Переменный электрический ток закон ома. Закон ома для переменного тока. Формула, полное сопротивление. U эл =I*R элемента

Закон Ома был открыт немецким физиком Георгом Омом в 1826 году и с тех пор начал широко применяться в электротехнической области в теории и на практике. Он выражается известной формулой, с посредством которой можно выполнить расчеты практически любой электрической цепи. Тем не менее, закон Ома для переменного тока имеет свои особенности и отличия от подключений с постоянным током, определяемые наличием реактивных элементов. Чтобы понять суть его работы, нужно пройти по всей цепочке, от простого к сложному, начиная с отдельного участка электрической цепи.

Закон ома для участка цепи

Закон Ома считается рабочим для различных вариантов электрических цепей. Более всего он известен по формуле I = U/R, применяемой в отношении отдельного отрезка цепи постоянного или переменного тока.

В ней присутствуют такие определения, как сила тока (I), измеряемая в амперах, напряжение (U), измеряемое в вольтах и сопротивление (R), измеряемое в Омах.

Широко распространенное определение этой формулы выражается известным понятием: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению на конкретном отрезке цепи. Если увеличивается напряжение, то возрастает и сила тока, а рост сопротивления, наоборот, снижает ток. Сопротивление на этом отрезке может состоять не только из одного, но и из нескольких элементов, соединенных между собой .

Формулу закона Ома для постоянного тока можно легко запомнить с помощью специального треугольника, изображенного на общем рисунке. Он разделяется на три секции, в каждой из которых помещен отдельно взятый параметр. Такая подсказка дает возможность легко и быстро найти нужное значение. Искомый показатель закрывается пальцем, а действия с оставшимися выполняются в зависимости от их положения относительно друг друга.

Если они расположены на одном уровне, то их нужно перемножить, а если на разных - верхний параметр делится на нижний. Данный способ поможет избежать путаницы в расчетах начинающим электротехникам.

Закон ома для полной цепи

Между отрезком и целой цепью существуют определенные различия. В качестве участка или отрезка рассматривается часть общей схемы, расположенная в самом источнике тока или напряжения. Она состоит из одного или нескольких элементов, соединенных с источником тока разными способами.

Система полной цепи представляет собой общую схему, состоящую из нескольких цепочек, включающую в себя батареи, разные виды нагрузок и соединяющие их провода. Она также работает по закону Ома и широко используется в практической деятельности, в том числе и для переменного тока.

Принцип действия закона Ома в полной цепи постоянного тока можно наглядно увидеть при выполнении несложного опыта. Как показывает рисунок, для этого потребуется источник тока с напряжением U на его электродах, любое постоянное сопротивление R и соединительные провода. В качестве сопротивления можно взять обычную лампу накаливания. Через ее нить будет протекать ток, создаваемый электронами, перемещающимися внутри металлического проводника, в соответствии с формулой I = U/R.

Система общей цепи будет состоять из внешнего участка, включающего в себя сопротивление, соединительные проводки и контакты батареи, и внутреннего отрезка, расположенного между электродами источника тока. По внутреннему участку также будет протекать ток, образованный ионами с положительными и отрицательными зарядами. Катод и анод станут накапливать заряды с плюсом и минусом, после чего среди них возникнет .

Полноценное движение ионов будет затруднено внутренним сопротивлением батареи r, ограничивающим выход тока в наружную цепь, и понижающим его мощность до определенного предела. Следовательно, ток в общей цепи проходит в пределах внутреннего и внешнего контуров, поочередно преодолевая общее сопротивление отрезков (R+r). На размеры силы тока влияет такое понятие, как электродвижущая сила - ЭДС, прилагаемая к электродам, обозначенная символом Е.

Значение ЭДС возможно измерить на выводах батареи с использованием вольтметра при отключенном внешнем контуре. После подключения нагрузки на вольтметре появится наличие напряжения U. Таким образом, при отключенной нагрузке U = E, в при подключении внешнего контура U < E.

