Сравнение стандартов сотовой связи. Частоты и стандарты сотовой связи используемые в россии. G частоты "других операторов"

Что такое "поколение" сетей сотовой связи?

Поколение сотовой связи - это набор функциональных возможностей работы сети, а именно: регистрация абонента, установление вызова, передача информации между мобильным телефоном и базовой станцией по радиоканалу, процедура установления вызова между абонентами, шифрование, роуминг в других сетях, а также набор услуг, предоставляемых абоненту.

История сотовой связи

Эволюция систем сотовой связи включает в себя несколько поколений 1G, , и . Ведутся работы в области создания сетей мобильной связи нового пятого поколения (). Стандарты различных поколений, в свою очередь, подразделяются на аналоговые (1G) и цифровые системы связи (остальные).

Рассмотрим их подробнее.

Связь всегда имела большое значение для человечества. Когда встречаются два человека, для общения им достаточно голоса, но при увеличении расстояния между ними возникает потребность в специальных инструментах. Когда в 1876 году Александр Грэхем Белл изобрел телефон, был сделан значительный шаг, позволивший общаться двум людям, однако для этого им необходимо было находиться рядом со стационарно установленным телефонным аппаратом! Более ста лет проводные линии были единственной возможностью организации телефонной связи для большинства людей. Системы радиосвязи, не зависящие от проводов для организации доступа к сети, были разработаны для специальных целей (например, армия, полиция, морской флот и замкнутые сети автомобильной радиосвязи), и, в конце концов, появились системы, позволившие людям общаться по телефону, используя радиосвязь. Эти системы предназначались главным образом для людей, ездивших на машинах, и стали известны как телефонные системы подвижной связи.

Первое поколение мобильной связи (1G)

Официальным днем рождения сотовой связи считается 3 апреля 1973 года, когда глава подразделения мобильной связи компании Motorola Мартин Купер позвонил начальнику исследовательского отдела AT&T Bell Labs Джоэлю Энгелю, находясь на оживленной Нью-йоркской улице. Именно эти две компании стояли у истоков мобильной телефонии. Коммерческую реализацию данная технология получила 11 лет спустя, в 1984 году, в виде мобильных сетей первого поколения (1G), которые были основаны на аналоговом способе передачи информации.

Основными стандартами аналоговой мобильной связи стали AMPS (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба) (США, Канада, Центральная и Южная Америка, Австралия), TACS (Total Access Communications System - тотальная система доступа к связи) (Англия, Италия, Испания, Австрия, Ирландия, Япония) и NMT (Nordic Mobile Telephone – северный мобильный телефон) (страны Скандинавии и ряд других стран). Были и другие стандарты аналоговой мобильной связи – С-450 в Германии и Португалии, RTMS (Radio Telephone Mobile System – радиотелефонная мобильная система) в Италии, Radiocom 2000 во Франции. В целом мобильная связь первого поколения представляла собой лоскутное одеяло несовместимых между собой стандартов.

Табл. 1 Характеристики аналоговых стандартов сотовой связи

Характеристика

AMPS

TACS

NMT-450

NMT-900

Radiocom 2000

Диапазон частот, МГц

825-845

870-890

935-950

(917-933)

890-905

(872-888)

453-457,5

463-467,5

935-960

890-915

424.8-427.9 418.8-421.9

925-940 870-885

Радиус соты,км

2-20

2-20

2-45

0,5-20

5-20

5-10

Мощность передатчика БС, Вт

Ширина полосы частот канала, кГц

30 (12,5)

25/12,5

12,5

Время переключения на границе соты, мс

1250

Минимальное отношение сигнал\шум, дБ

10 (6,5)

Во времена 1G никто не думал об услугах передачи данных – это были аналоговые системы, задуманные и разработанные исключительно для осуществления голосовых вызовов и некоторых других скромных возможностей. Модемы существовали, однако из-за того, что беспроводная связь более подвержена шумам и искажениям, чем обычная проводная, скорость передачи данных была невероятно низкой. К тому же, стоимость минуты разговора в 80-х была такой высокой, что мобильный телефон мог считаться роскошью.

Во всех аналоговых стандартах применяется частотная (ЧМ) или фазовая (ФМ) модуляция для передачи речи и частотная манипуляция для передачи информации управления. Этот способ имеет ряд существенных недостатков: возможность прослушивания разговоров другими абонентами, отсутствие эффективных методов борьбы с замираниями сигналов под влиянием окружающего ландшафта и зданий или вследствие передвижения абонентов. Для передачи информации различных каналов используются различные участки спектра частот - применяется метод множественного доступа с частотным разделением каналов (Frequency Division Multiple Access - FDMA). С этим непосредственно связан основной недостаток аналоговых систем - относительно низкая емкость, являющаяся следствием недостаточно рационального использования выделенной полосы частот при частотном разделении каналов.

В каждой стране была разработана собственная система, несовместимая с остальными с точки зрения оборудования и функционирования. Это привело к тому, что возникла необходимость в создании общей европейской системы подвижной связи с высокой пропускной способностью и зоной покрытия всей европейской территории. Последнее означало, что одни и те же мобильные телефоны могли использоваться во всех Европейских странах, и что входящие вызовы должны были автоматически направляться в мобильный телефон независимо от местонахождения пользователя (автоматический роуминг). Кроме того, ожидалось, что единый Европейский рынок с общими стандартами приведет к удешевлению пользовательского оборудования и сетевых элементов независимо от производителя.

Второе поколение мобильной связи (2G)

В 1982 году CEPT (франц. Conférence européenne des administrations des postes et télécommunications - Европейская конференция почтовых и телекоммуникационных ведомств) сформировала рабочую группу, названную специальной группой по подвижной связи GSM (франц. Groupe Spécial Mobile) для изучения и разработки пан-Европейской наземной системы подвижной связи общего применения - второе поколение систем сотовой телефонии (2G). Название рабочей группы GSM также стало использоваться в качестве названия системы подвижной связи. В 1989 году обязанности CEPT были переданы в Европейский институт стандартов в телекоммуникации ETSI (англ. European Telecommunications Standards Institute). Первоначально GSM предназначалась только для стран-членов ETSI. Однако многие другие страны также имеют реализованную систему GSM, например, Восточная Европа, Средний Восток, Азия, Африка, Тихоокеанский регион и Северная Америка (с производной от GSM, названной PCS1900). Название GSM стало означать "глобальная система для подвижной связи", что соответствует ее сущности.

Первые мобильные сети второго поколения (2G) появились в 1991 году. Их основным отличием от сетей первого поколения стал цифровой способ передачи информации, благодаря чему появилась, любимая многими, услуга обмена короткими текстовыми сообщениями SMS (англ. Short Messaging Service). При строительстве сетей второго поколения Европа пошла путем создания единого стандарта – GSM, в США большинство 2G-сетей было построена на базе стандарта D-AMPS (Digital AMPS – цифровой AMPS), являющегося модификацией аналогового AMPS. Кстати, именно это обстоятельство стало причиной появления американской версии стандарта GSM – GSM1900. С развитием и распространением Интернет, для мобильных устройств сетей 2G, был разработан WAP (англ. Wireless Application Protocol – беспроводной протокол передачи данных) – протокол беспроводного доступа к ресурсам глобальной сети Интернет непосредственно с мобильных телефонов.

Основными преимуществами сетей 2G по сравнению с предшественниками было то, что телефонные разговоры были зашифрованы с помощью цифрового шифрования; система 2G представила услуги передачи данных, начиная с текстовых сообщений СМС.

Растущая потребность пользователей мобильной связи в использовании Интернет с мобильных устройств основным толчком для появления сетей, поколения 2,5G, которые стали переходными между 2G и 3G. Сети 2,5G используют те же стандарты мобильной связи, что и сети 2G, но к имеющимся возможностям добавилась поддержка технологий пакетной передачи данных – GPRS (англ. General Packet Radio Service – пакетная радиосвязь общего пользования), EDGE (англ. Enhanced Data rates for GSM Evolution – повышенная скорость передачи для развития GSM) в сетях GSM. Использование пакетной передачи данных позволило увеличить скорость обмена информацией при работе с сетью Интернет с мобильного устройств до 384 кбит/с, вместо 9,6 кбит/с у 2G-сетей.

Система HSCSD (англ. High Speed Circuit Switched Data – высокоскоростная передача данных) является простейшей модернизацией системы GSM, предназначенной для передачи данных. Суть этой технологии заключалась в выделении одному абоненту не одного, а нескольких (теоретически до восьми) временных интервалов. Таким образом, максимальная скорость увеличивалась до 115,2 кбит/с. HSCSD обеспечивала скорость, достаточную для выхода в Интернет, однако, при передаче данных информационные пакеты разделены неопределенными по времени промежутками, таким образом, использование этой технологии крайне расточительно. Дело в том, что сети HSCSD, как и классические сети GSM, основаны на технологии коммутации каналов, в которых за абонентом закрепляют дуплексный канал на все время сеанса связи. Из-за пауз в передаче канальный ресурс расходовался нерационально.

