Производство современных процессоров. Технологический экскурс. Как устроен процессор? Разбираемся вместе

Для того, чтобы выбрать хороший смартфон, важно опираться не только на внешний вид гаджета, но и на его «начинку». Мощный процессор является несомненным плюсом для устройства, однако не всегда покупатель при выборе смартфона может точно определить, насколько хорош процессор, установленный в нём. Часто подобное происходит из-за того, что люди попросту не знают, какие компании - производители процессоров являются топовыми. В данной статье мы попробуем подробно выяснить этот вопрос.

Одним из безусловных лидеров на современном рынке процессоров для смартфонов является компания Qualcomm. Основана она была в 1985 году в Сан-Диего, Калифорния, двумя профессорами Массачусетского Технологического Университета Ирвином Джейкобсом и Эндрю Витерби. Компания занималась исследованиями в области беспроводных средств связи, а так же разработками однокристальных схем (SoC). Qualcomm сотрудничала с такими корпорациями, как Ericsson, Kyocera и Atheros.

Спектр деятельности компании Qualcomm включал в себя производство мобильных процессоров и коммуникационных решений для смартфонов. Базируется линейка процессоров на архитектуре ARM и имеет широкий модельный ряд, разделённый на несколько классификаций: более ранние процессоры Qualcomm S1, S2, S3 и S4, и современные Qualcomm 200, 400, 600 и 800.

Самый мощный процессор на начало 2015-го является Snapdragon 810, впервые появившийся в смартфоне LG G FLEX2 . В нём 8-ми ядерный процессор Qualcomm Snapdragon 810 (MSM8994), с тактовой частотой до 2 ГГц.

Предыдущая версия Snapdragon 805 используется в смартфонах Samsung Galaxy S5 , Google Nexus 6, LG G3. Количество «баллов» при тестировании с помощью приложения Antutu Benchmark – 37780.

Компания Nvidia «родилась» в 1993 году в городе Санта – Клара, Калифорния, где и сейчас находится её штаб-квартира. Основателем компании является бизнесмен и специалист в области электронных технологий Хуан Жен Сюнь.

Название компании Nvidia известно практически каждому пользователю персонального компьютера, так как она является производителем популярной линейки видеокарт для ПК и ноутбуков Nvidia GeForce. Так же компания занимается разработкой процессоров для мобильный устройств (планшетов, смартфонов и т.д) на базе ARM, объединённых в общую линейку Tegra (Tegra 2,3, 4, K1 и т.д).

Последним поколением процессоров линейки Tegra является Nvidia Tegra K1. Его характеристики – частота 2,3 ГГц и четыре ядра. Этот процессор используют в устройствах Google Nexus , Lenovo и Acer. Баллы Antutu – 43851.

Южно-корейская компания Samsung была основана ещё в далёком 1938 году как компания, занимающаяся поставкой пищевого продовольствия. Однако к концу 60-х годов компания весьма крупно реформировалась и перешла на производство электроники, что до сих пор и является основной сферой её деятельности. Штаб-квартира находится в Сеуле.

Самсунг производит очень широкий спектр устройств: мобильные телефоны, смартфоны, планшеты, мониторы, двд-проигрыватели и т.д. Разумеется, являясь одним из самых крупных в мире производителей смартфонов, компания не могла обойти стороной и сферу производства процессоров для этих устройств.

Линейка процессоров Самсунг носит название Exynos. Базой является архитектура ARM. На конец 2014-го года самыми современными являются процессоры Samsung Exynos 5 Octa 5420 (1,9 ГГц, четыре ядра) и Samsung Exynos 5 Octa 5422 (2,1 ГГц, четыре ядра). Используются в ряду устройств Samsung Galaxy: S5, Note 3 и т.д. Так же компании Apple и Samsung договорились о сотрудничестве и в 2015 году смартфоны и планшеты Apple будут выходить с процессорами произведенными на заводе Samsung.
Баллы Antutu для Exynos 5 Octa 5420 – 34739.

MediaTek MT

Компания, основанная в 1997 году китайскими бизнесменами и специалистами по электронике Цзаем Мингаем и Чжо Чжинчже, базируется в Тайваньском парке высоких технологий в городе Синчжу (хотя имеет множество подразделений по всему миру) и занимается разработкой систем хранения данных, компонентов для мобильных телефонов, смартфонов и планшетов.

Наиболее широкую известность этой компании принесло производство процессоров для мобильных устройств в разных ценовых категориях. Mediatek называют главным конкурентом Qualcomm. Наиболее производительными процессорами для смартфонов на конец 2014-го являются MT6595 (2ГГц, 4 ядра), MT6735 (1,5 ГГц и 4 ядра) и MT6592M (8 ядер и 2 ГГц). Используются процессоры МТ многими компаниями-производителями смартфонов, от Sony до LG. Рейтинг в antutu для MT6592 – 30217.

Выбор смартфонов достаточно широк, так же, как и ряд характеристик. Покупателю нужно всего лишь выбрать подходящий! Внимательно подходите к выбору смартфона, и он будет служить вам верой и правдой достаточно долго.

Несколько лет тому назад компания Intel представила пошаговый процесс производства микропроцессоров: от песка до конечного продукта. Фактически процесс производства полупроводниковых элементов выглядит поистине удивительным.

