Основные UI паттерны разработки Android приложений. Clean Architecture, делает ваш код. Архитектурные уровни Android

Пожалуй, никто не будет спорить с тем, что прежде чем начинать писать программы для любой системы, необходимо ознакомиться с ее основными характеристиками, структурой и идеологией. Но писать что-то хочется начать сразу, а разбираться со всем этим надо достаточно долго.

В этой и следующих статьях попробуем вкратце разобраться с тем из чего может состоять программа для Android.

Итак первый элемент приложений в андроиде это Activity и его производные. Если отбросить все нюансы, то можно сказать что это окно приложения со всеми элементами управления (кнопками, бегунками, списками). По сути Activity представляет собой пользовательский интерфейс.

Как это дело использовать? Просто создать свой класс-наследник Activity и переопределить несколько методов. Вообще что и ы какой момент происходит с Activity лучше всего понятно из этой диаграммы:

Скачал ее на developer.android.com.

Итак, что же может произойти с нашей activity во время ее жизни и как мы можем контролировать эти процессы? Во-первых наша activity должна создаться. Корректно обработать ее создание нам поможет переопределение метода onCreate() .

Следующим шагом после создания будет ее показ пользователю, и если мы хотим например, инициализировать текст в текстовых полях, или запустить фоновую музыку, то можно сделать это здесь. Для этого используется метод onStart() . После метода onStart() вызывается метод onResume() .

Если мы с вызовем какое-то диалоговое окно, и наша аctivity перейдет на второй план, мы легко можем обработать такую ситуацию, переопределив метод onPause() .

Ну а если мы (или пользователь) вызвали какую-то другую activity, и наша с вами перешла в фоновый режим, то мы переопределяем метод onStop() . Ну например если нам надо остановить фоновую музыку, или сбрость какие-то значения введенные пользователем. Если же пользователь опять решил вернуться к нашей activity то мы обрабатываем это событие с помошью метода onRestart() . При этом, мы не должны забывать, что если системе потребовалась память, то наша активити может быть уничтожена и это мы также можем обработать переопределив метод onDestroy() (К примеру, если мы открыли соединение с каким-то сервером и все время держали его открытым, то в этом методе его не плохо бы и закрыть 🙂).

Ну вот, краткий теоретический экскурс закончился, давайте попробуем написать небольшое приложение, которое будет обрабатывать все эти события.

Package ru.davidmd.activitytutor; import android.app.Activity; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.LinearLayout; import android.widget.Toast; public class activity_example extends Activity { /** Called when the activity is first created. */ LinearLayout lay; Button butt; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); lay = new LinearLayout(this); setContentView(lay); lay.setOrientation(LinearLayout.VERTICAL); butt = new Button(this); butt.setText("CLOSE"); lay.addView(butt); butt.setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { ((Activity) v.getContext()).finish(); } }); Toast.makeText(this, "Activity created!", Toast.LENGTH_SHORT).show(); } @Override public void onStart() { super.onStart(); Toast.makeText(this, "Activity Started!", Toast.LENGTH_SHORT).show(); } @Override public void onResume() { super.onResume(); Toast.makeText(this, "Activity resumed!", Toast.LENGTH_SHORT).show(); } @Override public void onPause() { super.onPause(); Toast.makeText(this, "Activity paused!", Toast.LENGTH_SHORT).show(); } @Override public void onStop() { super.onStop(); Toast.makeText(this, "Activity stoped!", Toast.LENGTH_SHORT).show(); } @Override public void onRestart() { super.onRestart(); Toast.makeText(this, "Activity restarted!", Toast.LENGTH_SHORT).show(); } }

С помощью этого приложения вы сможете посмотреть в каком порядке вызываются все эти методы. Обратите внимание, что в каждом методе который мы переопределили, прежде всего мы запускаем такой-же родительский метод! И только псле этого начинаем писать свой код.

Android apps can be written using Kotlin, Java, and C++ languages. The Android SDK tools compile your code along with any data and resource files into an APK, an Android package , which is an archive file with an .apk suffix. One APK file contains all the contents of an Android app and is the file that Android-powered devices use to install the app.

Each Android app lives in its own security sandbox, protected by the following Android security features:

  • The Android operating system is a multi-user Linux system in which each app is a different user.
  • By default, the system assigns each app a unique Linux user ID (the ID is used only by the system and is unknown to the app). The system sets permissions for all the files in an app so that only the user ID assigned to that app can access them.
  • Each process has its own virtual machine (VM), so an app"s code runs in isolation from other apps.
  • By default, every app runs in its own Linux process. The Android system starts the process when any of the app"s components need to be executed, and then shuts down the process when it"s no longer needed or when the system must recover memory for other apps.

The Android system implements the principle of least privilege . That is, each app, by default, has access only to the components that it requires to do its work and no more. This creates a very secure environment in which an app cannot access parts of the system for which it is not given permission. However, there are ways for an app to share data with other apps and for an app to access system services:

  • It"s possible to arrange for two apps to share the same Linux user ID, in which case they are able to access each other"s files. To conserve system resources, apps with the same user ID can also arrange to run in the same Linux process and share the same VM. The apps must also be signed with the same certificate.
  • An app can request permission to access device data such as the user"s contacts, SMS messages, the mountable storage (SD card), camera, and Bluetooth. The user has to explicitly grant these permissions. For more information, see .

The rest of this document introduces the following concepts:

  • The core framework components that define your app.
  • The manifest file in which you declare the components and the required device features for your app.
  • Resources that are separate from the app code and that allow your app to gracefully optimize its behavior for a variety of device configurations.

App components

App components are the essential building blocks of an Android app. Each component is an entry point through which the system or a user can enter your app. Some components depend on others.

There are four different types of app components:

  • Activities
  • Services
  • Broadcast receivers
  • Content providers

Each type serves a distinct purpose and has a distinct lifecycle that defines how the component is created and destroyed. The following sections describe the four types of app components.

