня и имеет свой уникальный сетевой адрес, используемый протоколами сетевого уровня. На этом уровне выполняется структуризация данных - разбивка их на пакеты и присвое­ние пакетам сетевых адресов.
Канальный уровень (data-link) - формирование и управление физическим ка­налом передачи данных между объектами сетевого уровня (установление, поддер­жание и разъединение логических каналов), обеспечение “прозрачности” физических соединений, контроля и исправления ошибок передачи.
Физический уровень (physical) - установление, поддержание и расторжение со­единений с физическим каналом сети. Управление выполняется на уров­не битов цифровых (импульсы, их амплитуда, форма) и аналоговых (амплитуда, частота, фаза непрерывного сигнала).

Блоки информации, передаваемые между уровнями, имеют стандартный формат: заголовок (header), служебная информация, данные, концевик. Каждый уровень при передаче блока информации нижестоящему уровню снабжает его своим заго­ловком. Заголовок вышестоящего уровня воспринимается нижестоящим как пе­редаваемые данные.

Средства каждого уровня отрабатывают протокол своего уровня и интерфейсы с со­седними уровнями.
Указанные уровни управления можно по разным признакам объединять в группы:
- уровни 1, 2 и частично 3 реализуются в большей части за счет аппаратных средств; верхние уровни с 4 по 7 и частично 3 обеспечиваются программными средствами;

Уровни 1 и 2 ответственны за физические соединения; уровни 3-6 заняты орга­низацией передачи, передачей и преобразованием информации в понятную для абонентской аппаратуры форму; уровень 7 обеспечивает выполнение приклад­ных программ пользователя.

  • 3. Технологии передачи данных. Ethernet, Token Ring, ISDN, X.25, Frame Relay.
  • 4. Устройства межсетевого интерфейса: повторители, мосты, маршрутизаторы, шлюзы. Методы коммутации и маршрутизации. Способы повышения производительности сети
  • 5 .Одноранговые и серверные сети: сравнительная характеристика. Основные виды специализированных серверов.
  • 6. Технологическая основа сети Интернет. Система адресации (IP-адреса, доменные имена, система DNS). Основные протоколы общения в сети.
  • 7. Базовые пользовательские технологии работы в сети Интернет. WWW, FTP, TELNET, E-MAIL. Поиск информации в сети Интернет.
  • 9. Базы данных: данные, модель данных, база данных, система управления базами данных, информационная система. Модели данных. Реляционная модель данных.
  • 12. Проектирование информационных систем. Структура и модели жизненного цикла.
  • 13. Моделирование и представление структуры предприятия. Диаграммы IDEF0.
  • 14. Моделирование и представление потоков данных. DFD-диаграммы.
  • 16. Экспертные системы (ЭС): понятие, назначение, архитектура, отличительные особенности. Классификация ЭС. Этапы разработки ЭС.
  • 17. Базы знаний экспертных систем. Методы представления знаний: логические модели, продукционные правила, фреймы, семантические сети.
  • 18 Знания. Виды знаний. Методы извлечения знаний: коммуникативные, текстологические.
  • 19 Языки программирования, их характеристики (Пролог, Delphi, C++).
  • 20. Языки программирования, их характеристики (PHP, Perl, JavaScript).
  • 21. Цели, задачи, принципы и основные направления обеспечения информационной безопасности Российской Федерации. Правовая, организационная, инженерно-техническая защита информации.
  • 22. Электронные издания: понятие, состав. Классификация ЭИ. Регистрация ЭИ.
  • 23. Информационные ресурсы: понятие, состав. Государственные информационные ресурсы.
  • 24. Операционная система персонального компьютера как средство управления ресурсами (на примере изучаемой ОС). Структура и компоненты ОС.
  • 25. Вредоносное программное обеспечение: классификации, методы обнаружения и удаления.
  • 26 Структура web-приложений. Протокол HTTP. Cookie. Функции web-приложения. Протокол CGI.
  • 27 Обеспечение надежности работы ИС. Транзакции. OLTP-системы.
  • 28. Эргономические цели и показатели качества программного продукта.
  • 31.Информационный менеджмент: понятие и основные функции.
  • 33 Стандартизация в области программного обеспечения. Стандарты документирования программных средств.
  • 34. Оценка качественных и количественных характеристик информационных систем. Модели оценки характеристик надежности программного и информационного обеспечения. Основные понятия, показатели и методы обеспечения надежности информационных систем.
  • 36.Особенности выполнения инновационных программ в сфере информатизации (характеристика информационной политики в сфере информатизации, принципы формирования проекта и внедрения ИС, управление проектами информатизации).

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!


Уважаемый читатель!
Публикация данного документа не преследует за собой никакой коммерческой выгоды. Но такие документы способствуют профессиональному и духовному росту читателей и являются рекламой бумажных изданий таких документов. Все авторские права сохраняются за правообладателем.
За содержание статьи ответственность несут ее авторы.

МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ОТКРЫТЫХ СИСТЕМ

Семиуровневая модель взаимодействия открытых систем (Open Systems Interconnection , OSI ), предложенная Международной организацией по стандартизации (International Organization for Standardization , ISO ) . Модель ISO / OSI предполагает, что все сетевые приложения можно подразделить на семь уровней, для каждого из которых созданы свои стандартыи общие модели. В результате задача сетевого взаимодействия делиться на меньшие и более легкие задачи, обеспечивается совместимость между продуктами разных производителей и упрощается разработка приложений за счёт создания отдельных уровней и использования уже существующих реализаций.

Рисунок 1. Семиуровневая модель

Теоретически, каждый уровень должен взаимодействовать с аналогичным уровнем удаленного компьютера. На практике каждый из них, за исключением физического, взаимодействует с выше – и нижележащими уровнями – представляет услуги вышележащему и пользуется услугами нижележащего. В реальной ситуации на одном компьютере независимо друг от друга иногда выполняется несколько реализаций одного уровня. Например, компьютер может иметь несколько сетевых адаптеров стандарта Ethernet или адаптеры стандартов Ethernet и Token -Ring и.т.д.

Рассмотрим подробнее каждый из семи уровней и их применение.

Физический уровень

Физический уровень описывает физические свойства (например, электромеханические характеристики) среды и сигналов, переносящих информацию. Это физические характеристики кабелей и разъемов, уровни напряжений и электрического сопротивления и.т.д., в том числе, например, спецификация кабеля «неэкранированная витая пара» (unshielded twisted pair , UTP )

Канальный уровень

Канальный уровень обеспечивает перенос данных по физической среде. Он поделен на два подуровня: управления логическим каналом (logical link control , LLC ) и управления доступом к среде (media access control , MAC ). Такое деление позволяет одному уровню LLC использовать различные реализации уровня MAC . Уровень MAC работает с применяемым в Ethernet и Token -Ring физическими адресами, которые «вшиты» в сетевые адаптеры их производителями. Следует различать физические и логические (например, IP ) адреса. С последним работает сетевой уровень.

Сетевой уровень

В отличии от канального уровня, имеющего дело с физическими адресами, сетевой уровень работает с логическими адресами. Он обеспечивает подключение и маршрутизацию между двумя узлами сети. Сетевой уровень предоставляет транспортному уровню услуги с установлением соединения (connection -oriented ), например Х.25, или без установления такового (connectionless ) например IP (internet protocol ). Одна из основных функций сетевого уровня – маршрутизация.

К протоколам сетевого уровня относиться IP и ICMP (Internet Control Massage Protocol ).

Транспортный уровень

Транспортный уровень предоставляет услуги, аналогично услугам сетевого уровня. Надежность гарантируют лишь некоторые (не все) реализации сетевых уровней, поэтому ее относят к числу функций, выполняемых транспортным уровнем. Транспортный уровень должен существовать хотя бы потому, что иногда все три нижних уровня (физический, канальный и сетевой) предоставляет оператор услуг связи. В этом случае, используя соответствующий протокол транспортного уровня, потребитель услуг может обеспечить требуемую надежность услуг. TCP (Transmission Control Protocol) – широко распространенный протокол транспортного уровня.

Сеансовый уровень

Сеансовый уровень обеспечивает установление и разрыв сеансов, и управление ими. Сеанс – это логическое соединение между двумя конечными пунктами. Наилучший пример этой модели – телефонный звонок. При наборе номера Вы устанавливаете логическое соединение, в результате на другом конце провода звонит телефон. Когда один из собеседников говорит «аллё», начинается передача данных. После того как один из абонентов вешает трубку, телефонная компания выполняет некоторые действия для разрыва соединения. Сеансовый уровень следит также за очередностью передачи данных. Эту функцию называют «управление диалогом» (dialog management ). Вот примеры протоколов сеансового, представительного и прикладного уровней – SMTP (Simple Mail Transfer Protocol ), FTP (File Transfer Protocol ) и Telnet .

Представительный уровень

Представительный уровень позволяет двум стекам протоколов «договариваться» о синтаксисе (представлении) передаваемых друг другу данных. Поскольку гарантий одинакового представления информации нет, то этот уровень при необходимости переводит данные из одного вида в другой.

Прикладной уровень

Прикладной уровень – высший в модели ISO / OSI . На этом уровне выполняться конкретные приложения, которые пользуются услугами представительного уровня (и косвенно – всех остальных). Это может быть обмен электронной почтой, пересылка файлов и любое другое сетевое приложение.

Таблица 1. модель ISO / OSI и некоторые протоколы соответствующих уровней.

ПРИКЛАДНОЙ УРОВЕНЬ

SMTP (Simple Mail Transfer Protocol), FTP (File Transfer Protocol)

ПРЕДСТАВИТЕЛЬНЫЙ УРОВЕНЬ

СЕАНСОВЫ УРОВЕНЬ

ТРАНСПОРТНЫЙ УРОВЕНЬ