Шаг 1. Песок

Кремний, составляющий по общей массе около 25 процентов всех химических элементов в земной коре, является вторым по распространению после кислорода. Песок имеет высокое процентное содержание диоксида кремния (SiO 2), который является основным ингредиентом не только для производства процессоров Intel, но и вообще для полупроводникового производства.

Расплавленный кремний

Вещество очищается в течение нескольких этапов, пока не получится кремний полупроводниковой чистоты, используемый в полупроводниках. В конечном счете, он поступает в виде монокристаллических слитков диаметром около 300 миллиметров (12 дюймов). Ранее слитки имели диаметр 200 миллиметров (8 дюймов), а в далеком 1970 году - еще меньше - 50 миллиметров (2 дюйма).

На данном уровне производства процессоров после очистки чистота кристалла составляет один атом примеси на миллиард атомов кремния. Вес слитка составляет 100 килограмм.

Шаг 3. Нарезание слитка

Слиток нарезается очень тонкой пилой на отдельные ломтики, называемые подложками. Каждая из них впоследствии полируется, чтобы получилась бездефектная зеркально-гладкая поверхность. Именно на эту гладкую поверхность впоследствии будут наноситься крошечные медные провода.

Экспонирование фоторезистивного слоя

На вращающуюся с высокой скоростью подложку заливается фоторезистивная жидкость (такие же материалы используются в традиционной фотографии). При вращении на всей поверхности подложки образуется тонкий и равномерный резистивный слой.

Ультрафиолетовый лазер через маски и линзу воздействует на поверхность подложки, образуя на ней небольшие освещенные ультрафиолетовые линии. Линза делает сфокусированное изображение в 4 раза меньше маски. Везде, где ультрафиолетовые линии воздействуют на резистивный слой, возникает химическая реакция, в результате которой данные участки становятся растворимыми.

Шаг 5. Травление

Растворимый фоторезистивный материал затем полностью растворяется с помощью химического растворителя. Таким образом, для частичного растворения или травления небольшого количества полированного полупроводникового материала (подложки) используется химический травитель. Оставшаяся часть фоторезистивного материала удаляется путем похожего процесса промывки, открывая (экспонируя) протравленную поверхность подложки.

Формирование слоев

Для создания крошечных медных проводов, которые в конечном счете будут передавать электричество к/от различных соединителей, добавляются дополнительные фоторезисты (светочувствительные материалы), которые также промываются и экспонируются. В дальнейшем выполняется процесс ионного легирования для добавления примесей и защиты мест осаждения ионов меди от медного купороса во время процесса гальваностегии.

На различных этапах этих процессов производства процессора добавляются дополнительные материалы, которые протравливаются и полируются. Данный процесс повторяется 6 раз для формирования 6 слоев.

Конечный продукт выглядит как сетка из множества микроскопических медных полос, проводящих электричество. Некоторые из них соединены с другими, а некоторые - расположены на определенном расстоянии от других. Но все они используются для реализации одной цели - для передачи электронов. Другими словами, они предназначены для обеспечения так называемой «полезной работы» (например, сложение двух чисел с максимально возможной скоростью, что является сутью модели вычислений в наши дни).

Многоуровневая обработка повторяется на каждом отдельном небольшом участке поверхности подложки, на котором будут изготовлены чипы. В том числе к таким участкам относятся те из них, которые частично расположены за пределами подложки.

Шаг 7. Тестирование

Как только будут нанесены все металлические слои и созданы все транзисторы, наступает время следующего этапа производства процессоров "Интел" - тестирования. Устройство с множеством штырьков размещается в верхней части чипа. К нему прикрепляется множество микроскопических проводков. Каждый такой проводок имеет электрическое соединение с чипом.

Для воспроизведения работы чипа ему передается последовательность тестовых сигналов. При тестировании проверяются не только традиционные вычислительные способности, но также выполняется внутренняя диагностика с определением значений напряжения, каскадных последовательностей и другие функции. Ответ чипа в виде результата тестирования сохраняется в базе данных, специально выделенной для данного участка подложки. Данный процесс повторяется для каждого участка подложки.

Нарезание пластин

Для нарезания пластин применяется очень маленькая пила с алмазным наконечником. База данных, заполненная на предыдущем этапе, используется для определения, какие чипы, отрезанные от подложки, сохранены, а какие отброшены.

Шаг 9. Заключение в корпуса

Все рабочие пластины помещаются в физические корпуса. Несмотря на то, что пластины были предварительно протестированы и в отношении их было принято решение, что они работают корректно, это не означает, что они являются хорошими процессорами.

Процесс заключения в корпуса означает помещение кремниевого кристалла в материал подложки, к контактам или массиву шариковых выводов которого подсоединены миниатюрные золотые проводки. Массив шариковых выводов можно обнаружить на обратной стороне корпуса. В верхней части корпуса устанавливается теплоотвод. Он представляет собой металлический корпус. По завершении этого процесса центральный процессор выглядит как готовый продукт, предназначенный для потребления.

Примечание: металлический теплоотвод является ключевым компонентом современных высокоскоростных полупроводниковых устройств. Раньше теплоотводы были керамическими и не использовали принудительное охлаждение. Оно потребовалось для некоторых моделей 8086 и 80286 и для моделей, начиная с 80386. Предшествующие поколения процессоров имели намного меньше транзисторов.

