По какой формуле вычисляется работа электрического поля. Работа электрического тока: общая характеристика, формула, практическое значение

§ 09-г. Работа электрического тока

Изучая применение электрического тока, нужно уметь вычислять количество электроэнергии, которое расходуется на то или иное действие тока. Например, подъём лифта, нагревание чайника и тому подобное. Поэтому выведем формулу для подсчёта работы тока.

В левых частях этих равенств стоят разные символы, но они обозначают одну и ту же физическую величину – мощность. Следовательно, правые части формул можно приравнять: I · U = A / t . Выразим работу:

Формула для вычисления работы электрического тока или, что то же самое, для расчета потреблённой электроэнергии.

По этой формуле вычисляется работа тока или, что то же самое, израсходованная электроэнергия . Поясним, что выделенные нами термины – синонимы.

В момент замыкания цепи электрическое поле источника энергии приводит в движение заряженные частицы в проводнике (электроны и/или ионы), и их энергия возрастает. Сумма энергий всех частиц тела является внутренней энергией тела (см. § 7-д), значит, внутренняя энергия проводника в момент возникновения в нём тока возрастает. Согласно первому закону термодинамики, внутренняя энергия может расходоваться на теплопередачу или совершение работы (см. § 6-з). Но, расходуясь, она постоянно пополняется от источника энергии.

Вспомним, что прохождение тока по проводнику всегда сопровождается действиями тока (см. § 8-з). При этом обязательно происходит превращение электроэнергии в другие виды энергии. Например, внутреннюю (утюг или чайник), механическую (пылесос или вентилятор) и так далее. Поэтому под выражением «ток совершает работу» мы будем понимать превращение электроэнергии в другие виды энергии. В таком смысле работа тока и израсходованная электроэнергия – выражения-синонимы.

Для измерения потреблённой электроэнергии служат специальные измерительные приборы – счётчики электроэнергии .

Для учёта электроэнергии вместо джоуля используется более крупная единица – киловатт-час (обозначение: 1 кВт·ч). Например, счётчик на рисунке показывает значение 254,7 кВт·ч. Это может означать, что за всё время учёта потребитель мощностью 254,7 кВт работал 1 час или что потребитель мощностью 2547 Вт работал 100 часов (и так далее, соблюдая пропорцию).

Найдём связь киловатт-часа с более привычной нам единицей для измерения работы – джоулем.

1 кВт · ч = 1000 Вт · 60 мин =
= 1000 Дж/с · 3600 с = 3 600 000 (Дж/с)·с =
= 3 600 000 Дж = 3,6 МДж

Итак, 1 кВт·ч = 3,6 МДж.

Примечание. Формула для работы тока A = I·U·t поможет выяснить физический смысл электрического напряжения. Выразим его:

Отсюда видно, что 1 вольт – это такое напряжение, при котором ток силой 1 ампер способен за 1 секунду производить 1 джоуль работы. Другими словами, электрическое напряжение показывает работу, которую ежесекундно совершают силы электрического поля для поддержания в цепи тока силой 1 ампер.

Кроме того, из формулы I = q / t  (см. § 9-б)  следует: q = I · t. Тогда:

U = A Следовательно, 1 В = 1 Дж
q Кл

Исходя из этой формулы, 1 вольт может рассматриваться и как такое напряжение, при котором работа сил электрического поля при перемещении заряда в 1 Кл будет равна 1 Дж. Обобщённо мы скажем: электрическое напряжение является одной из характеристик электрического поля, перемещающего заряды по проводнику.

У каждого из нас дома есть счетчик, по показаниям которого мы ежемесячно платим за электричество. Мы оплачиваем какое-то количество киловатт-часов. Что же такое эти киловатт-часы? За что конкретно мы платим? Разберемся:)

Мы используем электричество с определенными целями. Электрический ток выполняет какую-то работу, вследствие этого и функционируют наши электроприборы. Что же такое – работа электрического тока? Известно, что работа тока по перемещению электрического заряда на некотором отрезке цепи равна численно напряжению на этом участке. Если же заряд будет отличаться, например, в большую сторону, то и работа, соответственно, будет совершена большая.

Работа тока на участке цепи: формула

Итак, мы приходим к тому, что работа тока равна произведению напряжения на участке электрической цепи на величину заряда. Заряд же, как известно, можно найти произведением силы тока на время прохождения тока. Итак, получаем формулу для определения работы тока:

A=Uq , q=It , получаем A=UIt ;

где A - работа, U- напряжение, I - сила тока, q - заряд, t - время.

Измеряется работа тока в джоулях (1 Дж). 1 Дж = 1 В * 1 А * 1 с. То есть, чтобы измерить работу, которую совершил ток, нам нужны три прибора: амперметр , вольтметр и часы. Счетчики электроэнергии, которые стоят в квартирах, как бы сочетают в себе все эти вышеперечисленные приборы в одном. Они измеряют работу, совершенную током. Работа тока в нашей квартире – это энергия, которую он израсходовал на всех включенных в сеть квартиры приборах. Это и есть то, за что мы платим. Однако, мы платим не за джоули, а за киловатт-часы. Откуда возникают эти единицы?