Дальнейшей эволюцией системы GSM стала технология GPRS. Ее внедрение способствовало более эффективному использованию канального ресурса и созданию комфортной среды при работе с сетью Интернет. Система GPRS разработана как система пакетной передачи данных с теоретической максимальной скоростью передачи порядка 170 кбит/с. GPRS сосуществует с сетью GSM, повторно используя базовую структуру сети доступа. Система GPRS является расширением сетей GSM с предоставлением услуг передачи данных на существующей инфраструктуре, в то время как базовая сеть расширяется за счет наложения новых компонентов и интерфейсов, предназначенных для пакетной передачи.

Прогресс не стоял на месте и, для увеличения скорости передачи данных, была изобретена новая система – EDGE. Она предусматривала введение новой схемы модуляции. В результате стала достижима скорость в 384 кбит/с. EDGE была введена в сетях GSM с 2003 фирмой Cingular (ныне AT&T) в США.

Технологии GPRS и EDGE в разных источниках называли по-разному. Они уже переросли второе поколение, но еще не дотягивали до третьего. Зачастую GPRS называли 2,5G, EDGE – 2,75G.

Основные цифровые стандарты систем сотовой связи второго поколения:

  • D-AMPS (Digital AMPS - цифровой AMPS; диапазоны 800 МГц и 1900 МГц);
  • GSM (Global System for Mobile communications – глобальная система мобильной связи, диапазоны 900, 1800 и 1900 МГц);
  • CDMA (диапазоны 800 и 1900 МГц);
  • JDC (Japanese Digital Cellular – японский стандарт цифровой сотовой связи).

Табл. 2. Сравнение систем сотовой связи второго поколения (2G)

Третье поколение мобильной связи (3G)

Дальнейшим развитием сетей мобильной связи стал переход к третьему поколению (3G). 3G – это стандарт мобильной цифровой связи, который под аббревиатурой IMT-2000 (англ. International Mobile Telecommunications – международная мобильная связь 2000) объединяет пять стандартов – W-CDMA, CDMA2000, TD-CDMA/TD-SCDMA, DECT (англ. Digital Enhanced Cordless Telecommunication – технология улучшенной цифровой беспроводной связи). Из перечисленных составных частей 3G только первые три представляют собой полноценные стандарты сотовой связи третьего поколения. DECT – это стандарт беспроводной телефонии домашнего или офисного назначения, который в рамках мобильных технологий третьего поколения, может использоваться только для организации точек горячего подключения (хот-спотов) к данным сетям.

Стандарт IMT-2000 дает четкое определения сетей 3G – под мобильной сетью третьего поколения понимается интегрированная мобильная сеть, которая обеспечивает: для неподвижных абонентов скорость обмена информацией не менее 2048 кбит/с, для абонентов, движущихся со скоростью не более 3 км/ч - 384 кбит/с, для абонентов, перемещающихся со скоростью не более 120 км/ч – 144 кбит/с. При глобальном спутниковом покрытии сети 3G должны обеспечивать скорость обмена не менее 64 кбит/с. Основой всех стандартов третьего поколения являются протоколы множественного доступ с кодовым разделением каналов. Подобная технология сетевого доступа не является чем-то принципиально новым. Первая работа, посвященная этой теме, была опубликована в СССР еще в 1935 году Д.В. Агеевым.

Технически сети с кодовым разделением каналов работают следующим образом – каждому пользователю присваивается определенный числовой код, который распространяется по всей полосе частот, выделенных для работы сети. При этом какое-либо временное разделение сигналов отсутствует, и абоненты используют всю ширину канала. При этом, естественно, сигналы абонентов накладываются друг на друга, но благодаря числовому коду могут быть легко дифференцированы. Как было упомянуто выше, данная технология известна достаточно давно, однако до середины 80-х годов прошлого века она была засекреченной и использовалась исключительно военными и спецслужбами. После снятия грифов секретности началось ее активное использование и в гражданских системах связи.

Поколение 3,5G

Дальнейшим развитием сетей стала технология HSPA (англ. High Speed Packet Access – высокоскоростной пакетный доступ), которую стали именовать 3,5G. Изначально она позволяла достичь скорости в 14,4 Мбит/с, однако сейчас теоретически достижима скорость 84 Мбит/с и более. Впервые HSPA была описана в пятой версии стандартов 3GPP. В ее основе лежит теория, согласно которой при сопоставимых размерах сот применение многокодовой передачи позволяет достигать пиковых скоростей.

Четвертое поколение мобильной связи (4G)

В марте 2008 года сектор радиосвязи Международного союза электросвязи (МСЭ-Р) определил ряд требований для стандарта международной подвижной беспроводной широкополосной связи , получившего название спецификаций International Mobile Telecommunications Advanced (IMT-Advanced), в частности установив требования к скорости передачи данных для обслуживания абонентов: скорость 100 Мбит/с должна предоставляться высокоподвижным абонентам (например, поездам и автомобилям), а абонентам с небольшой подвижностью (например пешеходам и фиксированным абонентам)должна предоставляться скорость 1 Гбит/с.

Так как первые версии мобильного WiMAX (англ. Worldwide Interoperability for Microwave Access – всемирная совместимость для микроволнового доступа) и LTE (англ. Long Term Evolution – долгосрочное развитие) поддерживают скорости значительно меньше 1 Гбит/с, их нельзя назвать технологиями, соответствующими IMT-Advanced, хотя они часто упоминаются поставщиками услуг, как технологии 4G. 6 декабря 2010 года МСЭ-Р признал, что наиболее продвинутые технологии рассматривают как 4G.

Основной, базовой, технологией четвёртого поколения является технология ортогонального частотного уплотнения OFDM (англ. Orthogonal Frequency-Division Multiplexing – мультиплексирование с ортогональным частотным разделением каналов). Кроме того, для максимальной скорости передачи используется технология передачи данных с помощью N антенн и их приёма М антеннами – MIMO (англ. Multiple Input/Multiple Output – множество входов/множество выходов). При данной технологии передающие и приёмные антенны разнесены так, чтобы достичь слабой корреляции между соседними антеннами.

Таким образом, эволюцию стандартов мобильной связи можно представить в следующем виде:


Рис. 1. Эволюция стандартов мобильной связи

Сравнительные характеристики стандартов различных поколений мобильной связи можно свести в следующую таблицу:

Табл. 3. Эволюция мобильной телефонии

1G

2G

3G

  • Аналоговая телефония
  • Мобильность
  • Базовые услуги
  • Несовместимость стандартов
  • Цифровая телефония и передача сообщений
  • Мобильность и роуминг
  • Поддержка передачи данных
  • Дополнительные услуги
  • Полуглобальное решение
  • Широкополосная передача данных и передача речи по протоколу IP (VoIP)

    К сетям пятого поколения заявлены следующие требования (в сравнении с LTE):

    Рост в 10-100 раз скорости передачи данных в расчете на абонента;

    Рост в 1000 раз среднего потребляемого трафика абонентом в месяц;

    Возможность обслуживания большего (в 100 раз) числа подключаемых к сети устройств;

    Многократное уменьшение потребление энергии абонентских устройств;

    Сокращение в 5 и более раз задержек в сети;

    Снижение общей стоимости эксплуатации сетей пятого поколения.


    Требования к сетям 5G в оцифрованном виде представлены по ссылке .

    Более подробную информацию об эволюции сетей мобильной связи, текущем состоянии, трендах и перспективах ее развития читайте в новейшей книге-справочнике " Мобильная связь на пути к 6G ".

    Если говорить о поколениях мобильной связи, то в России наиболее развито и широко представлено 2G. Основные стандарты второго поколения в РФ – GSM 900/1800 и CDMA 450. Как GSM, так и CDMA используются для голосовых звонков, текстовых сообщений и мобильного доступа в интернет. Хотя второе поколение и не может обеспечить таких же скоростей, как скажем, 3G, или 4G, но это единственный вид сотовой связи который присутствует во всех регионах Российской Федерации, даже в наиболее удаленных. Крупнейшими мобильными провайдерами на территории РФ являются МегаФон, МТС, Beeline, ВымпелКом и Теле2. В среднем покрытие территории РФ составляет 85%, однако МТС, к примеру, обеспечивает покрытие на 100% России.

    (Кликните по изображению, чтобы увидеть его в полном размере)

    Стандарт GSM в России использует частоты в 900 и 1800 МГц. Поскольку все мобильные телефоны являются дуплексными устройствами, для связи используются сразу две частоты, одна для приема, вторая для передачи данных. К слову, при методом триангуляции по вышкам сотовой связи используются именно эти две частоты. CDMA использует две частоты в диапазонах 450 и 850 МГц, с таким же дуплексным распределением. Крупнейшим CDMA провайдером является СКАЙЛИНК. Как мы уже отмечали, эти стандарты используются в основном для голосовых звонков, текстовых сообщений и мобильного доступа в интернет. Доступ в интернет реализован на технологиях GPRS и EDGE.