Например, процессор 8086 имел 29 тысяч транзисторов, в то время как современные центральные процессоры имеют сотни миллионов транзисторов. Столь маленькое по нынешним меркам количество транзисторов не вырабатывало достаточно тепла, чтобы требовалось активное охлаждение. Чтобы отделить данные процессоры от нуждающихся в таком типе охлаждения, впоследствии на керамические чипы ставилось клеймо «Требуется теплоотвод».

Современные процессоры генерируют достаточно тепла, чтобы расплавиться в считанные секунды. Только наличие теплоотвода, подсоединенного к большому радиатору и вентилятору, позволяет им функционировать в течение продолжительного времени.

Сортировка процессоров по характеристикам

К этому этапу производства процессор выглядит таким, каким его покупают в магазине. Однако для завершения процесса его производства требуется еще один этап. Он называется сортировкой.

На этом этапе измеряются действительные характеристики отдельного центрального процессора. Измеряются такие параметры, как напряжение, частота, производительность, тепловыделение и другие характеристики.

Лучшие чипы откладываются как изделия более высокого класса. Они продаются не только как самые быстрые компоненты, но и как модели с низким и сверхнизким напряжением.

Чипы, которые не вошли в группу лучших процессоров, часто продаются как процессоры с более низкими тактовыми частотами. Кроме того, четырехъядерные процессоры более низкого класса могут продаваться как двух- или трехъядерные.

Производительность процессоров

В процессе сортировки определяются конечные значения скорости, напряжения и тепловые характеристики. Например, на стандартной подложке только 5 % произведенных чипов могут функционировать на частоте более 3,2 ГГц. В то же время 50 % чипов могут функционировать на частоте 2,8 ГГц.

Производители процессоров постоянно выясняют причины, почему основная часть производимых процессоров работает на частоте 2,8 ГГц вместо требуемой 3,2 ГГц. Иногда для увеличения производительности в конструкцию процессора могут быть внесены изменения.

Рентабельность производства

Рентабельность бизнеса по производству процессоров и большинства полупроводниковых элементов лежит в пределах 33-50 %. Это означает, что, по меньшей мере, от 1/3 до 1/2 пластин на каждой подложке рабочие, а компания в этом случае рентабельна.

У компании Intel операционная прибыль при применении технологии 45 нм для подложки 300 мм составляет 95 %. Это означает, что если из одной подложки возможно изготовить 500 кремниевых пластин, 475 из них будут рабочими и только 25 будут выброшены. Чем больше пластин можно получить с одной подложки, тем большую прибыль будет иметь компания.

Технологии Intel, используемые в наши дни

История применения новых технологий Intel для массового производства процессоров:

  • 1999 г. - 180 нм;
  • 2001 г. - 130 нм;
  • 2003 г. - 90 нм;
  • 2005 г. - 65 нм;
  • 2007 г. - 45 нм;
  • 2009 г. - 32 нм;
  • 2011 г. - 22 нм;
  • 2014 г. - 14 нм;
  • 2019 г. - 10 нм (планируется).

В начале 2018 г. компания Intel объявила о переносе массового производства 10-нм процессоров на 2019 год. Причина этого - в большой стоимости производства. На данный момент компания продолжает поставлять 10-нм процессоры в небольших объемах.

Охарактеризуем технологии производства процессоров Intel с точки зрения стоимости. Дороговизну руководство компании объясняет длинным производственным циклом и применением большого количества масок. В основе 10-нм технологии лежит глубокая ультрафиолетовая литография (DUV) с применением лазеров, работающих на длине волны 193 нм.

Для 7-нм процесса будет использоваться экстремальная ультрафиолетовая литография (EUV) с применением лазеров, работающих на длине волны 13,5 нм. Благодаря такой длине волны удастся избежать применения мультипаттернов, широко используемых для 10-нм процесса.

Инженеры компании считают, что на данный момент нужно отшлифовать технологию DUV, а не прыгать напрямую на 7-нм процесс. Таким образом, пока будут снятыми с производства процессоры, использующие 10-нм технологию.

Перспективы микропроцессорного производства компании AMD

Единственным реальным конкурентом "Интел" на рынке производства процессоров на сегодняшний день является AMD. Из-за ошибок "Интел", связанных с 10-нм технологией, AMD немного поправила свое положение на рынке. У Intel массовое производство с использованием технологического процесса 10 нм сильно запоздало. Компания AMD, как известно, использует для производства своих чипов третью сторону. И теперь сложилась ситуация, когда AMD для производства использует во всю 7-нм технологии производства процессоров, не уступающие главному конкуренту.

Основными сторонними производителями полупроводниковых устройств с использованием новых технологий для сложной логики являются Тайваньская компания производства полупроводников (TSMC), американская компания GlobalFoundaries и корейская Samsung Foundry.

AMD планирует использовать TSMC исключительно для производства микропроцессоров следующего поколения. При этом будут применяться новые технологии производства процессоров. Компания уже выпустила ряд продуктов с применением 7-нм процесса, включая 7-нм графический процессор. Первый планируется выпустить в 2019 г. Уже через 2 года планируется начать массовое производство 5-нм микросхем.

GlobalFoundaries отказалась от разработки процесса 7 нм, чтобы сосредоточить свои усилия на развитии своих 14/12 нм процессов для клиентов, ориентированных на быстрорастущие рынки. AMD вкладывает в GlobalFoundaries дополнительные инвестиции для производства процессоров AMD текущего поколения Ryzen, EPYC и Radeon.