ЭДС дает толчок движению зарядов в полной цепи и определяет силу тока I = E/(R+r). Данная формула отражает закон Ома для полной электрической цепи постоянного тока. В ней хорошо просматриваются признаки внутреннего и наружного контуров. В случае отключения нагрузки внутри батареи все равно будут двигаться заряженные частицы. Это явление называется током саморазряда, приводящее к ненужному расходу металлических частиц катода.

Под действием внутренней энергии источника питания сопротивление вызывает нагрев и его дальнейшее рассеивание снаружи элемента. Постепенно заряд батареи полностью исчезает без остатка.

Закон ома для цепи переменного тока

Для цепей переменного тока закон Ома будет выглядеть иначе. Если взять за основу формулу I = U/R, то кроме активного сопротивления R, в нее добавляются индуктивное XL и емкостное ХС сопротивления, относящиеся к реактивным. Подобные электрические схемы применяются значительно чаще, чем подключения с одним лишь активным сопротивлением и позволяют рассчитать любые варианты.

Сюда же включается параметр ω, представляющий собой циклическую частоту сети. Ее значение определяется формулой ω = 2πf, в которой f является частотой этой сети (Гц). При постоянном токе эта частота будет равной нулю, а емкость примет бесконечное значение. В данном случае электрическая цепь постоянного тока окажется разорванной, то есть реактивного сопротивления нет.

Цепь переменного тока ничем не отличается от постоянного, за исключением источника напряжения. Общая формула остается такой же, но при добавлении реактивных элементов ее содержание полностью изменится. Параметр f уже не будет нулевым, что указывает на присутствие реактивного сопротивления. Оно тоже оказывает влияние на ток, протекающий в контуре и вызывает резонанс. Для обозначения полного сопротивления контура используется символ Z.

Отмеченная величина не будет равной активному сопротивлению, то есть Z ≠ R. Закон Ома для переменного тока теперь будет выглядеть в виде формулы I = U/Z. Знание этих особенностей и правильное использование формул, помогут избежать неправильного решения электротехнических задач и предотвратить выход из строя отдельных элементов контура.

Были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности: R I R = U R ; 1 ω C I C = U C ; ω L I L = U L .

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений .

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R , L и C . Физические величины R , 1 ω C и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J ċ u . Практический интерес представляет среднее за период переменного тока значение мощности P = P ср = I 0 U 0 cos ω t cos (ω t + φ) ¯ .

Здесь I 0 и U 0 – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R , то фазовый сдвиг φ = 0 : P R = I R U R cos 2 ω t ¯ = I R U R 2 = I R 2 R 2 .

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения: I д = I 0 2 ; U д = U 0 2 .

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна P R = I д U д.

Если участок цепи содержит только конденсатор емкости C , то фазовый сдвиг между током и напряжением φ = π 2 . Поэтому P C = I C U C cos ω t cos (ω t + π 2) ¯ = I C U C cos ω t (- sin ω t) ¯ = 0.

Аналогично можно показать, что P L = 0 .

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e (t) и током J (t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J (t) = I 0 cos ωt; e (t) = 0 cos (ωt + φ) .

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна P = I 0 ℰ 0 cos ω t cos (ω t + φ) ¯ = I 0 ℰ 0 2 cos φ = I д ℰ д cos φ .

Как видно из векторной диаграммы, U R = 0 · cos φ , поэтому P = I 0 U R 2 . Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока I 0 и напряжения ℰ 0 для последовательной RLC -цепи: I 0 = ℰ 0 R 2 + (ω L - 1 ω C) 2 .

Величину Z = R 2 + (ω L - 1 ω C) 2 называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI 0 = 0 .

Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC -контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).

Параллельный RLC -контур

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R , C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока . Векторная диаграмма для параллельного RLC -контура изображена на рис. 2.4.2.

Векторная диаграмма для параллельного RLC-контура

Из диаграммы следует: I 0 = ℰ 0 (1 R) 2 + (ω L - 1 ω C) 2 .

Поэтому полное сопротивление параллельного RLC -контура выражается соотношением Z = 1 (1 R) 2 + (ω L - 1 ω C) 2 .