    Третье поколение мобильной связи или 3G, которое широко используется по всему миру также представлено и в России. Крупнейшие сети 3G в стране работают на технологии WCDMA и согласно решению ГКРЧ работают на частотах 2000-2100 МГц. Под 3G следует понимать 3G со всеми надстройками: HSUPA, HSPDA HSPA+, которые часто ошибочно имеют как . Скорости передачи данных в таких сетях несравненно выше чем в сети GSM, и варьируется в диапазоне 2-14 Мбит/сек. Это поколение мобильной связи позволяет нам пользоваться быстрым мобильным интернетом и совершать видео звонки.

    Крупнейшими операторами рынка услуг 3G в России являются МТС, МегаФон, ВымпелКом, Beeline и СКАЙЛИНК. Вместе эти компании обеспечивают работу сети 3G в более чем 120 крупнейших городах Российской Федерации. Покрытие сетей третьего поколения не так велико и сосредоточено, в основном, в густо населенных городах. 3G часто используют для организации скрытого беспроводного видео наблюдения, так как скорость передачи позволяет передавать потоковое видео, а низкое энергопотребление увеличивает время работы скрытой камеры. Это отчасти объясняет популярность .

    Сети четвертого поколения также активно развиваются. Первыми компаниями, которые начали строительство такой сети являются Yota и Freshtel, после них в развитие этого поколения связи на территории РФ включились такие гиганты как МТС и МегаФон. Также в России былы недавно организованны производственные мощности, которые разрабатывают и собирают оборудование для базовых станций четвертого поколения, а также производят все необходимое для этого периферийное оборудование. Первым городом, где была запущена сеть 4G был Новосибирск, а после четвертое поколение мобильной связи появилось и в Москве. 4G представлена двумя стандартами - LTE (791-862 МГц) и Wi-Max (2500-2600 МГц). На сегодня сеть 4G полностью развернута в таких городах как: Москва, Санкт-Петербург, Сочи, Самара, Новосибирск, Уфа и Краснодар.

    Выше были приведены наиболее распространенные стандарты сотовой связи, однако стоит отметить, что РФ также создала свою систему глобального позиционирования, под названием . Она была создана в замену американской спутниковой системе навигации GPS. ГЛОНАСС сильно отличается от GPS. Американская система работает на трех каналах и использует 3 разных частоты:1575.42, 1227.60 и 1176.45 МГц, и делится на гражданский и военный сектора, а частота 1575.42 МГц отведена для работы службы спасения. ГЛОНАСС, в свою очередь работает с двумя каналами, их частоты: 1602-1615 и 1246-1256 МГц. ГЛОНАСС наиболее популярен в приполярных районах, так как орбиты спутников ГЛОНАСС выше чем орбиты GPS и имеют лучшую видимость. Однако стоит отметить, что GPS определяет координаты точнее.

    В целом можно сказать, что Россия имеет неплохое покрытие различными стандартами и поколениями сотовой связи, а высокие темпы не могут не радовать активных пользователей мобильных гаджетов.

    Поколения мобильной телефонии

    Поколе- ние

    2.5G

    3.5G

    Начало разрабо- ток

    1970

    1980

    1985

    1990

    до 2000

    с 2000

    Реализа- ция

    1984

    1991

    1999

    2002

    2006-2007

    2008-2010

    Сервисы

    аналого- вый стандарт, синхрон- ная передача данных со скоростью до 9,6 кбит/с

    цифровой стандарт, поддер- жка коротких сообще- ний (sms)

    большая емкость, пакетная передача данных еще большая емкость, большие скорости увеличе- ние скорости сетей третьего поколе- ния большая емкость,
    IP- ориентиро- ванная
    сеть, поддержка мультиме- диа, скорости
    до сотен
    Мбит/с

    Ширина канала

    1,9
    кбит/с

    14,4
    кбит/с

    384
    кбит/с

    2
    Мбит/с

    3-14 Мбит/с

    1 Гбит/с

    Стан- дарты

    AMPS, TACS,
    NMT

    TDMA, CDMA, CDMA
    One,
    GSM,
    PDC, DAMPS

    GPRS, EDGE, 1xRTT

    WCDMA, CDMA 2000, UMTS

    HSDPA

    единый стандарт

    Сеть

    PSTN, сеть пакетной передачи данных сеть пакетной передачи данных

    Интернет


    AMPS /D-AMPS /N-AMPS

    Система сотовой подвижной связи стандарта AMPS (Advanced Mobile Рhone Service) была впервые введена в эксплуатацию в США в 1979г. Система работает в диапазоне 825-890 МГц и имеет 666 дуплексных каналов при ширине полосы частот каждого канала 30 кГц. Мощность передатчика базовой станции составляет 45 Вт, автомобильной подвижной станции - 12 Вт, переносного аппарата - 1 Вт. В стандарте использован ряд оригинальных технических решений, направленных на обеспечение качественной связи при минимальной стоимости оборудования.

    На основе этого стандарта в дальнейшем были разработаны две его модификации: аналоговая N-AMPS (Narrowband Advanced Mobile Phone Service) и цифровая D-AMPS (Digital Advanced Mobile Phone Service). Оба эти варианта были созданы, в первую очередь, для размещения в выделенной полосе частот большего числа разговорных каналов. В N-AMPS это достигается использованием более узких полос частот каналов, а в D-AMPS - использованием временного разделения каналов. В системе сотовой связи стaндаpтa AMPS применяются базовые станции с антеннами, имеющими ширину диаграммы направленности 120°, которые устанавливаются в углах ячеек. Базовые станции подключены к центрам коммутации с помощью проводных линий, по которым передаются речевые сигналы и служебная информация. Длина управляющего сообщения, передаваемого абоненту, составляет 463 бита.

    Стандарт D-AMPS имеет недостатки: небольшая зона покрытия одной базовой станции, повышенная мощность передатчика базовой станции, плохая поддержка среди производителей оборудования, т.к. стандарт уже выходит из использования. Из достоинств стоит отметить относительную дешевизну организации сети, достаточно высокое качество и конфиденциальность разговоров, в зоне уверенного приема - автоматическое переключение в аналоговый режим для лучшей передачи голоса.


    TACS (Total Access Control System)– практически полный аналог AMPS – получил наибольшее распространение. В 1985 г. первая сеть на базе TACS была развернута в Англии. После этого в течение пары лет сети TACS охватили территории Испании, Австрии, Ирландии и Италии. В 1987 г. появилась первая модификация стандарта – ETACS (Extended TACS), которая обладала чуть большей емкостью (640 против 600 каналов). Однако, несмотря на улучшения, сети на базе ETACS за пределами Англии практически не распространились. Вторая модификация стандарта – JTACS или NTACS (Japan или Narrowband TACS) предназначалась исключительно для Японии. Отличия NTACS от TACS, можно сказать, были стандартны: за счет большего диапазона выделенных частот и меньшей ширины канала связи у системы увеличилось общее число каналов – фактически NTACS явился аналогом NAMPS. Сети на базе TACS оказались весьма живучи – лишь в конце 90-х Япония свернула сети JTACS; на родине стандарта и в других европейских странах данное событие произошло чуть раньше.


    NMT (Nordic Mobile Telephone) - система сотовой подвижной радиосвязи общего пользования первого поколения. Это один из самых старых стандартов сотовой связи в мире, он был разработан в 1978 году и введен в эксплуатацию в 1981 году. Стандарт разрабатывался для местностей с большой территорией и небольшой плотностью населения, поэтому он как нельзя лучше подошел для России.

    Стандарт NMT является аналоговым, отсюда вытекает его главный недостаток - плохая помехозащищенность, в больших городах приходится значительный уровень помех на диапазон частот около 450 МГц. Однако стоит удалиться от города - качество связи сильно улучшается и иногда превосходит качество проводных телефонных сетей. Основное преимущество - большой радиус действия базовой станции. Вполне приличная связь наблюдается в 70-ти км от базовой станции. К сравнению, телефон GSM-900, например, не может работать на расстоянии более 35 км от базовой станции.

    Диапазон частот, в котором работает NMT: 453-457,5 МГц - для связи от телефона к базовой станции, 463-467,5 МГц - для связи от базовой станции к телефону. Шаг сетки каналов - 25 КГц (12,5 КГц при использовании интерливинга), максимальная емкость одной базовой станции - 180 (359 - при интерливинге) абонентов. Мощность передатчиков абонентских устройств 0,1-6,5 Вт.

    NMT является федеральным стандартом, поэтому можно безбоязненно отправляться в путешествие по стране с телефоном NMT. Насчет международного роуминга - здесь ситуация хуже, во всем мире сети NMT потихоньку сворачиваются в пользу новых, более современных стандартов.