Производство микропроцессоров в России

Основные микроэлектронные производства расположены в городах Зеленоград ("Микрон", "Ангстрем") и Москва ("Крокус"). Собственное микроэлектронное производство имеется также и в Беларуси - компания "Интеграл", использующая технологический процесс 0,35 мкм.

Производством процессоров в России занимаются компании "МЦСТ" и "Байкал Электроникс". Последняя разработка "МЦСТ" - процессор «Эльбрус-8С». Это 8-ядерный микропроцессор с тактовой частотой 1,1-1,3 ГГц. Производительность российского процессора составляет 250 гигафлопс (операций с плавающей запятой в секунду). Представителями компании заявляется, что по ряду показателей процессор может конкурировать даже с лидером отрасли - компанией Intel.

Производство продолжится моделью "Эльбрус-16" частотой 1,5 ГГц (цифровой индекс в названии обозначает количество ядер). Массовое изготовление этих микропроцессоров будет осуществляться в Тайване. Это должно способствовать уменьшению цены. Как известно, цена на продукцию компании заоблачная. При этом, по характеристикам комплектующие значительно уступают ведущим компаниям в этом секторе экономики. Пока такие процессоры будут использоваться только в государственных организациях и для оборонных целей. В качестве технологии производства процессоров этой линейки будет применяться 28-нм технологический процесс.

"Байкал Электроникс" производит процессоры, предназначенные для использования в промышленности. В частности, это относится к модели "Байкал Т1". Область ее применения - маршрутизаторы, системы с ЧПУ и офисная техника. Компания на этом не останавливается и уже разрабатывается процессор для персональных компьютеров - "Байкал М". Сведений о его характеристиках пока немного. Известно, что у него будет 8-ядерный процессор с поддержкой до 8 графических ядер. Преимущество этого микропроцессора будет заключаться в его энергоэффективности.

Процессор это сердце любого современного компьютера. Любой микропроцессор по сути является большой интегральной схемой, на которой расположены транзисторы. Пропуская электрический ток транзисторы позволяют создавать двоичную логику (вкл. – выкл.) вычислений. Современные процессоры выполняются на базе 45 нм технологии. 45нм (нанометра) это размер одного транзистора, расположенного на процессорной пластине. Еще недавно в основном использовали 90 нм технологию.

Пластины делаются из кремния, который занимает 2 место по размеру залежей в земной коре.

Кремний получают химической обработкой, очищая его от примесей. После этого его начинают выплавлять, формируя кремниевый цилиндр диаметром 300 миллиметров. Этот цилиндр, в дальнейшем разрезают на пластины алмазной нитью. Толщина каждой пластины около 1 мм. Чтобы пластина имела идеальную поверхность, после реза нитью, ее шлифуют специальной шлифовальной машиной.

После этого поверхность кремниевой пластины получается идеально ровной. Кстати многие производственные компании уже заявили о возможности работы с 450 мм пластинами. Чем больше поверхность – тем большее количество транзисторов для размещения, и тем более высокая производительность процессора.

Процессор состоит из кремниевой пластины, на поверхности которой располагается до девяти уровней транзисторов, разделенные слоями оксида, для изоляции.

Развитие технологии производства процессоров

Гордон Мур, один из основателей компании Intel, одного из лидеров производства процессоров в мире, в 1965 году на основе своих наблюдений открыл закон, по которому новые модели процессоров и микросхем появлялись через равные отрезки времени. Рост количества транзисторов в процессорах растет примерно в 2 раза за 2 года. Вот уже в течение 40 лет закон Гордона Мура работает без искажений. Освоение будущих технологий не за горами – уже есть рабочие прототипы на основе 32 нм и 22нм технологии производства процессоров. До середины 2004 года мощность процессора зависела в первую очередь от частоты процессора, но, начиная с 2005 года, частота процессоров практически перестала расти. Появилась новая технология многоядерности процессора. То есть создается несколько ядер процессора с равной тактовой частотой, и при работе мощность ядер суммируется. За счет этого повышается общая мощность процессора.

Ниже вы можете посмотреть видео о производстве процессоров.

Корни нашего цифрового образа жизни определённо растут из полупроводников, которые позволили создавать сложные вычислительные чипы на основе транзисторов. Они хранят и обрабатывают данные, что и является основой современных микропроцессоров. Полупроводники, которые сегодня изготавливаются из песка, являются ключевым компонентом практически любого электронного устройства, от компьютеров до ноутбуков и сотовых телефонов. Даже машины теперь не обходятся без полупроводников и электроники, поскольку полупроводники управляют системой кондиционирования воздуха, процессом впрыска топлива, зажиганием, люком, зеркалами и даже рулевым управлением (BMW Active Steering). Сегодня почти любое устройство, которое потребляет энергию, построено на полупроводниках.

Микропроцессоры, без сомнения, находятся среди самых сложных полупроводниковых продуктов, поскольку в скором времени число транзисторов достигнет миллиарда, а спектр функциональности поражает уже сегодня. Скоро выйдут двуядерные процессоры Core 2 на почти готовом 45-нм техпроцессе Intel, причём содержать они будут уже 410 миллионов транзисторов (хотя их большая часть будет использоваться для 6-Мбайт кэша L2). 45-нм процесс назван так по размеру одного транзистора, который теперь примерно в 1 000 раз меньше диаметра человеческого волоса. В определённой степени именно поэтому электроника начинает управлять всем в нашей жизни: даже когда размеры транзистора были больше, производить не очень сложные микросхемы было очень дёшево, бюджет транзисторов был весьма большим.