При параллельном резонансе (ω 2 = 1 / LC ) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора: Z = Z max = R .

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Закон Ома часто называют основным законом электричества. Открывший его в 1826 г. известный немецкий физик Георг Симон Ом установил зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением и силой тока.

Электрическая цепь

Чтобы лучше понять смысл закона Ома, нужно представлять, как устроена электрическая цепь.

Что же такое электрическая цепь? Это путь, который проходят электрически заряженные частицы (электроны) в электрической схеме.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока , а силы - сторонними силами .

Электрическую цепь, в которой находится источник тока, называют полной электрической цепью . Источник тока в такой цепи выполняет примерно такую же функцию, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Простейшая замкнутая электрическая цепь состоит из одного источника и одного потребителя электрической энергии, соединённых между собой проводниками.

Параметры электрической цепи

Свой знаменитый закон Ом вывел экспериментальным путём.

Проведём несложный опыт.

Соберём электрическую цепь, в которой источником тока будет аккумулятор, а прибором для измерения тока – последовательно включенный в цепь амперметр. Нагрузкой служит спираль из проволоки. Напряжение будем измерять с помощью вольтметра, включенного параллельно спирали. Замкнём с помощью ключа электрическую цепь и запишем показания приборов.

Подключим к первому аккумулятору второй с точно таким же параметрами. Снова замкнём цепь. Приборы покажут, что и сила тока, и напряжение увеличились в 2 раза.

Если к 2 аккумуляторам добавить ещё один такой же, сила тока увеличится втрое, напряжение тоже утроится.

Вывод очевиден: сила тока в проводнике прямо пропорциональна напряжению, приложенному к концам проводника .

В нашем опыте величина сопротивления оставалась постоянной. Мы меняли лишь величину тока и напряжения на участке проводника. Оставим лишь один аккумулятор. Но в качестве нагрузки будем использовать спирали из разных материалов. Их сопротивления отличаются. Поочерёдно подключая их, также запишем показания приборов. Мы увидим, что здесь всё наоборот. Чем больше величина сопротивления, тем меньше сила тока. Сила тока в цепи обратно пропорциональна сопротивлению .

Итак, наш опыт позволил нам установить зависимость силы тока от величины напряжения и сопротивления.

Конечно, опыт Ома был другим. В те времена не существовало амперметров, и, чтобы измерить силу тока, Ом использовал крутильные весы Кулона. Источником тока служил элемент Вольта из цинка и меди, которые находились в растворе соляной кислоты. Медные проволоки помещались в чашки со ртутью. Туда же подводились концы проводов от источника тока. Проволоки были одинакового сечения, но разной длины. За счёт этого менялась величина сопротивления. Поочерёдно включая в цепь различные проволоки, наблюдали за углом поворота магнитной стрелки в крутильных весах. Собственно, измерялась не сама сила тока, а изменение магнитного действия тока за счёт включения в цепь проволок различного сопротивления. Ом называл это «потерей силы».

Но так или иначе эксперименты учёного позволили ему вывести свой знаменитый закон.

Георг Симон Ом

Закон Ома для полной цепи

Между тем, формула, выведенная самим Омом, выглядела так:

Это не что иное, как формула закона Ома для полной электрической цепи: « Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений внешней цепи и внутреннего сопротивления источника ».

В опытах Ома величина Х показывала изменение величины тока. В современной формуле ей соответствует сила тока I , протекающего в цепи. Величина а характеризовала свойства источника напряжения, что соответствует современному обозначению электродвижущей силы (ЭДС) ε . Значение величины l зависело от длины проводников, соединявших элементы электрической цепи. Эта величина являлась аналогией сопротивления внешней электрической цепи R . Параметр b характеризовал свойства всей установки, на которой проводился опыт. В современной обозначении это r внутреннее сопротивление источника тока.

Как выводится современная формула закона Ома для полной цепи?

ЭДС источника равна сумме падений напряжений на внешней цепи (U ) и на самом источнике (U 1 ).

ε = U + U 1 .

