Решение интерполяции онлайн. Применение экстраполяции в Microsoft Excel. Усложнённые виды интерполяции

Бывает ситуация, когда в массиве известных значений нужно найти промежуточные результаты. В математике это называется интерполяцией. В Excel данный метод можно применять как для табличных данных, так и для построения графиков. Разберем каждый из этих способов.

Главное условие, при котором можно применять интерполяцию – это то, что искомое значение должно быть внутри массива данных, а не выходить за его предел. Например, если мы имеем набор аргументов 15, 21 и 29, то при нахождении функции для аргумента 25 мы можем использовать интерполяцию. А для поиска соответствующего значения для аргумента 30 – уже нет. В этом и является главное отличие этой процедуры от экстраполяции.

Способ 1: интерполяция для табличных данных

Прежде всего, рассмотрим применения интерполяции для данных, которые расположены в таблице. Для примера возьмем массив аргументов и соответствующих им значений функции, соотношение которых можно описать линейным уравнением. Эти данные размещены в таблице ниже. Нам нужно найти соответствующую функцию для аргумента 28 . Сделать это проще всего с помощью оператора ПРЕДСКАЗ .


Способ 2: интерполяция графика с помощью его настроек

Процедуру интерполяции можно применять и при построении графиков функции. Актуальна она в том случае, если в таблице, на основе которой построен график, к одному из аргументов не указано соответствующее значение функции, как на изображении ниже.


Как видим, график скорректирован, а разрыв с помощью интерполяции удален.

Способ 3: интерполяция графика с помощью функции

Произвести интерполяцию графика можно также с помощью специальной функции НД. Она возвращает неопределенные значения в указанную ячейку.


Можно сделать даже проще, не запуская Мастер функций , а просто с клавиатуры вбить в пустую ячейку значение «#Н/Д» без кавычек. Но это уже зависит от того, как какому пользователю удобнее.

Как видим, в программе Эксель можно выполнить интерполяцию, как табличных данных, используя функцию ПРЕДСКАЗ , так и графика. В последнем случае это осуществимо с помощью настроек графика или применения функции НД , вызывающей ошибку «#Н/Д» . Выбор того, какой именно метод использовать, зависит от постановки задачи, а также от личных предпочтений пользователя.

Инструкция

Зачастую при проведении эмпирических исследований приходится сталкиваться с набором значений полученных методом случайной выборки. Из этого ряда значений требуется построить график функции, в которую с максимальной точностью впишутся и другие полученные значения. Этот метод, а точнее решение этой задачи есть аппроксимация кривой, т.е. замена одних объектов или явлений другими, близкими по исходному параметру. Интерполяция, в свою очередь же является разновидностью аппроксимации. Интерполяцией кривой называют процесс, при котором кривая выстроенной функции проходит через имеющиеся точки данных.

Имеется очень близкая к интерполяции задача, суть которой будет заключаться в аппроксимации исходной сложной функции иной, гораздо более простой функцией. Если же отдельная функция очень для вычислений, то можно попытаться вычислить её значение в нескольких точках, а по полученным построить (интерполировать) более простую функцию. Однако упрощенной функции не позволит получить столь же точные и достоверные данные, какие бы давала исходная функция.

Интерполяция через алгебраический двучлен, или линейная интерполяция
В общем виде: происходит интерполирование некоторой заданной функции f(х), принимающей значение в точках x0 и x1 отрезка алгебраическим двучленом P1(x) = ax + b. Если же задается более чем два значения функции, то искомая линейная функция заменяется линейно-кусочной функцией, каждая часть функции заключается между двумя заданными значениями функции в этих точках на интерполируемом отрезке.