В нашей статье мы рассмотрим основы производства микропроцессоров, но также коснёмся и истории процессоров, архитектуры и рассмотрим разные продукты на рынке. В Интернете можно найти немало интересной информации, кое-что перечислено ниже.

  • Wikipedia: Microprocessor . В этой статье рассмотрены разные типы процессоров и приведены ссылки на производителей и дополнительные страницы Wiki, посвящённые процессорам.
  • Wikipedia: Microprocessors (Category) . В разделе, посвящённом микропроцессорам, приведено ещё больше ссылок и информации.

Конкуренты в сфере ПК: AMD и Intel

Штаб-квартира компании Advanced Micro Devices Inc., основанной в 1969, располагается в калифорнийском Саннивейле, а "сердце" компании Intel, которая была образована всего на год раньше, располагается в нескольких километрах, в городе Санта-Клара. У AMD сегодня есть два завода: в Остине (Техас, США) и в Дрездене (Германия). Скоро в действие вступит новый завод. Кроме того, AMD объединила усилия с IBM по разработке процессорных технологий и по производству. Конечно, всё это - лишь доля от размера Intel, поскольку у этого лидера рынка сегодня работают почти 20 заводов в девяти местах. Примерно половина из них используется для производства микропроцессоров. Поэтому, когда вы сравниваете AMD и Intel, помните, что вы сравниваете Давида и Голиафа.

У Intel есть бесспорное преимущество в виде огромных производственных мощностей. Да, компания сегодня лидирует по внедрению передовых технологических процессов. Intel примерно на год опережает AMD в этом отношении. В результате Intel может использовать в своих процессорах большее число транзисторов и больший объём кэша. AMD, в отличие от Intel, приходится максимально эффективно оптимизировать техпроцесс, чтобы не отстать от конкурента и выпускать достойные процессоры. Конечно, дизайн процессоров и их архитектура сильно различаются, но технический процесс производства построен на тех же базовых принципах. Хотя, конечно, и в нём отличий много.

Производство микропроцессоров

Производство микропроцессоров состоит из двух важных этапов. Первый заключается в производстве подложки, что AMD и Intel осуществляют на своих заводах. Сюда входит и придание подложке проводящих свойств. Второй этап - тест подложек, сборка и упаковка процессора. Последнюю операцию обычно производят в менее дорогих странах. Если вы посмотрите на процессоры Intel, то найдёте надпись, что упаковка была осуществлена в Коста-Рике, Малайзии, на Филиппинах и т.д.

AMD и Intel сегодня пытаются выпускать продукты для максимального числа сегментов рынка, причём, на основе минимально возможного ассортимента кристаллов. Прекрасный пример - линейка процессоров Intel Core 2 Duo. Здесь есть три процессора с кодовыми названиями для разных рынков: Merom для мобильных приложений, Conroe - настольная версия, Woodcrest - серверная версия. Все три процессора построены на одной технологической основе, что позволяет производителю принимать решения на последних этапах производства. Можно включать или отключать функции, а текущий уровень тактовых частот даёт Intel прекрасный процент выхода годных кристаллов. Если на рынке повысился спрос на мобильные процессоры, Intel может сфокусироваться на выпуске моделей Socket 479. Если возрос спрос на настольные модели, то компания будет тестировать, валидировать и упаковывать кристаллы для Socket 775, в то время как серверные процессоры упаковываются под Socket 771. Так создаются даже четырёхядерные процессоры: два двуядерных кристалла устанавливаются в одну упаковку, вот мы и получаем четыре ядра.

Как создаются чипы

Производство чипов заключается в наложении тонких слоёв со сложным "узором" на кремниевые подложки. Сначала создаётся изолирующий слой, который работает как электрический затвор. Сверху затем накладывается фоторезистивный материал, а нежелательные участки удаляются с помощью масок и высокоинтенсивного облучения. Когда облучённые участки будут удалены, под ними откроются участки диоксида кремния, который удаляется с помощью травления. После этого удаляется и фоторезистивный материал, и мы получаем определённую структуру на поверхности кремния. Затем проводятся дополнительные процессы фотолитографии, с разными материалами, пока не будет получена желаемая трёхмерная структура. Каждый слой можно легировать определённым веществом или ионами, меняя электрические свойства. В каждом слое создаются окна, чтобы затем подводить металлические соединения.

Что касается производства подложек, то из цельного монокристалла-цилиндра их необходимо нарезать тонкими "блинами", чтобы потом легко разрезать на отдельные кристаллы процессоров. На каждом шаге производства выполняется сложное тестирование, позволяющее оценить качество. Для тестов каждого кристалла на подложке используются электрические зонды. Наконец, подложка разрезается на отдельные ядра, нерабочие ядра сразу же отсеиваются. В зависимости от характеристик, ядро становится тем или иным процессором и заключается в упаковку, которая облегчает установку процессора на материнскую плату. Все функциональные блоки проходят через интенсивные стресс-тесты.