    TDMA (Time Division Multiple Access)- множественный доступ с временным разделением. Стандарт TDMA активно используется современными цифровыми системами подвижной связи. В отличие от систем частоного разделения, все абоненты системы TDMA работают в одном и том же диапазоне частот, но при этом каждый имеет временные ограничения доступа. Каждому абоненту выделяется временной промежуток (кадр), в течении которого ему разрешается "вещание". После того, как один абонент завершает вещание, разрешение прередается другому, затем третьему и т.д. После того, как обслужены все абоненты, процесс начинается сначала. С точки зрения абонента его активность носит пульсирующий характер. Чем больше абонентов, тем реже каждому из них предоставляется возможность передать свои данные, тем, соответственно, меньше данных он сможет передать. Если ограничить потребности (возможности) абонента известной величиной, можно оценить количество пользователей, которых реально сможет обслужить система с таким способом разделения среды. Временное разделение, как правило, накладывается на частотное разделение и вещание ведется в выделенной полосе частот.

    Среди трех соревнующихся стандартов сотовой связи TDMA занимает второе место после стандарта GSM, занимающего господствующее положение в Европе. Хотя этому стандарту в технологических дискуссиях зачастую уделяется недостаточно внимания, сети TDMA продолжают развиваться. Сейчас они используются в 70 странах мира и почти полностью покрывают Северную и Южную Америку. Успех TDMA связывают с чистотой воспроизведения голоса, которая обеспечивается новым голосовым кодером ACELP, двухдиапазонными и двухстандартными телефонами, возросшей емкостью, глобальным распространением и переходом к стандарту третьего поколения UWC-136. По мнению специалистов, увеличение рынка TDMA (IS-136) отражает ускоренный переход к цифровым методам и зрелость этой технологии. Важно, что все три ведущие цифровые технологии смогут стать основой для услуг беспроводной связи третьего поколения.


    Разработка нового общеевропейского стандарта цифровой сотовой связи началась в 1985 году. Специально для этого было создана специальная группа - Group Special Mobile. Аббревиатура GSM и дала название новому стандарту. Позднее GSM, благодаря ее широкому распространению, стали расшифровывать как Global System for Mobile Communications. К настоящему времени система GSM развилась в глобальный стандарт второго поколения, занимающий лидирующие позиции в мире, как по площади покрытия, так и по числу абонентов.

    Cтандарт GSM предусматривает работу передатчиков в двух диапазонах частот: 890-915 МГц (для передатчиков подвижных станций - MS), 935-960 МГц (для передатчиков базовых станций - BTS).

    В стандарте GSM используется узкополосный многостанционный доступ с временным разделением каналов (NB ТDМА). В структуре ТDМА кадра содержится 8 временных позиций на каждой из 124 несущих.

    Для защиты от ошибок в радиоканалах при передаче информационных сообщений применяется блочное и сверточное кодирование с перемежением. Повышение эффективности кодирования и перемежения при малой скорости перемещения подвижных станций достигается медленным переключением рабочих частот (SFH) в процессе сеанса связи со скоростью 217 скачков в секунду.

    Для борьбы с интерференционными замираниями принимаемых сигналов, вызванными многолучевым распространением радиоволн в условиях города, в аппаратуре связи используются эквалайзеры, обеспечивающие выравнивание импульсных сигналов со среднеквадратическим отклонением времени задержки до 16 мкс.

    Система синхронизации рассчитана на компенсацию абсолютного времени задержки сигналов до 233 мкс, что соответствует максимальной дальности связи или максимальному радиусу ячейки (соты) 35 км.

    В стандарте GSM выбрана гауссовская частотная манипуляция с минимальным частотным сдвигом (GMSK). Обработка речи осуществляется в рамках принятой системы прерывистой передачи речи (DTX), которая обеспечивает включение передатчика только при наличии речевого сигнала и отключение передатчика в паузах и в конце разговора. В качестве речепреобразующего устройства выбран речевой кодек с регулярным импульсным возбуждением/долговременным предсказанием и линейным предикативным кодированием с предсказанием (RPE/LTR-LTP-кодек). Общая скорость преобразования речево, о сигнала - 13 кбит/с.

    В стандарте GSM достигается высокая степень безопасности передачи сообщений; осуществляется шифрование сообщений по алгоритму шифрования с открытым ключом (RSA).

    В целом система связи, действующая в стандарте GSM, рассчитана на ее использование в различных сферах. Она предоставляет пользователям широкий диапазон услуг и возможность применять разнообразное оборудование для передачи речевых сообщений и данных, вызывных и аварийных сигналов; подключаться к телефонным сетям общего пользования (PSTN), сетям передачи данных (PDN) и цифровым сетям с интеграцией служб (ISDN).


    GSM 900 - цифровой стандарт мобильной связи, использующий диапазон частот 890 - 960 МГц. Стандарт GSM 900 распространен в Европе, Азии, России и используется практическими всеми современными европейскими провайдерами, однако желательно, чтобы наряду с GSM 900 аппарат поддерживал и стандарт GSM 1800, т.к. в этом случае при возникновении помех на частоте 900 МГц телефон сможет переключиться на частоту 1800 МГц.


    GSM 1800 - цифровой стандарт мобильной связи, использующий диапазон частот 1710-1880 МГц. Данный стандарт распространен в Европе, России, Австралии, в Тихоокеанских странах Азии. При покупке мобильного телефона необходимо выяснить, в каком стандарте работают местные операторы сотовой связи, т.к. телефон стандарта GSM 1800 не будет функционировать в сети GSM 900, а аппарат стандарта GSM 900 - в сети GSM 1800. Практически все современные провайдеры в Европе используют стандарты GSM 1800 и GSM 900, поэтому наиболее популярными являются двухдиапазонные телефонные аппараты GSM 900/1800 - при включении такой телефон сам за доли секунды определяет, на какой частоте сигнал лучше, и настраивается на нее.


    GSM 1900 - цифровой стандарт мобильной связи, использующий частоту 1900 МГц. Данный стандарт распространен в США и Канаде, поэтому если вы хотите пользоваться телефоном в этих странах (при условии, что ваш оператор сотовой связи предоставляет там услуги роуминга), ваш аппарат должен поддерживать GSM 1900.


    PDC (Personal Digital Cellular) - стандарт сотовой связи используемый в Японии. Стандарт основан на трехслотовом решении TDMA. При этом ширина несущей составляет 25 кГц. Несмотря на то что сети PDC расположены только в Японии, этот стандарт уверенно занимает вторую после GSM позицию в peйтинге популярности среди цифровых стандартов по количеству абонентов. И это неудивительно: в начале 2000 года число абонентов сотовой связи Японии превысило число абонентов стандартной проводной телефонии. Кстати, именно в Японии уже работают тестовые участки сетей третьего поколения - несмотря на быстрые темпы развития сотовых систем связи, японцы опередили всех остальных более чем на год.


    СDMA (Code Division Multiple Access)- система множественного доступа с кодовым разделением - стала, возможно, самой многообещающей системой, появившейся на мировом рынке. Десятилетия назад эта технология использовалась в военной связи (США), а сегодня известна всем как глобальный цифровой стандарт для коммерческих систем коммуникаций. За последние пять лет технология использования CDMA была протестирована, стандартизирована, лицензирована и запущена в производство большинством поставщиков беспроводного оборудования и уже применяется во всем мире. В отличие от других методов доступа абонентов к сети, где энергия сигнала концентрируется на выбранных частотах или временных интервалах, сигналы CDMA распределены в непрерывном частотно-временном пространстве. Фактически метод манипулирует и частотой, и временем, и энергией.

    В технологии CDMA возможно обеспечение высокого качества речи при одновременном снижении излучаемой мощности и уровне шумов. Результатом является постоянное высокое качество передачи речи и данных с минимальной средней выходной мощностью.

    В сотни раз меньшее значение выходной мощности в отличие от других, используемых в настоящее время стандартов - отличительное качество технологии CDMA при рассмотрении двух немаловажных факторов:
    воздействия на организм человека; продолжительности работы без подзарядки аккумулятора.

    Емкость CDMA от десяти до двадцати раз выше, чем у аналоговых систем, и в три- шесть раз превышает емкость других цифровых систем. Сети, построенные на ее основе, эффективно используют радиочастотный ресурс, благодаря возможности многократного использования одних тех же частот в сети.

    По характеристикам качества передачи речи параметры CDMA сопоставимы с качеством проводных каналов. Поскольку по каналам CDMA передается не только голос, но и любая другая информация, особую ценность имеет отсутствие помех. Если рядовой пользователь, по большому счету, безразличен к тому, звучит его голос при телефонном разговоре с безупречной чистотой или с небольшими помехами, то ошибки, допущенные при передаче файлов, могут нарушить целостность, например, корпоративной базы данных. Применяемый "код" служит не только для идентификации разговора того или иного пользователя, но и является одновременно своеобразным фильтром, устраняющим искажения и фоновые помехи. Встроенный алгоритм кодирования обеспечивает высокую степень конфиденциальности, обеспечивая защиту от несанкционированного доступа и прослушивания.