Activities An activity is the entry point for interacting with the user. It represents a single screen with a user interface. For example, an email app might have one activity that shows a list of new emails, another activity to compose an email, and another activity for reading emails. Although the activities work together to form a cohesive user experience in the email app, each one is independent of the others. As such, a different app can start any one of these activities if the email app allows it. For example, a camera app can start the activity in the email app that composes new mail to allow the user to share a picture. An activity facilitates the following key interactions between system and app:
  • Keeping track of what the user currently cares about (what is on screen) to ensure that the system keeps running the process that is hosting the activity.
  • Knowing that previously used processes contain things the user may return to (stopped activities), and thus more highly prioritize keeping those processes around.
  • Helping the app handle having its process killed so the user can return to activities with their previous state restored.
  • Providing a way for apps to implement user flows between each other, and for the system to coordinate these flows. (The most classic example here being share.)
Content providers A content provider manages a shared set of app data that you can store in the file system, in a SQLite database, on the web, or on any other persistent storage location that your app can access. Through the content provider, other apps can query or modify the data if the content provider allows it. For example, the Android system provides a content provider that manages the user"s contact information. As such, any app with the proper permissions can query the content provider, such as , to read and write information about a particular person. It is tempting to think of a content provider as an abstraction on a database, because there is a lot of API and support built in to them for that common case. However, they have a different core purpose from a system-design perspective. To the system, a content provider is an entry point into an app for publishing named data items, identified by a URI scheme. Thus an app can decide how it wants to map the data it contains to a URI namespace, handing out those URIs to other entities which can in turn use them to access the data. There are a few particular things this allows the system to do in managing an app:
  • Assigning a URI doesn"t require that the app remain running, so URIs can persist after their owning apps have exited. The system only needs to make sure that an owning app is still running when it has to retrieve the app"s data from the corresponding URI.
  • These URIs also provide an important fine-grained security model. For example, an app can place the URI for an image it has on the clipboard, but leave its content provider locked up so that other apps cannot freely access it. When a second app attempts to access that URI on the clipboard,the system can allow that app to access the data via a temporary URI permission grant so that it is allowed to access the data only behind that URI, but nothing else in the second app.

Content providers are also useful for reading and writing data that is private to your app and not shared.

A content provider is implemented as a subclass of and must implement a standard set of APIs that enable other apps to perform transactions. For more information, see the developer guide.

A unique aspect of the Android system design is that any app can start another app’s component. For example, if you want the user to capture a photo with the device camera, there"s probably another app that does that and your app can use it instead of developing an activity to capture a photo yourself. You don"t need to incorporate or even link to the code from the camera app. Instead, you can simply start the activity in the camera app that captures a photo. When complete, the photo is even returned to your app so you can use it. To the user, it seems as if the camera is actually a part of your app.

When the system starts a component, it starts the process for that app if it"s not already running and instantiates the classes needed for the component. For example, if your app starts the activity in the camera app that captures a photo, that activity runs in the process that belongs to the camera app, not in your app"s process. Therefore, unlike apps on most other systems, Android apps don"t have a single entry point (there"s no main() function).

Because the system runs each app in a separate process with file permissions that restrict access to other apps, your app cannot directly activate a component from another app. However, the Android system can. To activate a component in another app, deliver a message to the system that specifies your intent to start a particular component. The system then activates the component for you.

Activating components

Three of the four component types—activities, services, and broadcast receivers—are activated by an asynchronous message called an intent . Intents bind individual components to each other at runtime. You can think of them as the messengers that request an action from other components, whether the component belongs to your app or another.

The manifest file

Before the Android system can start an app component, the system must know that the component exists by reading the app"s manifest file , AndroidManifest.xml . Your app must declare all its components in this file, which must be at the root of the app project directory.

The manifest does a number of things in addition to declaring the app"s components, such as the following:

  • Identifies any user permissions the app requires, such as Internet access or read-access to the user"s contacts.
  • Declares the minimum required by the app, based on which APIs the app uses.
  • Declares hardware and software features used or required by the app, such as a camera, bluetooth services, or a multitouch screen.
  • Declares API libraries the app needs to be linked against (other than the Android framework APIs), such as the Google Maps library .

Declaring components

The primary task of the manifest is to inform the system about the app"s components. For example, a manifest file can declare an activity as follows:

...

For more about how to structure the manifest file for your app, see documentation.

Declaring component capabilities

Declaring app requirements

There are a variety of devices powered by Android and not all of them provide the same features and capabilities. To prevent your app from being installed on devices that lack features needed by your app, it"s important that you clearly define a profile for the types of devices your app supports by declaring device and software requirements in your manifest file. Most of these declarations are informational only and the system does not read them, but external services such as Google Play do read them in order to provide filtering for users when they search for apps from their device.

For example, if your app requires a camera and uses APIs introduced in Android 2.1 ( 7), you must declare these as requirements in your manifest file as shown in the following example:

...

With the declarations shown in the example, devices that do not have a camera or have an Android version lower than 2.1 cannot install your app from Google Play. However, you can declare that your app uses the camera, but does not require it. In that case, your app must set the attribute to false and check at runtime whether the device has a camera and disable any camera features as appropriate.

More information about how you can manage your app"s compatibility with different devices is provided in the document.

App resources

An Android app is composed of more than just code—it requires resources that are separate from the source code, such as images, audio files, and anything relating to the visual presentation of the app. For example, you can define animations, menus, styles, colors, and the layout of activity user interfaces with XML files. Using app resources makes it easy to update various characteristics of your app without modifying code. Providing sets of alternative resources enables you to optimize your app for a variety of device configurations, such as different languages and screen sizes.

For every resource that you include in your Android project, the SDK build tools define a unique integer ID, which you can use to reference the resource from your app code or from other resources defined in XML. For example, if your app contains an image file named logo.png (saved in the res/drawable/ directory), the SDK tools generate a resource ID named R.drawable.logo . This ID maps to an app-specific integer, which you can use to reference the image and insert it in your user interface.