Из закона Ома I = U / R следует, что U = I · R , а U 1 = I · r .

Подставив эти выражения в предыдущее, получим:

ε = I · R + I · r = I · (R + r) , откуда

По закону Ома напряжение во внешней цепи равно произведению силы тока на сопротивление. U = I · R . Оно всегда меньше, чем ЭДС источника. Разница равна величине U 1 = I · r .

Что происходит при работе батарейки или аккумулятора? По мере того, как разряжается батарейка, растёт её внутренне сопротивление. Следовательно, увеличивается U 1 и уменьшается U .

Полный закон Ома превращается в закон Ома для участка цепи, если убрать из него параметры источника.

Короткое замыкание

А что произойдёт, если сопротивление внешней цепи вдруг станет равно нулю? В повседневной жизни мы можем наблюдать это, если, например, повреждается электрическая изоляция проводов, и они замыкаются между собой. Возникает явление, которое называется коротким замыканием . Ток, называемый током короткого замыкания , будет чрезвычайно большим. При этом выделится большое количество теплоты, которое может привести к пожару. Чтобы этого не случилось, в цепи ставят устройства, называемые предохранителями. Они устроены так, что способны разорвать электрическую цепь в момент короткого замыкания.

Закон Ома для переменного тока

В цепи переменного напряжения кроме обычного активного сопротивления встречается реактивное сопротивление (ёмкости, индуктивности).

Для таких цепей U = I · Z , где Z - полное сопротивление, включающее в себя активную и реактивную составляющие.

Но большим реактивным сопротивлением обладают мощные электрические машины и силовые установки. В бытовых приборах, окружающих нас, реактивная составляющая настолько мала, что её можно не учитывать, а для расчётов использовать простую форму записи закона Ома:

I = U / R

Мощность и закон Ома

Ом не только установил зависимость между напряжением, током и сопротивлением электрической цепи, но и вывел уравнение для определения мощности:

P = U · I = I 2 · R

Как видим, чем больше ток или напряжение, тем больше мощность . Так как проводник или резистор не является полезной нагрузкой, то мощность, которая приходится на него, считается мощностью потерь. Она идёт на нагревание проводника. И чем больше сопротивление такого проводника, тем больше теряется на нём мощности. Чтобы уменьшить потери от нагревания, в цепи используют проводники с меньшим сопротивлением. Так делают, например, в мощных звуковых установках.

Вместо эпилога

Небольшая подсказка для тех, кто путается и не может запомнить формулу закона Ома.

Разделим треугольник на 3 части. Причём, каким образом мы это сделаем, совершенно неважно. Впишем в каждую из них величины, входящие в закон Ома - так, как показано на рисунке.

Закроем величину, которую нужно найти. Если оставшиеся величины находятся на одном уровне, то их нужно перемножить. Если же они располагаются на разных уровнях, то величину, расположенную выше, необходимо разделить на нижнюю.

Закон Ома широко применяется на практике при проектировании электрических сетей в производстве и в быту.

Цель: экспериментально определить импеданс различных нагрузок и сопоставить экспериментальные значения с теоретическими.

Теоретическая часть

Рассмотрим соотношения между током и напряжением в цепи переменного тока при включении в нее различных нагрузок (рис. 29).

Омическое сопротивление. Под этим термином понимают сопротивление проводника постоянному току. В дальнейшем будем рассматривать квазистационарные токи, для которых мгновенные значения силы тока и напряжения, обозначаемые малыми буквами i и u , подчиняются законам Ома и Джоуля-Ленца. Амплитудные значения тока и напряжения будем обозначать I m и U m .

Пусть к омическому сопротивлению приложено напряжение, меняющееся по гармоническому закону:

U = U m сos wt , (31)

где w – циклическая частота колебаний. Согласно закону Ома через R потечет ток силой i :

i = I m сos wt , (33)

Из соотношений (32) и (33) следует:

1) фазы тока и напряжения на омическом сопротивлении совпадают;

2) амплитуды силы тока и напряжения связаны соотношением

Рис. 29. Омическая, индуктивная и емкостная нагрузки

Индуктивное сопротивление. Подадим на катушку, обладающую индуктивностью L и пренебрежимо малым омическим сопротивлением, напряжение, меняющееся по закону (31). В катушке возникает меняющийся ток, создающий переменное магнитное поле. Изменение магнитного потока Ф = Li этого поля возбудит в витках катушки ЭДС самоиндукции

.