    Система CDMA обеспечивает меньшую задержку в передаче голосового сообщения, чем другие системы подвижной связи. При использовании CDMA не приходится применять изощренные средства для подавления эхо-сигнала. Совершенный метод коррекции ошибок позволяет эффективно бороться с многолучевым распространением сигнала. Это свойство дает дополнительные преимущества CDMA в условиях городов с высотными застройками.

    Абонент не хочет оставаться без связи при пересылке факса, когда телефон длительное время занят. CDMA предоставляет дополнительный сервис, обеспечивающий одновременную передачу голоса и факса по одному каналу. В технологии CDMA реализованы оригинальные алгоритмы упаковки данных для большей скорости их передачи.


    WCDMA (Wideband Code Division Multiple Access - широкополосный CDMA)- технология радиоинтерфейса избранная большинством операторов сотовой связи Японии и (в январе 1988 года) институтом ETSI (European Telecommunications Standards Institute) для обеспечения широкополосного радиодоступа с целью поддержки услуг третьего поколения.

    Технология оптимизирована для предоставления высокоскоростных мультимедийных услуг типа видео, доступа в Интернет и видеоконференций; обеспечивает скорости доступа вплоть до 2 Мбит/с на коротких расстояниях и 384 Кбит/с на больших с полной мобильностью. Такие величины скорости передачи данных требуют широкую полосу частот, посему ширина полосы WCDMA составляет 5 Мгц. Технология может быть добавлена к существующим сетям GSM и PDC, что делает стандарт WCDMA наиболее перспективным с точки зрения использования сетевых ресурсов и глобальной совместимости.

    WCDMA (широкополосный множественный доступ с кодовым разделением каналов) представляет собой технологию, использующую расширенную полосу пропускания и разновидность принципа DMA. Это технология мобильной радиосвязи третьего поколения, обеспечивающая значительно более высокие скорости передачи данных, чем стандарт GSM. WCDMA поддерживает передачу голоса, изображений, данных и видео в сетях мобильной связи на скорости до 2 Мбит/с (локальный доступ) или 384 кбит/с (глобальный доступ). WCDMA используется в основном в Европе при переходе от стандарта GSM к стандарту UMTS.


    Стандарт CDMAOne существует в вариациях IS-95a, IS-95b (cellular по американской терминологии, 800 МГц) и J-STD-008 (PCS, диапазон 1900). Аббревиатура IS (interim standard - временной стандарт) используется для учета в Ассоциации телекоммуникационной промышленности TIA (Telecommunications Industry Association). Как правило, в сетях CDMAOne используется IS-95a, он обеспечивают передачу сигнала со скоростью 9,6 кбит/с (с кодированием) и 14,4 кбит/с (без кодирования). Версия IS-95b основана на объединении нескольких каналов CDMA, организуемых в прямом направлении (от базовой станции к мобильной). Скорость может увеличиваться до 28,8 кбит/с (при объединении двух каналов по 14,4 кбит/с) или до 115,2 кбит/с (8 каналов по 14,4 кбит/с). Собственно, кроме IS-95 сети CDMAOne используют еще целый набор протоколов и стандартов.

    Коммерческие сети CDMAOne появились в 1995 году и пользуются заслуженной популярностью как на своей родине, в Америке, так и в Азии. Именно CDMAOne подразумевают под терминами "CDMA" и "CDMA-800" (наибольшее распространение получил именно 800-мегагерцовый вариант, IS-95). Прямой и обратный каналы располагаются соответственно в диапазонах 869,040-893,970 и 824,040-848,860 МГц. Используются 64 кода Уолша и несущие в 1.25 МГц.


    Стандарт CDMA2000 является дальнейшим развитием стандарта 2 поколения CDMAOne. Дальнейшим развитием CDMAOne должен был стать IS-95c, и именно это обозначение очень часто используется производителями.

    Официальным обновлением стандарта, разработанным компанией Qualcomm и утвержденным ITU (Международный союз электросвязи, International Telecommunication Union), является CDMA2000. В документах Lucent Technologies встречается обозначение IS-2000. Наконец, международный союз электросвязи (МСЭ) отобрал из десяти предложенных проектов пять радиоинтерфейсов третьего поколения IMT-2000 (International Mobile Telecommunications System - 2000 - Международная система мобильной связи - 2000), в их числе - IMT-MC (Multi Carrier), который представляет собой модификацию многочастотной системы CDMA2000, в которой обеспечивается обратная совместимость с оборудованием стандарта CDMAOne (IS-95).

    Еще один из пяти стандартов IMT-2000 - IMT-DS (Direct Spread) - построен на базе проектов WCDMA и взят за основу европейской системы UMTS.

    На начало 2003г. из 127 миллионов пользователей CDMA почти 15 миллионов использовали технологию CDMA2000. В течение первых семи месяцев 2002 года, в Азии и Америке было запущено 11 сетей CDMA2000 и общее количество этих сетей составляло 18. Это - 99% рынка 3G, на IMT-MC приходилось 14.8 миллионов абонентов, на UMTS - 0.13 миллиона.

    Однако, стоит отметить, что реализованная фаза CDMA2000 1X все же не является полноценным 3G, ибо не дотягивает до обязательных двух мегабит. Поэтому ее чаще называют 2.5G.

    Изначально CDMA2000 (IMT-MC) разделили на две фазы - 1X и 3X. Именно к первой фазе применяется название IS-95C. А вторую позже назвали 1X-EV (evolution), разделив ее на две фазы - CDMA2000 1X EV-DO (data only) и CDMA2000 1X EV-DV (data & voice).

    И именно стандарт CDMA2000 1X EV-DO подразумевается под 3G IMT-MC. Стандарт 1x-EV-DO был принят TIA в октябре 2000 года и предусматривает следующую схему функционирования: аппарат одновременно производит поиск сети 1x и 1xEV, передачу данных осуществляет с помощью 1xEV, голоса - с помощью 1x.

    Стандарт 1xEV-DV полностью соответствует всем требованиям 3G. Его практическая реализация планируется в 2003-2004 годах.

    Теперь о CDMA-450. Следует отметить, что стандарты семейства CDMA2000 не требуют организации отдельной полосы частот и в ходе их эволюционного развития от CDMAOne могут быть реализованы во всех частотных диапазонах используемых системами сотовой подвижной связи (450, 700, 800, 900, 1700, 1800, 1900, 2100 МГц).


    Сети с пакетной передачей данных - (General Packet Radio Service, GPRS) - это технология, стандартизированная ETSI как часть развития стандарта GSM фазы 2+ и представляющая собой первую реализацию пакетной коммутации в сетях стандарта GSM, ранее использовавших только технологию коммутации каналов. Вместо передачи непрерывного потока данных через постоянное соединение, при пакетной коммутации сеть используется только в случае наличия данных для передачи. Применение технологии GPRS позволяет пользователям пересылать и принимать данные на скоростях до 170,2 кбит/с.

    Внедрение технологии GPRS принесло операторам сетей GSM значительные выгоды. Впервые стало возможным использование Интернет-протокола IP (Internet Protocol) в сетях GSM, а также подключение к огромному количеству частных и общественных сетей с применением стандартных промышленных протоколов передачи данных, таких, как TCP/IP и X.25. Стандарт GPRS особенно эффективен при скудости спектральных ресурсов, он позволяет операторам сетей GSM предлагать широкий выбор ценных возможностей, повышая их конкурентоспособность.

    GPRS идеален для "импульсных" приложений для передачи данных, таких, как электронная почта или доступ в Интернет. Он позволяет устанавливать "виртуально-постоянное соединение" с источниками данных, так что Вы получаете данные, едва найдя их. Такая оперативность достижима в сетях с коммутацией каналов. Внедряя стандарт GPRS, операторы GSM получили в свое распоряжение сети с возможностями третьего поколения.

    Компания MOTOROLA отличается от прочих производителей тем, что провозглашает лозунг "GPRS повсюду" - на массовом рынке для горизонтальных приложений (например, групповые интерактивные игры), на рынке бизнес-приложений для регулярного мобильного вертикального доступа к огромным массивам корпоративной информации (например, в службах доставки).


    Расширенный диапазон передачи данных для развития стандарта GSM (Enhanced Datarate for GSM Evolution, EDGE) соединяет в себе набор новых и альтернативных схем модуляции, которые могут применяться внутри структуры временного отрезка радиоканала GSM, обеспечивая более высокую скорость передачи данных или улучшенные спектральные характеристики. Фаза 1 технологии EDGE (стандартизована в конце 1999 г.) использует функции GPRS, обеспечивая скорость передачи данных до 384 кбит/с. Фаза 2 (должна быть разработана до конца 2000 г.) предоставляет обслуживание в режиме реального времени, например передачу звука и мультимедиа (видео).