One of the most important aspects of providing resources separate from your source code is the ability to provide alternative resources for different device configurations. For example, by defining UI strings in XML, you can translate the strings into other languages and save those strings in separate files. Then Android applies the appropriate language strings to your UI based on a language qualifier that you append to the resource directory"s name (such as res/values-fr/ for French string values) and the user"s language setting.

Android supports many different qualifiers for your alternative resources. The qualifier is a short string that you include in the name of your resource directories in order to define the device configuration for which those resources should be used. For example, you should create different layouts for your activities, depending on the device"s screen orientation and size. When the device screen is in portrait orientation (tall), you might want a layout with buttons to be vertical, but when the screen is in landscape orientation (wide), the buttons could be aligned horizontally. To change the layout depending on the orientation, you can define two different layouts and apply the appropriate qualifier to each layout"s directory name. Then, the system automatically applies the appropriate layout depending on the current device orientation.

How Android works on different types of devices and an introduction to how you can optimize your app for each device or restrict your app"s availability to different devices. How Android restricts app access to certain APIs with a permission system that requires the user"s consent for your app to use those APIs.

Есть четыре стандартных блока приложения Android:

- Activity .

- Intent Receiver .

- Service .

- Content Provider .

Не у каждого приложения должны быть все четыре блока, но Ваше приложение будет написано с их некоторой комбинацией.

Как только Вы решили, в каких компонентах Вы нуждаетесь для своего приложения, Вы должны перечислить их в файле по имени AndroidManifest.xml. Это - файл XML, где Вы объявляете компоненты своего приложения и каковы их возможности и требования. Мы скоро обсудим, за что AndroidManifest.xml ответственен.

(Это могло быть написано ОЧЕНЬ криво. Тут много текста и никаких картинок примеров. Рекомендую потерпеть и прочесть эту теорию, зато потом Вам будет понятней. Потом все написано гораздо глаже, не волнуйтесь)

Activity

Activity – самый распространенный из четырех стандартных блоков Андроид. Activity обычно - единственный экран в Вашем приложении. Каждый Activity осуществлен как единственный класс, который расширяет базовый класс Activity. Ваш класс отобразит пользовательский интерфейс, составленный из Views, и ответит на события. Большинство приложений состоит из множественных экранов. Например, у приложения обмена сообщениями мог бы быть один экран, который показывает список контактов, второй экран, чтобы написать сообщение выбранному контакту, и другие экраны, чтобы делать обзор старых сообщений или изменить настройку. Каждый из этих экранов был бы осуществлен как Activity. Перемещение в другой экран достигнуто стартом нового Activity. В некоторых случаях Activity может возвратить значение предыдущего Activity - например Activity, которая позволяет пользователю выбирать фотографию, возвратил бы выбранную фотографию вызывающей программе. Когда новый экран открывается, предыдущий экран приостановлен и помещен на стек хронологии. Пользователь может переместиться назад через ранее открытые экраны в хронологии. Экраны могут также хотеть быть удаленными от стека хронологии, когда было бы неуместно для них остаться. Андроид сохраняет стеки хронологии для каждого приложения, начатого от начала экрана.

Intent и фильтры Intent

Андроид использует специальный класс под названием Intent, чтобы двигаться от экрана к экрану. Intent описывает то, что приложение собирается сделать. Две самых важных части структуры Intent - действие и данные к действию. Типичные значения для действия – MAIN (главный экран приложения), VIEW, PICK, EDIT, и т.д. Данные выражены как Uniform Resource Indicator (URI). Например, чтобы рассмотреть веб сайт в браузере, Вы создали бы Intent с действием VIEW и набором данных – адресом сайта.

new Intent(android.content.Intent.VIEW_ACTION , ContentURI.create ("http://anddev.org"));

Есть связанный класс, названный IntentFilter. В то время как Intent - запрос сделать кое-что, IntentFilter - описание того, что Intent Activity (или intent receiver, см. ниже), способен к обработке. Activity, который в состоянии отобразить информацию для человека, издала бы IntentFilter, который сказал, что знает, как обработать VIEW действия. Activity издает свой IntentFilters в файле AndroidManifest.xml.

Навигация от экрана к экрану достигнута достигается с помощью Intent. Чтобы переместиться вперед, Activity вызывает startActivity (myIntent). Система тогда смотрит на IntentFilter для всех установленных приложений и выбирает Activity, Intent которого фильтрует myIntent. Новому Activity сообщают о Intent, которое заставляет его начаться. Процесс решения Intent происходит, когда startActivity вызывают. Процесс предлагает две ключевых льготы:

Действия могут многократно использовать функциональные возможности от других компонентов, просто делая запрос в форме Intent.

Действия могут быть заменены в любое время новым Activity с эквивалентным IntentFilter.

Intent Receiver

Вы можете использовать IntentReceiver, когда Вы хотите, чтобы код в своем приложении выполнился в реакции на внешнее событие, например, когда телефон звонит, или когда сеть передачи данных доступна, или когда это - полночь. Intent Receiver не отображают UI, хотя они могут отобразить Уведомления, чтобы привести пользователя в готовность, если кое-что интересное случилось. Поглощенные получатели также регистрированы в AndroidManifest.xml, но Вы можете также регистрировать их в коде, используя Context.registerReceiver(). Ваше приложение не должно работать для его Intent Receiver, которые вызываются; система запустит Ваше приложение, в случае необходимости, когда Intent Receiver будет вызван. Приложения могут также послать свои собственные Intent Receiver другим с Context.broadcastIntent().

Service

Service - код, который долговечен и выполняется без UI. Хороший пример этого - универсальный проигрыватель, запускающий песни из плейлиста. В приложении универсального проигрывателя, вероятно, были бы одно или более Activity, которые позволяют пользователю выбирать песни и запускать их. Однако, воспроизведение самой музыки не должно быть обработано Activity, потому что пользователь будет ожидать, что музыка продолжит играть даже после сворачивания проигрывателя. В этом случае, деятельность универсального проигрывателя могла запустить Service, используя Context.startService(), чтобы работать на заднем плане и сохранить воспроизведение музыки. Тогда система сохранит воспроизведение музыки, пока оно не закроется само. (Вы можете узнать больше о приоритете, данном службам в системе, читая Цикл Жизни Приложения Андроид). Отметьте, что Вы можете соединиться с Service (и запустить его, если он уже не работает) с методом Context.bindService(). Когда есть подключение с Service, Вы можете общаться с этим через интерфейс, выставленный Service. Для Service музыки это могло бы позволить Вам приостанавливать, перематывать, и т.д.