Мощность электрического тока

Чтобы разобраться с этим вопросом, надо рассмотреть еще одно понятие - мощность электрического тока. Мощность тока – это работа тока, совершенная в единицу времени. То есть, мощность можно найти, разделив работу на время. А работа, как мы уже знаем – это произведение силы тока на напряжение и на время. Таким образом, время сократится, и мы получим произведение силы тока на напряжение. Для мощности тока формула будет иметь следующий вид:

P=A/t , A=UIt , получаем P=UIt/t , то есть P=UI ;

где P - мощность тока. Мощность измеряется в ваттах (1 Вт). Применяют кратные величины – киловатты, мегаватты.

Работа и мощность электрического тока связаны теснейшим образом. Фактически, работа – это мощность тока в каждый момент времени, взятая за определенный промежуток времени. Именно поэтому счетчики в квартирах измеряют работу тока не в джоулях, а в киловатт-часах. Просто величина мощности в 1 ватт – это очень небольшая мощность, и если бы мы платили за ватты-в-секунду, мы бы оплачивали десятки и сотни тысяч таких единиц. Для упрощения расчетов и приняли единицу «киловатт-час».

Из курса физики известно, что одной из характеристик любого тела является его способность совершать работу, так как последняя представляет не что иное, как преобразование одного вида энергии в другой (например, потенциальной в кинетическую). При этом следует учитывать знаменитый закон сохранения энергии, сформулированный еще в XVIII веке М.В. Ломоносовым, согласно которому энергия никогда и никуда не исчезает, она лишь видоизменяется, принимает другую форму. Все вышесказанное в равной степени относится не только к твердым телам, но и к другим видам материи, в том числе и к электрическому току.

Как уже давно было доказано, - это направленное движение заряженных частиц. Передвигаясь по определенному участку цепи, эти частицы формируют электрическое поле, которое совершает тока - это то количество энергии, которое необходимо затратить, чтобы перенести заряд по данной При этом далеко не вся работа тока полезна и эффективна. Достаточно заметная часть энергии тратится на то, чтобы электрический заряд преодолел сопротивление элементарных частиц, находящихся в проводнике и в источнике цепи.

Работа электрического тока, формула которой, как следует из выше приведенного текста, А = U.Q, является важнейшей характеристикой этого особого вида материи. В этой формуле U представляет собой на участке цепи, а Q - количественное выражение заряда, переносимого по данному участку.

Однако сама по себе работа электрического тока не представляла бы особого интереса, если бы не была найдена закономерность, связавшая эту работу и количество выделяемой при этом Эту закономерность практически одновременно открыли два известных физика - Ленц и Джоудь Прескотт, поэтому и закон в научном сообществе получил наименование «закона Джоуля-Ленца». Согласно этому закону, получается, что количество (или мощность) тепла, которое выделяется в определенном объеме при протекании через него заряженных частиц, находится в прямой зависимости от произведения напряженности поля на плотность протекающего через данный участок электрического тока. Данный закон имеет огромное значение для расчета потерь электроэнергии при ее передаче по проводам на большие расстояния.

Работа электрического тока самым непосредственным образом связана с другой важнейшей величиной - мощностью. Под в физике понимают количественную характеристику преобразования и скорости передачи электрической энергии. Мощность измеряется в киловатт-часах, в то время как работа электрического тока - в джоулях.

Для получения максимальной мощности тока от того или иного источника необходимо учитывать характеристики этого источника, а также то, что и внешней цепи должны быть сопоставимы друг с другом, в противном случае вся производимая работа уйдет на преодоление разности в сопротивлениях.

Работа электрического тока является важнейшей физической характеристикой, которую необходимо учитывать практически во всех отраслях промышленности, а также при производстве и передаче энергии на значительные расстояния.

Изучая применение электрического тока, нужно уметь вычислять количество электроэнергии, которое расходуется на то или иное действие тока. Например, подъём лифта, нагревание чайника и тому подобное. Поэтому выведем формулу для подсчёта работы тока.

В левых частях этих равенств стоят разные символы, но они обозначают одну и ту же физическую величину – мощность. Следовательно, правые части формул можно приравнять: I · U = A / t . Выразим работу:

По этой формуле вычисляется работа тока или, что то же самое, израсходованная электроэнергия . Поясним, что выделенные нами термины – синонимы.

В момент замыкания цепи электрическое поле источника энергии приводит в движение заряженные частицы в проводнике (электроны и/или ионы), и их энергия возрастает. Сумма энергий всех частиц тела является внутренней энергией тела (см. § 7-д), значит, внутренняя энергия проводника в момент возникновения в нём тока возрастает. Согласно первому закону термодинамики, внутренняя энергия может расходоваться на теплопередачу или совершение работы (см. § 6-з). Но, расходуясь, она постоянно пополняется от источника энергии.

Вспомним, что прохождение тока по проводнику всегда сопровождается действиями тока (см. § 8-з). При этом обязательно происходит превращение электроэнергии в другие виды энергии. Например, внутреннюю (утюг или чайник), механическую (пылесос или вентилятор) и так далее. Поэтому под выражением «ток совершает работу» мы будем понимать превращение электроэнергии в другие виды энергии. В таком смысле работа тока и израсходованная электроэнергия – выражения-синонимы.