    EDGE внедряется не только в среде GSM, но также на рынке TDMA (IS-136) и iDEN в США с применением тех же технических стандартов, чтобы обеспечить использование GPRS, а в дальнейшем - голосового обслуживания. Поскольку 384 кбит/с - это скорость передачи данных, которая будет поддерживаться первой фазой сетей третьего поколения, EDGE может стать альтернативой для операторов GSM, которые не получат лицензию третьего поколения, или там, где это позволяет регулятор.


    1XRTT (One Times Radio Transmission Technology) - 2.5G мобильная технология передачи цифровых данных, основанная на CDMA-технологии. Использует принцип передачи с коммутацией пакетов. Теоретически возможная скорость передачи 144 Кбит/сек, но на практике реальная скорость менее 40-60 Кбит/сек. 1XRTT использует лицензируемый радиочастотный диапазон и, подобно другим мобильным технологиям, широко распространена.


    UMTS - Универсальная система мобильных телекоммуникаций (Universal Mobile Telecommunications System) - является членом европейского семейства стандартов мобильной сотовой связи третьего поколения. Большая часть исходных задач UMTS, таких как глобальный роуминг и персонализация обслуживания, достигнута в ходе развития стандарта GSM. Основное отличие UMTS, состоит в использовании нового частотного диапазона 2 ГГц, что позволяет добиться более высокого по сравнению с GSM качества обслуживания благодаря повышению скорости передачи данных и ёмкости каналов, а также благодаря внедрению пакетной архитектуры сети, поддерживающей функции передачи голоса и данных.

    UMTS обеспечивают две основные компоненты: радиосеть и несущая сеть. Радиосеть состоит из мобильного оборудования и базовой станции, между которыми коммутируется передача данных. Несущая сеть, в свою очередь, соединяет базовые станции друг с другом, а также создаёт соединения с сетью ISDN и Интернетом.

    При значительно большей полосе пропускания (5 МГц), чем у GSM (200 кГц) и используя для передачи метод CDMA (Code Division Multiple Access) становится возможным передать информацию любого типа (мультимедийные приложения, загрузка из Интернета, видео и аудио) при высокой (2 Мбит/с) скорости передачи.

    Это делает UMTS до 200 раз быстрее, чем сеть GSM (9,6 кбит/с). Это позволяет передавать 1-2 источника видео в реальном времени с полным разрешением и приемлемым качеством.

    Интересная особенность относительно UMTS заключается не только в том, что UMTS обладает очень высокой передающей способностью, но и в том, что он также поддерживает различные протоколы передачи, такие как TCP/IP, в комбинации с мобильностью .


    HSDPA (High Speed Downlink Packet Access) - технология высокоскоростного пакетного доступа по входящему каналу. Технология HSDPA является логическим продолжением WCDMA. Стандарт позволяет увеличить скорость передачи данных в сетях 3G примерно во столько же раз, что и технология EDGE, развернутая поверх сети GPRS. В абсолютных цифрах пиковая скорость передачи данных в сети HSDPA - 8 Мбит/с, тогда как средняя - 1-1,5 Мбит/с. Для наглядности стоит сказать, что при пиковой производительности на HSDPA-телефоне можно будет смотреть сразу восемь цифровых кинофильмов.

    Назначение HSDPA - обеспечечить эффективное использование радиочастотного спектра при предоставлении услуг, требующих высокой скорости передачи пакетных данных по нисходящим каналам, таких как доступ в Интернет и загрузка файлов. Эта технология хорошо адаптирована к условиям города и закрытых помещений.

    В основу технологии HSDPA положены адаптивные схемы модуляции и кодирования QPSK и 16 QAM; протокол ретрансляции Hybrid Automatic Repeat Request; оперативное определение очередности передачи пакетов на базовой станции Node В протоколом MAC-high speed. HSDPA базируется на высокоскоростном общем нисходящем канале (High-Speed Downlink Shared Channel - HS-DSCH), способном поддерживать высокие скорости передачи данных. Технология позволяет обслуживать разных пользователей, осуществляя мультиплексирование с временным и кодовым разделением, то есть идеально подходит для обработки прерывистого пакетного трафика в многопользовательской среде.

    По сравнению с UMTS, HSDPA можно передавать в три раза больше данных и поддерживать вдвое больше мобильных пользователей на одну соту. Стоит отметить, что в настоящее время в полевых условиях скорость в нисходящем канале 3G (к пользователю) составляет порядка 384 Кбит/с (теоретически скорость, согласно спецификации 3G, должна составлять 2,4 Мбит/с).

    Кроме того, HSDPA значительно улучшает качество предоставляемых абоненту мультимедийных услуг (именно за счет высокой скорости задержка становится неощутимой, а объем передаваемой информации увеличивается).


    Аналогично , технология высокоскоростной пакетной передачи данных по направлению «вверх» (High Speed Uplink Packet Access, HSUPA) представляет собой стандарт мобильной связи, позволяющий ускорить передачу данных от W-CDMA-устройств конечного пользователя до базовой станции за счет применения более совершенных методов модуляции.

    Теоретически стандарт HSUPA рассчитан на максимальную скорость передачи данных по направлению «вверх» до 5,8 Мбит/с, позволяя, таким образом, использовать приложения третьего поколения, требующие обработки огромных потоков данных от мобильного устройства к базовой станции, например, видеоконференцсвязь.

    Описание технологии планируется ввести в качестве спецификации 6-й версии стандарта 3GPP Release 6; процесс стандартизации технологии приближается к завершению.


    UMA (Unlicensed Mobile Access) - новое решение, позволяющее абонентским устройствам работать в сетях GSM/GPRS при помощи нелицензируемых каналов Bluetooth и Wi-Fi (802.11). С помощью технологии UMA операторы могут предложить абонентам услуги роуминга и хэндовера между сотовыми сетями и беспроводными нелицензируемыми сетями частного и общего доступа с помощью двухрежимных телефонов и КПК.

    UMA дает возможность пользователю, попавшему в зону покрытия домашней или общественной точки доступа ("хот-спот"), получать высококачественные услуги связи с помощью единого устройства доступа и единого телефонного номера. В результате мы получаем реальную конвергенцию услуг мобильной передачи голоса и данных с прозрачным хэндовером (переходом абонента из одной сети в другую без потери соединения).


    EV-DO - это технология сетей мобильной связи третьего поколения (3G), стандартизированная 3GPP2 в рамках развития и обеспечивающая высокоскоростную передачу данных со скоростью до 2,4 Мбит/с.

    Преимущества технологии EV-DO открывают целый ряд новых возможностей для пользователей. В частности, быстрое подключение к сети Интернет вне зависимости от местоположения и времени суток, организация высокоскоростных корпоративных VPN-сетей, широкий спектр услуг мобильного мультимедиа, мощный инструментарий для создания мобильных "рабочих мест". Корпоративным клиентам использование технологии EV-DO позволяет заметно повысить производительность труда сотрудников за счет повсеместного доступа в любое время к корпоративным данным с помощью защищенных и простых решений, совершенствовать текущие бизнес-процессы и выстраивать свой бизнес, а также ускорить реагирование на проблемы эксплуатации и вопросы клиентов.

    На сегодняшний день технология EV-DO используется в самых различных сферах: в банках и страховых компаниях, в дистрибуторских организациях и предпринимателями, имеющими торговые сети, органами государственной власти и пользователями домашнего Интернета как альтернатива выделенным линиям или dial-up.

    В числе производителей оборудования для сетей EV-DO такие ведущие мировые компании как Lucent Technologies, Huawei Technologies, Nortel Networks, Samsung. Украинским оператором, работающем в стандарте EV-DO, является Peoplenet.


    CSD (Circuit Switched Data) — технология передачи данных, разработанная для мобильных телефонов стандарта GSM. CSD использует один временной интервал для передачи данных на скорости 9,6 кбит/с в подсистему сети и коммутации (Network and Switching Subsystem NSS), где они могут быть переданы через эквивалент нормальной модемной связи в телефонную сеть.

    Поскольку максимальная скорость передачи данных для единичного временного интервала составляет 9,6 кбит/с, многие операторы выделяют два и более временных слота для вызовов CSD.

    До появления CSD передача данных в мобильных телефонах выполнялась за счет использования модема, либо встроенного в телефон, либо присоединенного к нему. Из-за ограничений по качеству аудио сигнала, такие системы имели максимальную скорость передачи данных равную 2,4 кбит/с. С появлением цифровой передачи данных в GSM, CSD предоставил практическим прямой доступ к цифровому сигналу, позволяя достичь более высоких скоростей. В тоже время, использование в GSM сжатия звука, ориентированного на речь, фактически означает, что скорость передачи данных с использованием обычного модема, подсоединенного к телефону, будет даже ниже, чем в традиционных аналоговых системах.