Поскольку подводимое к катушке напряжение играет роль ЭДС, а падение напряжения в цепи отсутствует (R = 0), по второму правилу Кирхгофа для мгновенных значений можем записать:

u + = 0 или .

Последнее перепишем в виде дифференциального уравнения

Или .

Интегрирование этого уравнения дает следующее выражение:

.

,

(35)

Из (31) и (35) следует:

1) ток, проходящий через катушку, отстает от напряжения по фазе на p/2 или, что то же самое, напряжение опережает ток по фазе на p/2;

Из сопоставления (36) с (32) следует, что величина wL в цепи с индуктивностью играет роль сопротивления. Величину

X L = wL (37)

называют индуктивным сопротивлением .

Емкостное сопротивление . Конденсатор представляет собой разрыв проводов, поэтому постоянный ток он не пропускает. При изменении напряжения между обкладками меняется и мгновенное значение заряда конденсатора, определяемого формулой

q = Cu , (38)

для чего в подводящих проводах должен протекать ток, приносящий заряд к обкладкам или уносящий от них. Говорят, что конденсатор пропускает переменный ток, хотя в пространстве между обкладками никакой передачи заряда от одной обкладки к другой не происходит.

Проходящий по проводам заряд скапливается на обкладках конденсатора, поэтому его величина равна i = dq/dt , где q – мгновенное значение заряда обкладки. Учитывая (38) и считая подаваемое напряжение меняющимся по закону (31), получаем:

.

Так как cos (p/2 + wt ) = –sin wt, последнее примет вид:

. (39)

Сопоставляя (31) и (39), имеем:

1) ток в цепи с конденсатором опережает напряжение по фазе на p/2, иначе говоря, напряжение отстает от тока по фазе на p/2;

2) амплитуды тока и напряжения связаны соотношением

. (40)

Величину

называют емкостным сопротивлением .

При измерениях и расчетах цепей переменного тока вместо амплитудных пользуются действующими (эффективными) значениями силы тока I и напряжения U , которые связаны с амплитудными:

Их использование обусловлено тем, что закон Джоуля-Ленца в случае переменного тока принимает такой же вид, как и для постоянного. Соответственно электроизмерительные приборы градуируются на эффективные значения.

Очевидно, что формулы (34), (36) и (40) не изменяются при замене амплитудных значений на эффективные и примут вид:

U R = I × R , U L = I × wL , U C = I /wC , (42)

где индексы R , L и C означают напряжение на соответствующей нагрузке.

Векторные диаграммы . Фазовые соотношения между током и напряжением графически изображены на рис. 30.

Существует и другой способ их представления, позволяющий упростить расчеты цепей со сложной нагрузкой.

Рис. 31

Проведем из некоторой точки О (рис. 31) ось ОХ и отложим из той же точки вектор А под углом j к оси ОХ . Затем приведем этот вектор во вращение вокруг точки О в плоскости рисунка против часовой стрелки с угловой скоростью w. Угол a между А® и ОХ спустя время t будет a = wt + j. Проекция А® на ось ОХ равна

А Х = Х = A cos a

Х = A cos (wt + j). (43)

Вывод: всякое гармоническое колебание можно представить вращением вектора соответствующей длины и ориентации.

Следовательно, если построить вектор U и под соответствующим углом отложить вектор I , то при совместном вращении векторов угол между ними останется неизменным (43). Векторные диаграммы токов и напряжений при различных нагрузках приведены на рис. 32.

Последовательное соединение R , L и С . Для расчета такой цепи воспользуемся методом векторных диаграмм. При последовательном соединении нагрузок мгновенное значение силы тока во всех точках цепи должно быть одинаковым, т.е. фаза тока на всех нагрузках одинакова.