Content Provider

Приложения могут хранить свои данные в файлах, базе данных SQLite, персональных настройках или любом другом механизме, который имеет смысл. Content Provider, однако, полезен, если Вы хотите, чтобы данные Вашего приложения были разделены с другими приложениями. Content Provider - класс, который осуществляет стандартный набор методов, чтобы позволить другим приложениям сохранять и восстанавливать тип данных, которые обработаны другим(that) Content Provider.

Пользовательские интерфейсы Андроид

Пользовательские интерфейсы (UI) в Андроид могут быть созданы двумя путями, через XML-код или в java-коде. Создание структуры графического интерфейса пользователя в XML очень предпочтительно, потому что по принципу Образцового управления средства просмотра, UI должен всегда отделяться от логики программы. К тому же, приспосабливание программы от одной разрешающей способности экрана до другой намного более просто. Определение UI в XML очень похоже к созданию общего документа HTML, где Вы имеете то есть такой простой файл:

Page Title

The content of the body element.

Все равно как в Андроидовских XML-Layouts. Все хорошо структурировано и может быть выражено древовидными структурами:

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello World"/>

Иерархия Элементов Экрана

Основной функциональный модуль приложения Android - Activity - объект класса android.app.activity. Activity может сделать много вещей, но отдельно у него нет присутствия на экране. Чтобы дать Вашему Activity присутствие на экрана и проектировать его UI, Вы работаете с Views и Viewgroups - основными единицами выражения пользовательского интерфейса на платформе Андроид.

Views

View - объект, расширяющий базовый класс android.view.view . Это - структура данных, свойства которой сохраняют Layouts и информационное наполнение для определенной прямоугольной области экрана. Объект View обрабатывает измерение, его схему размещения, рисунок, изменения центра, прокрутку, и клавиши/знаки для области экрана, которую он представляет. Класс View служит базовым классом для всех графических фрагментов - ряд полностью осуществленных подклассов, которые рисуют интерактивные элементы экрана. Графические фрагменты обрабатывают свое собственное измерение и рисунок, таким образом Вы можете использовать их, чтобы создать Ваш UI более быстро. Список доступных графических фрагментов включает TextView, EditText, Button, RadioButton, Checkbox, ScrollView и т.д.

Viewgroups

Viewgroup - объект класса android.view.viewgroup. Viewgroup - специальный тип объекта View, функция которого - содержать набором View и Viewgroup и управлять ими. Viewgroups позволяют Вам добавлять структуру к Вашему UI и создавать сложные элементы экрана, к которым можно обратиться как к единственному объекту. Класс Viewgroup служит базовым классом для Layouts - ряда полностью осуществленных подклассов, обеспечивающего общие типы Layouts экрана. Layouts дают Вам способ встроить структуру для ряда View.

UI с древовидной структурой

На платформе Андроид Вы определяете UI Activity использование дерева View и Viewgroup узлов, как показано в диаграмме ниже. Дерево может быть столь же простым или сложным, как Вы его сделаете, и Вы можете построить его, используя наборы предопределенных графических фрагментов и Layouts Андроида, или заказных типов View, которые Вы создаете самостоятельно.

UI Андроид – древовидная структура.

Чтобы прикрепить дерево к экрану и отрендрить его, Ваш Activity вызывает свой метод setContentView() и передает информацию на корневой объект узла. Как только у система Андроид получает информацию на корневой объект узла, она начинает работать непосредственно с узлом, чтобы измерить, и отрисовать дерево. Когда Ваш Activity становится активным и получает приоритет, система регистрирует Ваш Activity и просит корневой узел измерить и отрисовать дерево. Тогда корневой узел просит, чтобы его дочерние вершины отрисовали себя - в свою очередь, каждый Viewgroup узел в дереве ответственен за отрисовку его прямых дочерних узлов. Как упомянуто ранее, у каждой группы View есть ответственность измерения ее доступного пространства, расположения ее дочерних узлов, и вызов draw() на каждом дочернем узле, чтобы позволить все им рендрить себя. Дочерние узлы могут просить размер и местоположение в родителе, но у родительского объекта есть конечное решение, где и насколько большой каждый ребенок может быть.

Сравнение Андроида Элементы UI к Swing Элементы UI

Поскольку некоторые разработчики, которые читают это, возможно, нашли, что UIs схож с Swing, сейчас будет немного общих черт между Андроидом и Swing.

Activity в Андроид - почти (J) Frame в Swing.

View в Андроид - (J) Component в Swing.

TextViews в Андроид - (J) TextField в Swing.

EditTexts в Андроид - (J) TextField в Swing.

Button в Андроид - (J) Button в Swing.

Установка слушателей к View в Андроид является почти тем же самым, чем и в Swing.

myView.setOnClickListener(new OnClickListener(){ ...

myButton.addActionListener(new ActionListener() {...



Тебя никогда не интересовало, как работают fastboot или ADB? Или почему смартфон под управлением Android практически невозможно превратить в кирпич? Или, может быть, ты давно хотел узнать, где кроется магия фреймворка Xposed и зачем нужны загрузочные скрипты /system/etc/init.d? А как насчет консоли восстановления (recovery)? Это часть Android или вещь в себе и почему для установки сторонней прошивки обычный рекавери не подходит? Ответы на все эти и многие другие вопросы ты найдешь в данной статье.