    CSD-вызов работает очень похоже на обычный голосовой вызов в GSM сетях. Выделяется единичный временной интервал между телефоном и базовой станцией. Выделенный «подвременной интервал» (16 кбит/с) устанавливается между базовой станцией и транскодером, и, наконец, другой временной слот (64 кбит/с) выделяется для передачи данных между транскодером и центром коммутации: Mobile Switching Centre (MSC).


    HSCSD (High Speed Circuit Switched Data - высокоскоростная передача данных по сетям с коммутацией каналов) - многоканальная платформа для передачи данных в сетях GSM. Она преодолевает ограничения беспроводных сетей связи по скорости, позволяя абонентам GSM передавать данные со скоростями сравнимыми и даже превышающими скорости передачи в проводных сетях. При использовании технологии HSCSD максимальная скорость может составить 57.6 кбит/с. HSCSD специально разработана для развития существующей инфраструктуры GSM путем модернизации программного обеспечения, поэтому внедрение этого решения производится быстро и экономично.

    Для конечных пользователей HSCSD открывает возможность использования целого ряда новых приложений беспроводной связи. HSCSD позволяет просматривать с мобильного терминала WEB-страницы с более насыщенным графическим содержанием. Кроме того, пользователи получают возможность высокоскоростного доступа к ЛВС и корпоративным сетям.

    HSCSD позволяет даже организовать дистанционное видеонаблюдение в тех местах, где прокладка кабеля нецелесообразна или невозможна. Необходимо упомянуть и возможность организации видеоконференций по беспроводному интерфейсу.


    HSPA (High-Speed Packet Access - высокоскоростная пакетная передача данных) - технология беспроводной широкополосной радиосвязи, использующая пакетную передачу данных и являющаяся надстройкой к мобильным сетям WCDMA/UMTS.
    Технология базируется на двух предшествующих стандартах:
    - - High-Speed Downlink Packet Access;
    - - High-Speed Uplink Packet Access.
    В настоящий момент, по подсчетам Ericsson, в мире развернуто 128 сетей HSPA, а на рынке доступно 300 устройств с поддержкой данной технологии.

    Недостатки аналоговых сетей первого поколения , связанные с низкой пропускной способностью сети и слабой конфиденциальностью разговоров, подтолкнули разработчиков к созданию сетей второго поколения 2G , основанных на цифровых стандартах. По мере роста популярности мобильной связи разработчики всерьез занялись увеличением пропускной емкости стандартов и тотальной стандартизацией по всему миру. Унификация мобильных терминалов позволяет клиентам спокойно путешествовать по всей планете и всегда оставаться на связи благодаря автоматическому роумингу. К началу 90-х годов стало очевидно, что только цифровые способы передачи речи и управления мобильной связью позволят решить эти две задачи. Работы по созданию общемирового цифрового стандарта сотовой связи велись в Европе и в Америке.

    Существуют четыре основных вида сетей второго поколения с возможностью организации сот радиусом до 20-30 км. Это американские сети D-AMPS и CDMA , японский стандарт JDC (Japan Digital Cell) и глобальный общеевропейский стандарт GSM . Таким первопроходцам рынка, как например D-AMPS, сегодня приходится очень тяжело. Чтобы выдерживать конкуренцию, им приходится снижать тарифы и предлагать услуги, которых первоначально данный стандарт не предполагал: автодозвон, автоматическое определение номера, конференцсвязь, голосовая почта, передача данных, а также доступ в сеть Internet.

    Сохранив прежний размер сот и базовую инфраструктуру, новый стандарт CDMA (Code Division Multiple Access) увеличил количество одновременно звонящих абонентов в соте до 1000, а также уменьшил себестоимость телефонов, улучшил конфиденциальность разговоров и полностью устранил проблему двойников. Каждый телефон CDMA имеет свой идентификационный номер и для замены аппарата требуется обязательное участие сотового оператора. Список телефонных номеров и личный органайзер пользователя хранятся в памяти телефона, и при замене аппарата приходится перезаписывать всю информацию. Для повышения конфиденциальности разговоров в цифровых системах кодирование речи происходит путем сжатия информационного потока. Телефоны стандарта CDMA имеют небольшие размеры и низкий расход энергии. На сегодняшний день стандарт, получивший наибольшее распространение в Северной Америке и Корее, предлагает абонентам хорошее качество звука и наибольшую скорость передачи данных (14,4 кбит/с). Существуют операторы этого стандарта и в России, однако их количество невелико, из-за чего роуминг сильно ограничен.

    Сотовые сети стандарта GSM (Global System for Mobile Communications) сегодня наиболее популярны. Этот цифровой стандарт мобильной связи был создан в Европе в 1991 году и очень быстро распространился по всему миру. Стандарт учитывает многолетний опыт эксплуатации сотовых сетей, рассчитан на массовое применение и допускает модификацию без нарушения базовых функций. Радиус соты сети GSM может достигать 35 км, а количество одновременных звонков – до 1000. Максимальная мощность мобильных телефонов находится в пределах 1 Вт, а в стационарных и автомобильных модификациях телефонов достигает 20 Вт. Мобильные терминалы GSM наиболее миниатюрны и имеют наибольший ресурс работы без подзарядки.

    Для цифровых стандартов сотовой связи 2G характерно чистое звучание без помех, которое лишь немного искажает тембр и интонационный оттенок речи. При слабом сигнале или неустойчивой связи возможно незначительное «проглатывание» фрагментов слов. В моменты, когда абонент слушает собеседника, цифровые системы полностью отключают передатчик, чтобы не засорять эфир и экономить заряд аккумулятора. В это же время говорящий слышит в динамике искусственный "комфортный шум", чтобы не создавалось ощущение отсутствия связи. Подслушать разговоры в эфире GSM практически невозможно, так как используются сложные и закрытые алгоритмы шифрования, которые часто меняются и каждое соединение имеет свой ключ.

    Существенно увеличило пропускную способность введение стандарта GSM 1800 , который расширил диапазон используемых частот, а соты сделал более мелкими. Опыт эксплуатации сетей GSM 1800 в крупнейших городах показал, что стандарт позволяет избежать перегрузок сети даже при тотальном использовании мобильной связи. GSM использует частоты 900 МГц и 1800 МГц во всем мире, а вот в США Федеральная комиссия по радиосвязи предоставила операторам небольшой диапазон в районе 1900 МГц, создав, таким образом, американский стандарт GSM 1900. В этом же диапазоне могут работать также операторы сетей CDMA и D-AMPS. Выпускаемые в настоящее время мобильные телефоны способны работать во всех трех GSM диапазонах.

    В дальнейшем возникла острая потребность в создании нового стандарта мобильной связи, который смог бы обеспечить существенно большую скорость передачи информации и комфортную работу в Интернет. Задача была решена в виде GPRS -технологии, реализованной в форме надстройки над стандартом GSM и позволяющей достигать на прием скорости 40,2 кбит/с.

    В телефонах стандарта GSM используется сменная SIM-карта (Subscribe Identity Module) , позволяющая оператору однозначно идентифицировать абонента, а также хранить в своей памяти 255 номеров абонентов. При перестановке SIM-карты из одного аппарата в другой автоматически переносится собственный телефонный номер и телефонная книжка.

    Операторы сетей GSM предоставляют широкий спектр услуг:

    • голосовые соединения;
    • текстовые сообщения SMS (Short Message Service);
    • выход в Internet непосредственно с телефона при помощи WAP-браузера;
    • передача информации и факсов (скорость 9,6 кбит/с или до 384 кбит/сек при поддержке технологии EDGE);
    • конференцсвязь;
    • переадресация звонков;
    • информационные услуги (погода, цены, адреса, телефоны);
    • формирование групп пользователей и др.

    Мобильные сети GSM состоят из системы коммутации – Network Switching System (NSS) , системы базовых станций - Base Station System (BSS) и телефонов абонентов (MS) .

    Система NSS служит для обслуживания вызовов и коммутации соединений, а также предоставление услуг абоненту. Система BSS выполняет все функции радиоинтерфейса.

    NSS состоит из :

    • центра коммутации мобильной связи (MSC);
    • домашнего регистра местоположения (HLR);
    • визитного регистра местоположения (VLR);
    • центра аутентификации (AUC);
    • регистра идентификации абонентского оборудования (EIR).

    BSS включает в себя функциональные блоки :

    • контроллер базовых станций (BSC);
    • базовую станцию (BTS).

    Центр коммутации мобильной связи (MSC) является главным элементом сети GSM и осуществляет контроль за BTS и BSC в своей зоне обслуживания. MSC устанавливает соединения между абонентами сети, а также осуществляет соединения с другими мобильными и стационарными сетями.