Однако напряжения на нагрузках не совпадают по фазе с током. Напряжение на омическом сопротивлении совпадает по фазе с током, на индуктивном – опережает ток на p/2, на емкостном – отстает на p/2. Таким образом, сложив векторы U R , U L и U C , получим полное напряжение, приложенное к цепи. Поскольку U L и U C противоположны по направлению, удобнее сначала сложить их, а затем вектор U L – U C сложить с U R . В итоге имеем:

.

Подставляя соотношения (42), получим:

. (44)

В этом выражении роль сопротивления выполняет величина

, (45)

называемая полным сопротивлением цепи переменному току или импедансом . С ее использованием (44) примет вид:

U = I × Z. (46)

Это выражение часто называют законом Ома для переменных токов. Величина

(47)

называется реактивным сопротивлением и является комбинацией индуктивного и емкостного сопротивлений.

Векторная диаграмма (рис. 33) также показывает, что приложенное напряжение и протекающий в цепи ток колеблются не в одинаковой фазе, а имеют между собой сдвиг фаз j, величина которого определяется любой из приведенных ниже формул, следующих из диаграммы:

; ;

.


Следует отметить, что формула (46) является общей для любого соединения нагрузок, а формулы (45), (47) и (48) справедливы лишь для частного случая последовательного соединения.

Экспериментальная часть

Оборудование: реостат 1000 Ом, ключ, амперметр, вольтметр, реостат 100 Ом, батарея конденсаторов, катушка.

Порядок выполнения работы

Задание 1. Измерение омического сопротивления.

Схема установки приведена на рис. 34.

В этом опыте в качестве нагрузки применяется низкоомный реостат. Высокоомный реостат используется как потенциометр.

1. Измерить ток через нагрузку при трех различных значениях подаваемого на нее напряжения. Результаты измерения занести в табл. 12.

Задание 2. Измерение емкостного сопротивления.

1. В рабочую схему в качестве нагрузки включить батарею конденсаторов. Ток и напряжение на нагрузке измерить аналогично заданию 1. Результаты измерения также внести в табл. 12.

Примечание. Значение емкости батареи рекомендуется выбрать в интервале 20–40 мкФ.

Задание 3. Измерение импеданса катушки.

1. Измерение импеданса катушки проводится аналогично предыдущим заданиям с использованием катушки в качестве нагрузки.

Задание 4. Измерение импеданса последовательного соединения R , L и С.

1. Нагрузкой будут служить соединенные последовательно реостат, батарея конденсаторов и катушка.

2. Ток и напряжение на нагрузке измерить аналогично заданию 1.

3. По результатам каждого измерения вычислить импедансы Z эксп нагрузок.

4. Сравнить экспериментальные результаты с теоретическими или паспортными значениями. Результаты сравнения привести в выводе.

Таблица 12

Номер задания Напряжение, U Сила тока, I Z эксп, Ом Z экспср , Ом Z теор, Ом
цена деления в делениях в В цена деления в делениях в А
резистор
конденсатор
катушка
4 последовательное соединение

Примечание. Теоретическим для реостата будет его паспортное значение сопротивления. Для конденсатора Z теор определяется по использованному в опыте значению емкости, расчет производится по формуле (41). Катушка обладает и омическим, и индуктивным сопротивлением, поэтому ее импеданс вычисляется по формуле (45), причем в качестве R должна использоваться сумма омических сопротивлений реостата и катушки.

5. Вычисление погрешностей экспериментальных значений произвести по классам точности амперметра и вольтметра, теоретических – по паспортным данным приборов.

Контрольные вопросы и задания

1. Запишите и поясните закон Ома для переменного тока.

2. Как определяется омическое, реактивное и полное сопротивление в цепи переменного тока?

3. Что понимается под эффективными значениями тока и напряжения?

4. Нарисуйте векторную диаграмму для резистора в цепи переменного тока. Сделайте пояснения.

5. Нарисуйте векторную диаграмму для конденсатора в цепи переменного тока. Сделайте пояснения.