Как работает Android

Узнать о скрытых возможностях программных систем можно, поняв принцип их работы. В некоторых случаях сделать это затруднительно, так как код системы может быть закрыт, но в случае Android мы можем изучить всю систему вдоль и поперек. В этой статье я не буду рассказывать обо всех нюансах работы Android и остановлюсь только на том, как происходит запуск ОС и какие события имеют место быть в промежутке между нажатием кнопки питания и появлением рабочего стола.

Попутно я буду пояснять, что мы можем изменить в этой цепочке событий и как разработчики кастомных прошивок используют эти возможности для реализации таких вещей, как тюнинг параметров ОС, расширение пространства для хранения приложений, подключение swap, различных кастомизаций и многого другого. Всю эту информацию можно использовать для создания собственных прошивок и реализации различных хаков и модификаций.

Шаг первый. ABOOT и таблица разделов

Все начинается с первичного загрузчика. После включения питания система исполняет код загрузчика, записанного в постоянную память устройства. Затем он передает управление загрузчику aboot со встроенной поддержкой протокола fastboot, но производитель мобильного чипа или смартфона/планшета имеет право выбрать и любой другой загрузчик на его вкус. Например, компания Rockchip использует собственный, несовместимый с fastboot загрузчик, для перепрограммирования и управления которым приходится использовать проприетарные инструменты.

Протокол fastboot, в свою очередь, представляет собой систему управления загрузчиком с ПК, которая позволяет выполнять такие действия, как разлочка загрузчика, прошивка нового ядра и recovery, установка прошивки и многие другие. Смысл существования fastboot в том, чтобы иметь возможность восстановить смартфон в начальное состояние в ситуации, когда все остальные средства не работают. Fastboot останется на месте, даже если в результате экспериментов ты сотрешь со смартфона все разделы NAND-памяти, содержащие Android и recovery.

Получив управление, aboot проверяет таблицу разделов и передает управление ядру, прошитому в раздел с именем boot, после чего ядро извлекает в память RAM-образ из того же раздела и начинает загрузку либо Android, либо консоли восстановления. NAND-память в Android-устройствах поделена на шесть условно обязательных разделов:

  • boot - содержит ядро и RAM-диск, обычно имеет размер в районе 16 Мб;
  • recovery - консоль восстановления, состоит из ядра, набора консольных приложений и файла настроек, размер 16 Мб;
  • system - содержит Android, в современных девайсах имеет размер не менее 1 Гб;
  • cache - предназначен для хранения кешированных данных, также используется для сохранения прошивки в ходе OTA-обновления и поэтому имеет размер, сходный с размерами раздела system;
  • userdata - содержит настройки, приложения и данные пользователя, ему отводится все оставшееся пространство NAND-памяти;
  • misc - содержит флаг, определяющий, в каком режиме должна грузиться система: Android или recovery.

Кроме них, также могут существовать и другие разделы, однако общая разметка определяется еще на этапе проектирования смартфона и в случае aboot зашивается в код загрузчика. Это значит, что: 1) таблицу разделов нельзя убить, так как ее всегда можно восстановить с помощью команды fastboot oem format; 2) для изменения таблицы разделов придется разлочить и перепрошить загрузчик с новыми параметрами. Из этого правила, однако, бывают исключения. Например, загрузчик того же Rockchip хранит информацию о разделах в первом блоке NAND-памяти, так что для ее изменения перепрошивка загрузчика не нужна.

Особенно интересен раздел misc. Существует предположение, что изначально он был создан для хранения различных настроек независимо от основной системы, но в данный момент используется только для одной цели: указать загрузчику, из какого раздела нужно грузить систему - boot или recovery. Эту возможность, в частности, использует приложение ROM Manager для автоматической перезагрузки системы в recovery с автоматической же установкой прошивки. На ее же основе построен механизм двойной загрузки Ubuntu Touch, которая прошивает загрузчик Ubuntu в recovery и позволяет управлять тем, какую систему грузить в следующий раз. Стер раздел misc - загружается Android, заполнил данными - загружается recovery… то есть Ubuntu Touch.

Шаг второй. Раздел boot

Если в разделе misc не стоит флаг загрузки в recovery, aboot передает управление коду, расположенному в разделе boot. Это не что иное, как ядро Linux; оно находится в начале раздела, а сразу за ним следует упакованный с помощью архиваторов cpio и gzip образ RAM-диска, содержащий необходимые для работы Android каталоги, систему инициализации init и другие инструменты. Никакой файловой системы на разделе boot нет, ядро и RAM-диск просто следуют друг за другом. Содержимое RAM-диска такое:

  • data - каталог для монтирования одноименного раздела;
  • dev - файлы устройств;
  • proc - сюда монтируется procfs;
  • res - набор изображений для charger (см. ниже);
  • sbin - набор подсобных утилит и демонов (adbd, например);
  • sys - сюда монтируется sysfs;
  • system - каталог для монтирования системного раздела;
  • charger - приложение для отображения процесса зарядки;
  • build.prop - системные настройки;
  • init - система инициализации;
  • init.rc - настройки системы инициализации;
  • ueventd.rc - настройки демона uventd, входящего в состав init.

Это, если можно так выразиться, скелет системы: набор каталогов для подключения файловых систем из разделов NAND-памяти и система инициализации, которая займется всей остальной работой по загрузке системы. Центральный элемент здесь - приложение init и его конфиг init.rc, о которых во всех подробностях я расскажу позже. А пока хочу обратить внимание на файлы charger и ueventd.rc, а также каталоги sbin, proc и sys.

Файл charger - это небольшое приложение, единственная задача которого - вывести на экран значок батареи. Он не имеет никакого отношения к Android и используется тогда, когда устройство подключается к заряднику в выключенном состоянии. В этом случае загрузки Android не происходит, а система просто загружает ядро, подключает RAM-диск и запускает charger. Последний выводит на экран иконку батареи, изображение которой во всех возможных состояниях хранится в обычных PNG-файлах внутри каталога res.