    Домашний регистр местоположения (HLR) хранит информацию об абонентах (перечень подключенных услуг, текущее состояние, местоположение и др.), которые относятся к данному MSC.

    Визитный регистр местоположения (VLR) содержит информацию об активных абонентах в зоне обслуживания конкретного MSC. К ней относятся данные о домашних абонентах данного MSC и абонентах, для которых этот MSC является гостевым. Источником информации для VLR является HLR.

    Центр аутентификации (AUC) служит для идентификации абонентов и предотвращения несанкционированного доступа в сеть. При включении телефона, совершении звонка, отправке SMS и т.п. MSC в обязательном порядке выполняет процедуру аутентификации на основании информации полученной из AUC и MS.

    Регистр идентификации абонентского оборудования (EIR) представляет собой базу данных с информацией об идентификационных номерах мобильных терминалов GSM, которая может быть использована для блокировки украденных телефонов. EIR не является обязательным элементом и присутствует не во всех сетях.

    Контроллер базовых станций (BSC) представляет собой коммутатор большой емкости, который предназначен для управления всеми функциями радиоканалов в сети GSM (хэндовер MS, назначение радиоканала и получение информации о конфигурации сот). Под управлением каждого MSC может находиться несколько BSC.

    Базовая станция (BTS) управляет радиосвязью с телефоном абонента. BTS состоит из приемо-передатчиков и антенн, которые требуются для обслуживания каждой соты.

    В сетях GSM с технологией пакетной передаче данных GPRS дополнительно используются блоки:

    • Узел обслуживания абонентов GPRS (SGSN), который представляет собой маршрутизатор с расширенными функциями установления сессии пакетной передачи данных, маршрутизации пакетов и начисления платы за предоставленные услуги. Стоит отметить, что пакетные данные передаются от подсистемы базовых станций в сторону SGSN, а не в сторону MSC.
    • Шлюзовой узел GPRS (GGSN) часто конструктивно объединяется в одном устройстве вместе с SGSN и представляет собой шлюз сети. Если пакеты данных направляются за пределы сети оператора, то именно GGSN выполняет эту функцию.

    Развитие стандартов GSM 900, GSM E900, GSM 1800 способствовало улучшению каналов коммуникации, однако не решало проблему доступа к интернету на том уровне, как того требует современный человек.

    Эти стандарты относились ко второму поколению (2G), в котором для передачи данных использовались протоколы EDGE, GPRS, что позволяло достичь скорости до 473,6 Кбит/с – катастрофически низкой для современного пользователя.

    На сегодняшний день стандарты сотовой связи одним из наиболее важных требований определяют скорость передачи данных и чистоту сигнала. Очевидно, что это влияет на развитие рынка мобильных операторов. Так в свое время в России появились 3G сети, которые завоевали массовое внимание пользователей. А теперь именно по этой причине увеличивается количество людей, которые выбирают 4G.

    Особенность стандарта UMTS

    Главная особенность, которая отличает стандарт UMTS от GSM, заключается в том, что использование протоколов WCDMA, HSPA+, HSDPA дает возможность пользователям получить доступ к более качественному мобильному интернету. При скоростях от 2 до 21 Мбит/сек можно не только передавать больший объем данных, но даже совершать видео звонки.

    UMTS покрывает более 120 крупнейших российских городов. Это стандарт, в котором популярные ныне мобильные операторы (МТС, Билайн, МегаФон и Скайлинк) предоставляют услугу 3G-интернета.

    Не секрет, что высокие частоты более эффективны для обмена данными. Однако в России есть свои нюансы, которые делают невозможным использование в некоторых регионах, к примеру, UMTS частоты 2100 мГц.

    Причина проста: частота UMTS 2100 , которая активно используется для 3G-интернета, на препятствиях быстро садится. Это означает, что качественному сигналу мешают не только расстояния до базовых станций, но также повышенная растительность. Кроме того, некоторые регионы для этой частоты практически закрыты из-за работы систем ПВО. Так, в Юго-Западной части Московской области размещено несколько военных баз, и соответственно, введено негласное табу на использование данной частоты.

    В такой ситуации для 3G-интернета применяется UMTS 900 . Волны в этом частотном диапазоне имеют более высокую проникающую способность. В то же время, на такой частоте скорость передачи данных редко достигает 10 мбит/сек. Тем не менее, если учесть, что еще несколько лет назад во многих городах даже подумать не могли об интернет-покрытии, это не так уж и плохо.

    На данный момент с популярным UMTS900 показывают отличные результаты Huawei E352 и более стабильный вариант E352b, а также E372, E353, E3131, B970b, B260a, E367, E392, E3276.

    LTE: в каких диапазонах будет работать стандарт будущего?

    Логичным развитием UMTS стали разработки в 2008-2010 гг. LTE – нового стандарта, цель которого заключается в том, чтобы повысить скорость обработки сигнала и пропускную способность, а в техническом плане – упростить сетевую архитектуру и тем самым сократить время при передаче данных. В России же сеть LTE официально запущена в 2012 году.

    Именно технология LTE определяет развитие в нашей стране мобильного интернета нового поколения – 4G. Это означает доступ к онлайн-трансляциям, быстрой передаче файлов большого объема и другим преимуществом современного интернета.

    На данный момент 4G интернет поддерживается стандартами LTE 800, LTE 1800, LTE 2600, при чем используются протоколы LTE Cat.4, Cat.5, Cat.6. Это позволяет в теории получить скорость передачи данных до 100 Мбит/с на отдаче и до 50 Мбит/с на приеме.

    Высокие частоты LTE становятся идеальным решением для регионов, где плотность населения достаточно высокая и где такая скорость передачи данных очень важна. К ним относятся, например, крупные промышленные города. Тем не менее, если все операторы станут работать только в диапазоне LTE 2600 – моментально возникнет проблема с покрытием радиосигнала.

    Сейчас воспользоваться преимуществами технологии 4G могут жители Москвы, Санкт-Петербурга, Краснодара, Новосибирска, Сочи, Уфы и Самары. На территории России Yota стала одним из первых операторов, которые развивали четвертое поколение мобильных стандартов. Теперь к ним присоединились и такие крупные операторы, как Мегафон и МТС.

    Оптимальным сегодня считается развитие LTE 1800 : эта частота является более экономичной и позволяет выйти на рынок новым компаниям, которые предлагают услуги мобильной связи. Еще дешевле строить сети на частоте 800 МГц. Таким образом, можно предугадать, что именно LTE 800 и LTE 1800 будут наиболее популярными среди операторов и, соответственно, у нас с вами.

    Частоты LTE различных мобильных операторов

    - Мегафон: частоты LTE 742,5-750 МГц / 783,5-791 МГц, 847-854,5 МГц / 806-813,5 МГц, 2530-2540 МГц / 2650-2660 МГц, 2570-2595 МГц (лицензия на Москву и Московскую область);

    - МТС: частоты LTE 720-727,5 MHz / 761-768,5 МГц, 839,5-847 МГц / 798,5-806 МГц, 1710-1785 МГц / 1805-1880 МГц, 2540-2550 МГц / 2660-2670 МГц, 2595-2620 МГц (лицензия на Москву и Московскую область);

    - Билайн: частоты LTE 735-742,5 МГц / 776-783,5 МГц, 854,5-862 МГц / 813,5-821 МГц, 2550-2560 МГц / 2670-2680 МГц.

    Ростелеком: частоты LTE 2560-2570 / 2680-2690 МГц.

    Yota: частоты LTE 2500-2530 / 2630-2650 МГц.

    Теле2: частоты 791-798,5 / 832 - 839,5 МГц.

    Усиление сигнала на разных частотах

    Когда вы попадаете в зону неуверенного приема сигнала или на большое расстояние отдаляетесь от базовой станции своего оператора, без дополнительной антенны не обойтись.

    Направленные антенны UMTS 900 сигнала имеет элементарную комплектацию и позволяют значительно повысить уровень связи. При этом более стабильным становится не только Интернет-соединение, но и качество передачи голоса во время телефонного разговора. Без антенны UMTS 2100 не обойтись, если вы хотите использовать интернет во время поездки: из-за постоянного переключения от вышки к вышке скорость передачи данных катастрофически падает.

    Направленные антенны LTE 800 и антенны LTE 1800 – оптимальный вариант для усиления 4G сигнала в соответствующих частотах. У этих стандартов более высокая проникающая способность и дальность сигнала.

    Тем не менее, скорость передачи данных выше у LTE 2600, благодаря чему 80% пользователей в Москве уже перешли на этот стандарт. И покупка антенны LTE 2600 является обязательным условием для тех, кто выбрал 4G LTE 2600 (Мегафон, МТС, Билайн, Ростелеком, Yota), чтобы получить максимальную скорость работы интернета. Усилитель LTE сигнала позволит гарантировано получить стабильную передачу данных на высоких частотах.

    Решения от GSM-Репитеры.РУ

    LTE 800