6. Нарисуйте векторные диаграммы для идеальной катушки и катушки с заметным омическим сопротивлением в цепи переменного тока. Сделайте пояснения.

7. Нарисуйте векторную диаграмму для последовательного соединения резистора, конденсатора и катушки в цепи переменного тока. Сделайте пояснения. Получите из векторной диаграммы закон Ома.

Лабораторная работа 9 (11)

ИЗМЕРЕНИЕ МОЩНОСТИ

В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Цель: ознакомиться с измерением мощности в цепи переменного тока методом трех вольтметров.

Теоретическая часть

Как всякий проводник, катушка в цепи постоянного тока потребляет энергию, идущую на нагревание проводов. Свойство проводника превращать энергию электрического тока в тепловую характеризуется его омическим сопротивлением R . Мощность тепловых потерь определяется по формуле

где I – сила тока в проводнике.

При включении катушки в цепь переменного тока у нее также происходит выделение тепла по закону (49), но в этом случае I – эффективное значение силы переменного тока.

Если у катушки имеется ферромагнитный сердечник, то проходящий по катушке переменный ток возбуждает в нем вихревые токи (токи Фуко), ведущие к нагреванию сердечника. Кроме того, происходит непрерывное изменение намагниченности сердечника по величине и направлению (перемагничивание), что также приводит к нагреванию сердечника. Эти дополнительные потери энергии эквивалентны возрастанию сопротивления проводника. Совокупные необратимые потери энергии, идущие на нагревание как проводов, так и сердечника, характеризуются активным сопротивлением катушки, определяемым по формуле

Это сопротивление, в отличие от омического, невозможно измерить, его можно лишь рассчитать.

Падение напряжения на активном сопротивлении считается колеблющимся в фазе с током.


Рис. 35

При отсутствии ваттметра мощность, потребляемая катушкой, может быть определена с использованием трех вольтметров. Если катушка обладает индуктивностью L и активным сопротивлением R а, то между током в катушке и напряжением на ней возникает сдвиг фаз j, что иллюстрируется векторной диаграммой (рис. 35), где I – ток через катушку, U а и U L – падения напряжения на активном и индуктивном сопротивлениях катушки, U к – полное напряжение на катушке.

Потребляемую катушкой мощность можно вычислить либо из (49), либо по формуле

. (51)

I и U к измеряют непосредственно, а для определения коэффициента мощности (сos j) последовательно с катушкой включается омическое сопротивление R .

Из векторной диаграммы (рис. 36) полное напряжение в цепи запишется по теореме косинусов:

. (52)

Рис. 36

В этих выражениях U – подаваемое напряжение, U к – напряжение на катушке, U R – напряжение на омическом сопротивлении. Все три напряжения измеримы непосредственно. Далее, поскольку катушка и омическое сопротивление соединены последовательно, сила тока в них одинакова и определяется по формуле

что позволяет обойтись без амперметра.

Экспериментальная часть

Оборудование: автотрансформатор; катушка; реостат; вольтметр 0-50 В; 2 вольтметра 0-150 В; сплошной и наборный сердечники.

Порядок выполнения работы

Задание 1. Измерение мощности катушки без сердечника.

В схеме на рис. 37 подаваемое в цепь напряжение регулируется автотрансформатором. В качестве омического сопротивления используется реостат.

В природе существует два основных вида материалов, проводящие ток и не проводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

Где I – сила тока, измеряется в амперах и обозначается буквой А ; U В ; R – сопротивление, измеряется в омах и обозначается .

Если известны напряжение питания U и сопротивление электроприбора R , то с помощью выше приведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I .

С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

Применение закона Ома на практике

На практике часто приходится определять не силу тока I , а величину сопротивления R . Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R , зная протекающий ток I и величину напряжения U .

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца .

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где P – мощность, измеряется в ваттах и обозначается Вт ; U – напряжение, измеряется в вольтах и обозначается буквой В ; I – сила ток, измеряется в амперах и обозначается буквой А .

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала .

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой несвязанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.