Файл ueventd.rc представляет собой конфиг, определяющий, какие файлы устройств в каталоге sys должны быть созданы на этапе загрузки системы. В основанных на ядре Linux системах доступ к железу осуществляется через специальные файлы внутри каталога dev, а за их создание в Android отвечает демон ueventd, являющийся частью init. В нормальной ситуации он работает в автоматическом режиме, принимая команды на создание файлов от ядра, но некоторые файлы необходимо создавать самостоятельно. Они перечислены в ueventd.rc.

Каталог sbin в стоковом Android обычно не содержит ничего, кроме adbd, то есть демона ADB, который отвечает за отладку системы с ПК. Он запускается на раннем этапе загрузки ОС и позволяет выявить возможные проблемы на этапе инициализации ОС. В кастомных прошивках в этом каталоге можно найти кучу других файлов, например mke2fs, которая может потребоваться, если разделы необходимо переформатировать в ext3/4. Также модеры часто помещают туда BusyBox, с помощью которого можно вызвать сотни Linux-команд.

Каталог proc для Linux стандартен, на следующих этапах загрузки init подключит к нему procfs, виртуальную файловую систему, которая предоставляет доступ к информации обо всех процессах системы. К каталогу sys система подключит sysfs, открывающую доступ к информации о железе и его настройкам. С помощью sysfs можно, например, отправить устройство в сон или изменить используемый алгоритм энергосбережения.

Файл build.prop предназначен для хранения низкоуровневых настроек Android. Позже система обнулит эти настройки и перезапишет их значениями из недоступного пока файла system/build.prop.


Выносы из текста

  • Fastboot останется на месте, даже если в результате экспериментов ты сотрешь со смартфона содержимое всех разделов NAND-памяти
  • Раздел recovery полностью самодостаточен и содержит миниатюрную операционную систему, которая никак не связана с Android
  • Слегка изменив файл fstab, мы можем заставить init загрузить систему с карты памяти

Шаг второй, альтернативный. Раздел recovery

В том случае, если флаг загрузки recovery в разделе misc установлен или пользователь включил смартфон с зажатой клавишей уменьшения громкости, aboot передаст управление коду, расположенному в начале раздела recovery. Как и раздел boot, он содержит ядро и RAM-диск, который распаковывается в память и становится корнем файловой системы. Однако содержимое RAM-диска здесь несколько другое.

В отличие от раздела boot, выступающего в роли переходного звена между разными этапами загрузки ОС, раздел recovery полностью самодостаточен и содержит миниатюрную операционную систему, которая никак не связана с Android. У recovery свое ядро, свой набор приложений (команд) и свой интерфейс, позволяющий пользователю активировать служебные функции.

В стандартном (стоковом) recovery таких функций обычно всего три: установка подписанных ключом производителя смартфона прошивок, вайп и перезагрузка. В модифицированных сторонних recovery, таких как ClockworkMod и TWRP, функций гораздо больше. Они умеют форматировать файловые системы, устанавливать прошивки, подписанные любыми ключами (читай: кастомные), монтировать файловые системы на других разделах (в целях отладки ОС) и включают в себя поддержку скриптов, которая позволяет автоматизировать процесс прошивки и многие другие функции.

С помощью скриптов, например, можно сделать так, чтобы после загрузки recovery автоматически нашел на карте памяти нужные прошивки, установил их и перезагрузился в Android. Эта возможность используется инструментами ROM Manager, auto-flasher, а также механизмом автоматического обновления CyanogenMod и других прошивок.

Кастомные рекавери также поддерживают скрипты бэкапа, располагающиеся в каталоге /system/addon.d/. Перед прошивкой recovery проверяет наличие скриптов и выполняет их перед тем, как произвести прошивку. Благодаря таким скриптам gapps не исчезают после установки новой версии прошивки.

Команды fastboot

Чтобы получить доступ к fastboot, необходимо установить Android SDK, подключить смартфон к ПК с помощью кабеля и включить его, зажав обе кнопки громкости. После этого следует перейти в подкаталог platform-tools внутри SDK и запустить команду

Fastboot devices

На экран будет выведено имя устройства. Другие доступные команды:

  • fatsboot oem unlock - разлочка загрузчика на нексусах;
  • update файл.zip - установка прошивки;
  • flash boot boot.img - прошивка образа boot-раздела;
  • flash recovery recovery.img - прошивка образа раздела recovery;
  • flash system system.img - прошивка образа системы;
  • oem format - восстановление разрушенной таблицы разделов;

Шаг третий. Инициализация

Итак, получив управление, ядро подключает RAM-диск и по окончании инициализации всех своих подсистем и драйверов запускает процесс init, с которого начинается инициализация Android. Как я уже говорил, у init есть конфигурационный файл init.rc, из которого процесс узнает о том, что конкретно он должен сделать, чтобы поднять систему. В современных смартфонах этот конфиг имеет внушительную длину в несколько сот строк и к тому же снабжен прицепом из нескольких дочерних конфигов, которые подключаются к основному с помощью директивы import. Тем не менее его формат достаточно простой и по сути представляет собой набор команд, разделенных на блоки.

Каждый блок определяет стадию загрузки или, выражаясь языком разработчиков Android, действие. Блоки отделены друг от друга директивой on, за которой следует имя действия, например on early-init или on post-fs. Блок команд будет выполнен только в том случае, если сработает одноименный триггер. По мере загрузки init будет по очереди активировать триггеры early-init, init, early-fs, fs, post-fs, early-boot и boot, запуская таким образом соответствующие блоки команд.


Если конфигурационный файл тянет за собой еще несколько конфигов, перечисленных в начале (а это почти всегда так), то одноименные блоки команд внутри них будут объединены с основным конфигом, так что при срабатывании триггера init выполнит команды из соответствующих блоков всех файлов. Это сделано для удобства формирования конфигурационных файлов для нескольких устройств, когда основной конфиг содержит общие для всех девайсов команды, а специфичные для каждого устройства записываются в отдельные файлы.