Всё начинается с подложек

Первый шаг в производстве процессоров выполняется в чистой комнате. Кстати, важно отметить, что подобное технологичное производство представляет собой скопление огромного капитала на квадратный метр. На постройку современного завода со всем оборудованием легко "улетают" 2-3 млрд. долларов, да и на тестовые прогоны новых технологий требуется несколько месяцев. Только затем завод может серийно выпускать процессоры.

В общем, процесс производства чипов состоит из нескольких шагов обработки подложек. Сюда входит и создание самих подложек, которые в итоге будут разрезаны на отдельные кристаллы.

Всё начинается с выращивания монокристалла, для чего затравочный кристалл внедряется в ванну с расплавленным кремнием, который находится чуть выше точки плавления поликристаллического кремния. Важно, чтобы кристаллы росли медленно (примерно день), чтобы гарантировать правильное расположение атомов. Поликристаллический или аморфный кремний состоит из множества разномастных кристаллов, которые приведут к появлению нежелательных поверхностных структур с плохими электрическими свойствами. Когда кремний будет расплавлен, его можно легировать с помощью других веществ, меняющих его электрические свойства. Весь процесс происходит в герметичном помещении со специальным воздушным составом, чтобы кремний не окислялся.

Монокристалл разрезается на "блины" с помощью кольцевой алмазной пилы, которая очень точная и не создаёт крупных неровностей на поверхности подложек. Конечно, при этом поверхность подложек всё равно не идеально плоская, поэтому нужны дополнительные операции.

Сначала с помощью вращающихся стальных пластин и абразивного материала (такого, как оксид алюминия), снимается толстый слой с подложек (процесс называется притиркой). В результате устраняются неровности размером от 0,05 мм до, примерно, 0,002 мм (2 000 нм). Затем следует закруглить края каждой подложки, поскольку при острых кромках могут отслаиваться слои. Далее используется процесс травления, когда с помощью разных химикатов (плавиковая кислота, уксусная кислота, азотная кислота) поверхность сглаживается ещё примерно на 50 мкм. Физически поверхность не ухудшается, поскольку весь процесс полностью химический. Он позволяет удалить оставшиеся погрешности в структуре кристалла, в результате чего поверхность будет близка к идеалу.

Последний шаг - полировка, которая сглаживает поверхность до неровностей, максимум, 3 нм. Полировка осуществляется с помощью смеси гидроксида натрия и гранулированного диоксида кремния.

Сегодня подложки для микропроцессоров имеют диаметр 200 или 300 мм, что позволяет производителям чипов получать с каждой из них множество процессоров. Следующим шагом будут 450-мм подложки, но раньше 2013 года ожидать их не следует. В целом, чем больше диаметр подложки, тем больше можно произвести чипов одинакового размера. 300-мм подложка, например, даёт более чем в два раза больше процессоров, чем 200-мм.

Мы уже упоминали легирование, которое выполняется во время роста монокристалла. Но легирование производится и с готовой подложкой, и во время процессов фотолитографии позднее. Это позволяет менять электрические свойства определённых областей и слоёв, а не всей структуры кристалла

Добавление легирующего вещества может происходить через диффузию. Атомы легирующего вещества заполняют свободное пространство внутри кристаллической решётки, между структурами кремния. В некоторых случаях можно легировать и существующую структуру. Диффузия осуществляется с помощью газов (азот и аргон) или с помощью твёрдых веществ или других источников легирующего вещества.

Ещё один подход к легированию заключается в ионной имплантации, которая очень полезна в деле изменения свойств подложки, которая была легирована, поскольку ионная имплантация осуществляется при обычной температуре. Поэтому существующие примеси не диффундируют. На подложку можно наложить маску, которая позволяет обрабатывать только определённые области. Конечно, об ионной имплантации можно говорить долго и обсуждать глубину проникновения, активацию добавки при высокой температуре, канальные эффекты, проникновение в оксидные уровни и т.д., но это выходит за рамки нашей статьи. Процедуру можно повторять несколько раз во время производства.

Чтобы создать участки интегральной схемы, используется процесс фотолитографии. Поскольку при этом нужно облучать не всю поверхность подложки, то важно использовать так называемые маски, которые пропускают излучение высокой интенсивности только на определённые участки. Маски можно сравнить с чёрно-белым негативом. Интегральные схемы имеют множество слоёв (20 и больше), и для каждого из них требуется своя маска.

Структура из тонкой хромовой плёнки наносится на поверхность пластины из кварцевого стекла, чтобы создать шаблон. При этом дорогие инструменты, использующие поток электронов или лазер, прописывают необходимые данные интегральной схемы, в результате чего мы получаем шаблон из хрома на поверхности кварцевой подложки. Важно понимать, что каждая модификация интегральной схемы приводит к необходимости производства новых масок, поэтому весь процесс внесения правок очень затратный. Для очень сложных схем маски создаются весьма долго.

С помощью фотолитографии на кремниевой подложке формируется структура. Процесс повторяется несколько раз, пока не будет создано множество слоёв (более 20). Слои могут состоять из разных материалов, причём, нужно ещё и продумывать соединения микроскопическими проволочками. Все слои можно легировать.

Перед тем, как начнётся процесс фотолитографии, подложка очищается и нагревается, чтобы удалить липкие частицы и воду. Затем подложка с помощью специального устройства покрывается диоксидом кремния. Далее на подложку наносится связывающий агент, который гарантирует, что фоторезистивный материал, который будет нанесён на следующем шаге, останется на подложке. Фоторезистивный материал наносится на середину подложки, которая потом начинает вращаться с большой скоростью, чтобы слой равномерно распределился по всей поверхности подложки. Подложка вновь затем нагревается.