Для измерения потреблённой электроэнергии служат специальные измерительные приборы – счётчики электроэнергии .

Для учёта электроэнергии вместо джоуля используется более крупная единица – киловатт-час (обозначение: 1 кВт·ч). Например, счётчик на рисунке показывает значение 254,7 кВт·ч. Это может означать, что за всё время учёта потребитель мощностью 254,7 кВт работал 1 час или что потребитель мощностью 2547 Вт работал 100 часов (и так далее, соблюдая пропорцию).

Отсюда видно, что 1 вольт – это такое напряжение, при котором ток силой 1 ампер способен за 1 секунду производить 1 джоуль работы. Другими словами, электрическое напряжение показывает работу, которую ежесекундно совершают силы электрического поля для поддержания в цепи тока силой 1 ампер.

Кроме того, из формулы I = q / t  (см. § 9-б)  следует: q = I · t. Тогда:

Исходя из этой формулы, 1 вольт может рассматриваться и как такое напряжение, при котором работа сил электрического поля при перемещении заряда в 1 Кл будет равна 1 Дж. Обобщённо мы скажем: электрическое напряжение является одной из характеристик электрического поля, перемещающего заряды по проводнику.

В каждой замкнутой цепи в обязательном порядке имеет место двойное преобразование энергии. В источнике тока совершается видоизменение какой-либо энергии (например, в генераторе - механической) в электрическую, а в цепи тока она опять превращается в равносильное количество энергии иного вида. Мера превращения в цепи тока электроэнергии в какие-либо иные виды энергии - величина работы тока.

Но мы понимаем, что работа и тока является работой электрических сил поля, перемещающих заряды; поэтому ее легко подсчитать.

Работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесенного заряда на величину разности потенциалов между точками в начале и конце переноса, т.е. на величину напряжения:

Очевидно, что это соотношение может быть применимо и для оценки таких понятий, как работа и тока. О величине заряда, протекшего в цепи, мы можем судить по току, текущему в цепи, и времени его протекания, так как q = It.

Используя такое соотношение, мы получаем формулу, выражающую величину работы тока на отдельном участке цепи, имеющем напряжение U:

Работа и мощность измеряются следующим образом: если измерять ток в амперах, время работы в секундах, а напряжение в вольтах, то работу - в джоулях (Дж).

Таким образом, 1 джоуль = 1 ампер х 1 вольт х 1 секунду.

Мощность измеряется ваттами (Вт):

1 ватт = 1 джоуль/1 секунда, или 1 ватт = 1 вольт х 1 ампер.

Вопрос о подсчете величины работы тока на этом участке совершенно не связан с вопросом о том, в какой вид энергии превратится на данном участке электрическая энергия. Эта работа является мерой электроэнергии, превращенной в другие виды.

Электрический ток, выполняя работу, может накалять нить электролампы, плавить металлы, вращать якорь электродвигателя, вызывать химические превращения и т.д. Во всех случаях работа и мощность электрического тока определяют уровень преобразования электроэнергии в иные формы - механическую энергию, энергию теплового движения и т.д.

Зная, что мощность P = A/t, можно получить формулу, с помощью которой рассчитывается мощность тока на отдельном участке цепи:

Работа и мощность могут быть вычислены при помощи этих формул, а также при помощи амперметра, вольтметра. На практике работу электрического поля измеряют специальным прибором - счетчиком. Проходя через счетчик, внутри него начинает совершать обороты легкий и его скорость вращения будет прямо пропорциональна силе тока и напряжению. Число оборотов, которое он сделает за определенное время, поможет сделать выводы о совершенной за это время работе. Счетчики электроэнергии можно увидеть в каждой квартире.

Мощность тока измеряют, используя специальный прибор - ваттметр. В устройстве этого прибора совмещаются принципы вольтметра и амперметра.

На многих электрических приборах и технических устройствах указывается их мощность. Например, мощность лампочки накаливания может быть 25 Вт, 75 Вт и др., или утюга около 1000 Вт, мощность электродвигателей может достигать очень больших значений - до нескольких тысяч киловатт. При этом имеют в виду мощность тока, который проходит через тот или иной прибор.

Работа и мощность переменного тока рассчитываются иначе. Так, для вычисления работы, совершаемой переменным током за определенный промежуток времени, можно воспользоваться формулой:

P = 1/2I₀U₀ cos φ. Зачастую эту формулу записывают в таком виде: P = IU cos φ, где I и U - значения напряжения и силы тока, которое в 2 раза меньше соответствующих амплитудных значений.

Формула вычисления мощности переменного тока будет такой же, как и для постоянного.

Единицы энергии и работы:

1 ватт-секунда = 1 Дж 1 ватт-час = 3600 Дж;

1 гектоватт-час = 360000 Дж;

1 киловатт-час = 3600000дж.

Единицы мощности:

1 ампер-вольт = 1 Вт;

1 гектоватт = 100 Вт;

1 киловатт = 1000 Вт.