Наиболее примечательный из дополнительных конфигов носит имя initrc.имя_устройства.rc, где имя устройства определяется автоматически на основе содержимого системной переменной ro.hardware. Это платформенно-зависимый конфигурационный файл, который содержит блоки команд, специфичные для конкретного устройства. Кроме команд, отвечающих за тюнинг ядра, он также содержит примерно такую команду:

Mount_all ./fstab.имя_устройства

Она означает, что теперь init должен подключить все файловые системы, перечисленные в файле./fstab.имя_устройства, который имеет следующую структуру:

Имя_устройства_(раздела) точка_монтирования файловая_система опции_фс прочие опции

Обычно в нем содержатся инструкции по подключению файловых систем из внутренних NAND-разделов к каталогам /system (ОС), /data (настройки приложений) и /cache (кешированные данные). Однако слегка изменив этот файл, мы можем заставить init загрузить систему с карты памяти. Для этого достаточно разбить карту памяти на три 4 раздела: 1 Гб / ext4, 2 Гб / ext4, 1 Гб / ext4 и оставшееся пространство fat32. Далее необходимо определить имена разделов карты памяти в каталоге /dev (для разных устройств они отличаются) и заменить ими оригинальные имена устройств в файле fstab.


В конце блока boot init, скорее всего, встретит команду class_start default, которая сообщит, что далее следует запустить все перечисленные в конфиге службы, имеющие отношение к классу default. Описание служб начинается с директивы service, за которой следует имя службы и команда, которая должна быть выполнена для ее запуска. В отличие от команд, перечисленных в блоках, службы должны работать все время, поэтому на протяжении всей жизни смартфона init будет висеть в фоне и следить за этим.

Современный Android включает в себя десятки служб, но две из них имеют особый статус и определяют весь жизненный цикл системы.

Команды init.rc

Процесс init имеет встроенный набор команд, многие из которых повторяют стандартный набор команд Linux. Наиболее примечательные из них:

  • exec /путь/до/команды - запустить внешнюю команду;
  • ifup интерфейс - поднять сетевой интерфейс;
  • class_start имя_класса - запустить службы, относящиеся к указанному классу;
  • class_stop имя_класса - остановить службы;
  • insmod /путь/до/модуля - загрузить модуль ядра;
  • mount ФС устройство каталог - подключить файловую систему;
  • setprop имя значение - установить системную переменную;
  • start имя_службы - запустить указанную службу;
  • trigger имя - включить триггер (выполнить указанный блок команд);
  • write /путь/до/файла строка - записать строку в файл.

Шаг четвертый. Zygote и app_process

На определенном этапе загрузки init встретит в конце конфига примерно такой блок:

Service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server class default socket zygote stream 660 root system onrestart write /sys/android_power/request_state wake onrestart write /sys/power/state on onrestart restart media onrestart restart netd

Это описание службы Zygote, ключевого компонента любой Android-системы, который ответственен за инициализацию, старт системных служб, запуск и остановку пользовательских приложений и многие другие задачи. Zygote запускается с помощью небольшого приложения /system/bin/app_process, что очень хорошо видно на приведенном выше куске конфига. Задача app_proccess - запустить виртуальную машину Dalvik, код которой располагается в разделяемой библиотеке /system/lib/libandroid_runtime.so, а затем поверх нее запустить Zygote.

Когда все это будет сделано и Zygote получит управление, он начинает формирование среды исполнения Java-приложений с помощью загрузки всех Java-классов фреймворка (сейчас их более 2000). Затем он запускает system_server, включающий в себя большинство высокоуровневых (написанных на Java) системных сервисов, в том числе Window Manager, Status Bar, Package Manager и, что самое важное, Activity Manager, который в будущем будет ответственен за получение сигналов о старте и завершении приложений.

После этого Zygote открывает сокет /dev/socket/zygote и уходит в сон, ожидая данные. В это время запущенный ранее Activity Manager посылает широковещательный интент Intent.CATEGORY_HOME, чтобы найти приложение, отвечающее за формирование рабочего стола, и отдает его имя Zygote через сокет. Последний, в свою очередь, форкается и запускает приложение поверх виртуальной машины. Вуаля, у нас на экране появляется рабочий стол, найденный Activity Manager и запущенный Zygote, и статусная строка, запущенная system_server в рамках службы Status Bar. После тапа по иконке рабочий стол пошлет интент с именем этого приложения, его примет Activity Manager и передаст команду на старт приложения демону Zygote

INFO

В терминологии Linux RAM-диск - это своего рода виртуальный жесткий диск, существующий только в оперативной памяти. На раннем этапе загрузки ядро извлекает содержимое диска из образа и подключает его как корневую файловую систему (rootfs).

В процессе загрузки Android отображает три разных загрузочных экрана: первый появляется сразу после нажатия кнопки питания и прошит в ядро Linux, второй отображается на ранних этапах инициализации и записан в файл /initlogo.rle (сегодня почти не используется), последний запускается с помощью приложения bootanimation и содержится в файле /system/media/bootanimation.zip.

Кроме стандартных триггеров, init позволяет определять собственные триггеры, которые могут срабатывать от самых разных событий: подключения устройства к USB, изменения состояния смартфона или изменения состояния системных переменных.

Кроме всего прочего, Activity Manager также занимается убийством фоновых приложений при нехватке памяти. Значения порогов свободной памяти содержатся в файле /sys/module/lowmemorykiller/parameters/minfree.

Все это может выглядеть несколько непонятно, но самое главное - запомнить три простые вещи:

Во многом Android сильно отличается от других ОС, и с наскоку в нем не разобраться. Однако, если понять, как все работает, открываются просто безграничные возможности. В отличие от iOS и Windows Phone, операционка от гугла имеет очень гибкую архитектуру, которая позволяет серьезно менять ее поведение без необходимости писать код. В большинстве случаев достаточно подправить нужные конфиги и скрипты.

x86 .

Изначально разрабатывалась компанией Android Inc., которую затем (июль, 2005) купила Google. Впоследствии (ноябрь, 2007) Google инициировала создание бизнес-альянса Open Handset Alliance (в его состав вошли Google, HTC, Intel, Motorola, Nvidia и другие компании), который и занимается сейчас поддержкой и дальнейшим развитием платформы.