Затем через маску обложка облучается квантовым лазером, жёстким ультрафиолетовым излучением, рентгеновским излучением, пучками электронов или ионов - могут использоваться все эти источники света или энергии. Пучки электронов применяются, главным образом, для создания масок, рентгеновские лучи и пучки ионов - для исследовательских целей, а в промышленном производстве сегодня доминируют жёсткое УФ-излучение и газовые лазеры.


Жёсткое УФ-излучение с длиной волны 13,5 нм облучает фоторезистивный материал, проходя через маску.

Для получения требуемого результата очень важны время проецирования и фокусировка. Плохая фокусировка приведёт к тому, что останутся лишние частицы фоторезистивного материала, поскольку некоторые отверстия в маске не будут облучены должным образом. То же самое получится, если время проецирования будет слишком маленьким. Тогда структура из фоторезистивного материала будет слишком широкой, участки под отверстиями будут недодержанными. С другой стороны, чрезмерное время проецирования создаёт слишком большие участки под отверстиями и слишком узкую структуру из фоторезистивного материала. Как правило, очень трудоёмко и сложно отрегулировать и оптимизировать процесс. Неудачная регулировка приведёт к серьёзным отклонениям и в соединительных проводниках.

Специальная шаговая проекционная установка перемещает подложку в нужное положение. Затем может проецироваться строчка или один участок, чаще всего соответствующий одному кристаллу процессора. Дополнительные микроустановки могут вносить дополнительные изменения. Они могут отлаживать существующую технологию и оптимизировать техпроцесс. Микроустановки обычно работают над площадями меньше 1 кв. мм, в то время как обычные установки покрывают площади большего размера.

Затем подложка переходит на новый этап, где удаляется ослабленный фоторезистивный материал, что позволяет получить доступ к диоксиду кремния. Существуют мокрый и сухой процессы травления, которыми обрабатываются участки диоксида кремния. Мокрые процессы используют химические соединения, а сухие процессы - газ. Отдельный процесс заключается и в удалении остатков фоторезистивного материала. Производители часто сочетают мокрое и сухое удаление, чтобы фоторезистивный материал был полностью удалён. Это важно, поскольку фоторезистивный материал органический, и если его не удалить, он может привести к появлению дефектов на подложке. После травления и очистки можно приступать к осмотру подложки, что обычно и происходит на каждом важном этапе, или переводить подложку на новый цикл фотолитографии.

Тест подложек, сборка, упаковка

Готовые подложки тестируются на так называемых установках зондового контроля. Они работают со всей подложкой. На контакты каждого кристалла накладываются контакты зонда, что позволяет проводить электрические тесты. С помощью программного обеспечения тестируются все функции каждого ядра.

С помощью разрезания из подложки можно получить отдельные ядра. На данный момент установки зондового контроля уже выявили, какие кристаллы содержат ошибки, поэтому после разрезания их можно отделить от годных. Раньше повреждённые кристаллы физически маркировались, теперь в этом нет необходимости, вся информация хранится в единой базе данных.

Крепление кристалла

Затем функциональное ядро нужно связать с процессорной упаковкой, используя клейкий материал.

Затем нужно провести проводные соединения, связывающие контакты или ножки упаковки и сам кристалл. Могут использоваться золотые, алюминиевые или медные соединения.


Большинство современных процессоров используют пластиковую упаковку с распределителем тепла.

Обычно ядро заключается в керамическую или пластиковую упаковку, что позволяет предотвратить повреждение. Современные процессоры оснащаются так называемым распределителем тепла, который обеспечивает дополнительную защиту кристалла, а также большую контактную поверхность с кулером.

Тестирование процессора

Последний этап подразумевает тестирование процессора, что происходит при повышенных температурах, в соответствии со спецификациями процессора. Процессор автоматически устанавливается в тестовый сокет, после чего происходит анализ всех необходимых функций.

Современные микропроцессоры - одни из сложнейших устройств, изготавливаемых человеком. Производство полупроводникового кристалла намного более ресурсоемко, чем, скажем, возведение многоэтажного дома или организация крупнейшего выставочного мероприятия. Однако благодаря массовому выпуску CPU в денежном эквиваленте мы этого не замечаем, да и редко кто задумывается обо всей грандиозности элементов, занимающих столь видное место внутри системного блока. Мы решили изучить детали производства процессоров и поведать о них в данном материале. Благо в Сети сегодня достаточно информации на эту тему, а специализированная подборка презентаций и слайдов корпорации Intel позволяет выполнить поставленную задачу максимально наглядно. Предприятия других гигантов полупроводниковой индустрии работают по тому же принципу, поэтому с уверенностью можно сказать, что все современные микросхемы проходят идентичный путь создания.

Первое, о чем стоит упомянуть, - строительный материал для процессоров. Кремний (англ. silicon) - второй после кислорода наиболее распространенный элемент на планете. Он является природным полупроводником и используется как основной материал для производства чипов всевозможных микросхем. Больше всего кремния содержится в обычном песке (особенно кварце) в виде диоксида кремния (SiO2).

Впрочем, кремний - не единственный материал. Самый близкий его родственник и заменитель - германий, однако в процессе совершенствования производства ученые выявляют хорошие полупроводниковые свойства у соединений других элементов и готовятся опробовать их на практике или уже это делают.