С момента выхода первой версии (сентябрь, 2008) произошло несколько обновлений системы. Эти обновления, как правило, касаются исправления обнаруженных ошибок и добавления нового функционала в систему. Каждая версия системы получает собственное кодовое имя на тему десерта.

1.2. Инструментарий разработчика

Перед тем, как приступить к созданию Android -приложений, необходимо выбрать подходящий инструментарий разработки.

Как правило, разработка Android -приложений осуществляется на языке Java . Поэтому, в первую очередь , необходимо установить Java Development Kit ( JDK ). Но для начала следует разобраться, что представляет из себя Java .

Java – это объектно-ориентированный язык программирования . Программы на Java транслируются в байт-код, выполняемый виртуальной машиной Java , которая обрабатывает байтовый код и передает инструкции оборудованию как интерпретатор . Достоинство подобного способа выполнения программ заключается в полной независимости байт-кода от операционной системы и оборудования, что позволяет выполнять Java -приложения на любом устройстве, для которого существует соответствующая виртуальная машина . Другой важной особенностью Java является гибкая система безопасности благодаря тому, что исполнение программы полностью контролируется виртуальной машиной. Любые операции , которые превышают установленные полномочия программы (например, попытка несанкционированного доступа к данным или соединения с другим компьютером) вызывают немедленное прерывание . Следует заметить, что фактически, большинство архитектурных решений, принятых при создании Java , было продиктовано желанием предоставить синтаксис , схожий с С/C++. В Java используются практически идентичные соглашения для объявления переменных, передачи параметров и операторов. Поэтому те, кто уже имеет опыт программирования на C/C++, смогут быстро освоиться и начать писать Java -приложения.

JDK – это бесплатно распространяемый комплект разработчика приложений на языке Java , включающий в себя компилятор Java , стандартные библиотеки классов Java , примеры, документацию, различные утилиты и исполнительную систему Java Runtime Environment ( JRE ). В состав JDK не входит интегрированная среда разработки (Integrated Development Environment ). Поэтому после того, как будет установлен JDK , следует установить IDE .

Существует несколько популярных сред разработки, но в данном курсе мы остановим свой выбор на Eclipse IDE и соответствующем для нее плагине Android Development Tools ( ADT ).

Android Software Development Kit ( SDK ) содержит множество инструментов и утилит для создания и тестирования приложений. Например, с помощью SDK Manager можно установить Android API любой версии (Рис. 1.1), а также проверить репозиторий на наличие доступных, но еще не установленных пакетов и архивов.


Рис. 1.1.

Android Native Development Kit (NDK) позволяет осуществлять разработку Android -приложений на языке C/C++. Зачем это может потребоваться? Есть несколько причин. Например, необходимость использовать код, который уже написан для нативной платформы, или ускорение выполнения критических кусков кода.

1.3. Архитектура Android

Рассмотрим основные компоненты операционной системы Android (Рис. 1.2).

Applications. Android поставляется с набором основных приложений, включающим календарь, карты, браузер , менеджер контактов и другие. Все перечисленные приложения написаны на Java .

Application Framework. Предоставляя открытую платформу разработки, Android дает разработчикам возможность создавать гибкие и инновационные приложения. Разработчики могут использовать аппаратные возможности устройства, получать информацию о местоположении, выполнять задачи в фоновом режиме, устанавливать оповещения и многое другое. Разработчики имеют полный доступ к тем же API , что используются в основных приложениях.

Архитектура приложений разработана с целью упрощения повторного использования компонентов; любое приложение может "публиковать" свои возможности и любое другое приложение может затем использовать эти возможности (с учетом ограничений безопасности). Этот же механизм позволяет заменять стандартные компоненты на пользовательские.


Рис. 1.2.

Libraries. Android включает в себя набор C/C++ библиотек, используемых различными компонентами системы. Эти возможности доступны разработчикам в контексте применения Android Aplication Framework. Некоторые основные библиотеки, перечислены ниже:

  • Mедиа библиотеки – эти библиотеки предоставляют поддержку воспроизведения и записи многих популярных аудио, видео форматов и форматов изображений, в том числе MPEG4, MP3, AAC, AMR, JPG, PNG и других;
  • Surface Manager – управляет доступом к подсистеме отображения 2D и 3D графических слоев;
  • LibWebCore – современный веб-движок, на котором построен браузер Android;
  • SGL – основной графический движок 2D;
  • 3D библиотеки – реализованы на основе OpenGL; библиотеки используют либо аппаратное 3D-ускорение (при его наличии), либо включены программно;
  • FreeType – поддержка растровых и векторных шрифтов
  • SQLite – механизм базы данных, доступной для всех приложений.

Android Runtime. Android включает в себя набор основных библиотек, которые обеспечивают большинство функций, доступных в библиотеках Java . Каждое приложение Android работает в своем собственном процессе, со своим собственным экземпляром виртуальной машины Dalvik. Dalvik была написана так, что устройство может работать эффективно с несколькими виртуальными машинами одновременно.

Dalvik проектировалась специально под платформу Android . Виртуальная машина оптимизирована для низкого потребления памяти и работы на мобильном аппаратном обеспечении. Dalvik использует собственный байт-код. Android -приложения переводятся компилятором в специальный машинно-независимый низкоуровневый код. И именно Dalvik интерпретирует и выполняет такую программу при выполнении на платформе. Кроме того, с помощью специальной утилиты, входящей в состав Android SDK , Dalvik способна переводить байт-коды Java в коды собственного формата и также исполнять их в своей виртуальной среде.

Linux Kernel. Android основан на Linux версии 2.6 с основными системными службами – безопасность , управление памятью , управление процессами и модель драйверов. Разработчики Android модифицировали ядро Linux, добавив поддержку аппаратного обеспечения, используемого в мобильных устройствах и, чаще всего, недоступного на компьютерах.

1.4. Обзор Java-интерфейсов

Для прикладного программиста Android – это набор интерфейсов на языке Java . Рассмотрим, как он организован. В основе набора – пакеты, входящие в