1 Кремний проходит многоступенчатый процесс очистки: сырье для микросхем не может содержать больше примесей, чем один чужеродный атом на миллиард.

2 Кремний расплавляют в специальной емкости и, опустив внутрь постоянно охлаждаемый вращающийся стержень, «наматывают» на него благодаря силам поверхностного натяжения вещество.

3 В итоге получаются продольные заготовки (монокристаллы) круглого сечения, каждая массой около 100 кг.

4 Заготовку нарезают на отдельные кремниевые диски - пластины, на которых будут расположены сотни микропроцессоров. Для этих целей используются станки с алмазными режущими дисками или проволочно-абразивные установки.

5 Подложки полируют до зеркального блеска, чтобы устранить все дефекты на поверхности. Следующий шаг - нанесение тончайшего фотополимерного слоя.

6 Обработанная подложка подвергается воздействию жесткого ультрафиолетового излучения. В фотополимерном слое происходит химическая реакция: свет, проходя через многочисленные трафареты, повторяет рисунки слоев CPU.

7 Реальный размер наносимого изображения в несколько раз меньше собственно трафарета.

8 Участки, «протравленные» излучением, вымываются. На кремниевой подложке получается рисунок, который затем подвергается закреплению.

9 Следующий этап изготовления одного слоя - ионизация, в процессе которой свободные от полимера участки кремния бомбардируются ионами.

10 В местах их попадания изменяются свойства электрической проводимости.

11 Оставшийся полимер удаляют, и транзистор почти готов. В изолирующих слоях делаются отверстия, которые благодаря химической реакции заполняются атомами меди, используемыми в качестве контактов.

12 Соединение транзисторов представляет собой многоуровневую разводку. Если взглянуть в микроскоп, на кристалле можно заметить множество металлических проводников и помещенных между ними атомов кремния или его современных заменителей.

13 Часть готовой подложки проходит первый тест на функциональность. На этом этапе на каждый из выбранных транзисторов подается ток, и автоматизированная система проверяет параметры работы полупроводника.

14 Подложка с помощью тончайших режущих кругов разрезается на отдельные части.

15 Годные кристаллы, полученные в результате данной операции, используются в производстве процессоров, а бракованные отправляются в отходы.

16 Отдельный кристалл, из которого будет сделан процессор, помещают между основанием (подложкой) CPU и теплорас-пределительной крышкой и «упаковывают».

17 В ходе окончательного тестирования готовые процессоры проверяются на соответствие требуемым параметрам и лишь затем сортируются. На основании полученных данных в них прошивается микрокод, позволяющий системе должным образом определить CPU.

18 Готовые устройства упаковываются и направляются на рынок.

Интересные факты о процессорах и их производстве

«Силиконовая долина» (Silicon Valley, США, Калифорния)

Получила свое название благодаря основному строительному элементу, использующемуся в производстве микрочипов.

«Почему пластины для производства процессоров круглые?» - наверняка спросите вы.

Для производства кремниевых кристаллов применяется технология, позволяющая получать только цилиндрические заготовки, которые затем режутся на части. До сих пор еще никому не удавалось изготовить квадратную пластину, лишенную дефектов.

Почему микрочипы квадратные?

Именно такая литография позволяет использовать площадь пластины с максимальной эффективностью.

Зачем процессорам столько ножек/контактов?

Помимо сигнальных линий каждый процессор для работы нуждается в стабильном питании. При энергопотреблении порядка 100-120 Вт и низком напряжении через контакты может протекать ток силой до 100 А. Значительная часть контактов CPU выделена именно под систему питания и дублируется.

Утилизация отходов производства

Раньше дефектные пластины, их остатки и бракованные микрочипы шли в отходы. На сегодняшний день ведутся разработки, позволяющие использовать их в качестве основы для производства солнечных батарей.

«Костюм кролика».

Такое название получил комбинезон белого цвета, который обязаны носить все рабочие производственных помещений. Делается это для поддержания максимальной чистоты и защиты от случайного попадания частиц пыли на производственные установки. «Костюм кролика» впервые был использован на фабриках по производству процессоров в 1973 году и с тех пор стал общепринятым стандартом.

99,9999%

Для производства процессоров пригоден только кремний высочайшей степени чистоты. Заготовки очищают спецхимией.

300 мм

Таков диаметр современных кремниевых пластин для производства процессоров.

1000 раз

Именно настолько чище воздух в помещениях фабрик для производства чипов, чем в операционной.

20 слоев

Процессорный кристалл очень тонкий (меньше миллиметра), но в нем умещаются более 20 слоев сложнейших структурных объединений транзисторов, которые выглядят как многоуровневые хайвеи.

2500

Именно столько кристаллов процессора Intel Atom (имеют наименьшую площадь среди cовременных CPU) размещаются на одной 300-миллиметровой пластине.

10 000 000 000 000 000 000

Сто квинтиллионов транзисторов в виде структурных элементов микрочипов отгружаются с фабрик каждый год. Это приблизительно в 100 раз больше, чем оценочное количество муравьев на планете.

A

Стоимость производства одного транзистора в процессоре сегодня равна цене печати одной буквы в газете.

В процессе подготовки статьи использовались материалы с официального веб-сайта корпорации Intel, www.intel.ua