Интерполирование методом конечных разностей
Данный метод один из простейших и широко распространенных методов осуществления интерполяции. Его суть в замене дифференциальных коэффициентов уравнения на разностные коэффициенты. Это действие позволит перейти к решению дифференциального уравнения путем его разностного аналога, иначе говоря, построить его конечно-разностную схему

Построение сплайн–функции
Сплайном в математическом моделировании называют кусочно-заданную функцию, которая с функциями, имеющими более простую на каждом элементе разбиения своей области определения. Сплайн от одной переменной строится путем разбиения области определения на конечное число отрезков, причем, на каждом из которых сплайн будет совпадать с некоторым алгебраическим полиномом. Максимальная степень использованного является сплайна.
Сплайн-функции для задания и описания поверхностей в различных системах компьютерного моделирования.

Это глава из книги Билла Джелена .

Задача: некоторые инженерные проблемы проектирования требуют использования таблиц для вычисления значений параметров. Поскольку таблицы являются дискретными, дизайнер использует линейную интерполяцию для получения промежуточного значения параметра. Таблица (рис. 1) включает высоту над землей (управляющий параметр) и скорость ветра (рассчитываемый параметр). Например, если надо найти скорость ветра, соответствующую высоте 47 метров, то следует применить формулу: 130 + (180 – 130) * 7 / (50 – 40) = 165 м/сек.

Скачать заметку в формате или , примеры в формате

Как быть, если существует два управляющих параметра? Можно ли выполнить вычисления с помощью одной формулы? В таблице (рис. 2) показаны значения давления ветра для различных высот и величин пролета конструкций. Требуется вычислить давление ветра на высоте 25 метров и величине пролета 300 метров.

Решение: проблему решаем путем расширения метода, используемого для случая с одним управляющим параметром. Выполните следующие действия.

Начните с таблицы, изображенной на рис. 2. Добавьте исходные ячейки для высоты и пролета в J1 и J2 соответственно (рис. 3).

Рис. 3. Формулы в ячейках J3:J17 объясняют работу мегаформулы

Для удобства использования формул определите имена (рис. 4).

Проследите за работой формулы последовательно переходя от ячейки J3 к ячейке J17.

Путем обратной последовательной подстановки соберите мегаформулу. Скопируйте текст формулы из ячейки J17 в J19. Замените в формуле ссылку на J15 на значение в ячейке J15: J7+(J8-J7)*J11/J13. И так далее. Получится формула, состоящая из 984 символов, которую невозможно воспринять в таком виде. Вы можете посмотреть на нее в приложенном Excel-файле. Не уверен, что такого рода мегаформулы полезны в использовании.

Резюме: линейная интерполяция используется для получения промежуточного значения параметра, если табличные значения заданы только для границ диапазонов; предложен метод расчета по двум управляющим параметрам.

Простейшим и часто используемым видом локальной интерполяции является линейная интерполяция . Она состоит в том, что заданные точки (x i , y i ) при (i = 0. 1, ..., n ) соединяются прямолинейными отрезками, и функция f (x ) приближается ломаной с вершинами в данных точках.

Уравнения каждого отрезка ломаной в общем случае разные. Поскольку имеется n интервалов (x i - 1, x i ), то для каждого из них в качестве уравнения интерполяционного многочлена используется уравнение прямой, проходящей через две точки. В частности, для i-го интервала можно написать уравнение прямой, проходящей через точки(x i -1, y i -1 ) и (x i , y i ), в виде

y=a i x+b i , x i-1 xx i

a i =

Следовательно, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента х, а затем подставить его в формулу (*) и найти приближенное значение функции в этой точке

Рисунок 3-3- График зависимости линейной интерполяции .

  1. Решение профессиональной задачи

Ведем экспериментальные данные

ORIGIN:=0 Начало массива данных - считаем с нуля

i :=1..6 Число элементов в массиве

Экспериментальные данные организованы в два вектора

Выполним интерполяцию встроенными функциями MathCad

Линейная интерполяция

Lf(x i):=linterp(x,y,x)

Интерполяция кубическим спайном

CS:= cspline(x,y)

Строим кубический сплайн по экспериментальным данным

Lf(x i):=linterp(x,y,x i)

Интерполяция В- сплайном

Задаем порядок интерполяции. В векторе u должно быть на (n-1) меньше элементов, чем в векторе x , причем первый элемент должен быть меньше или равен первому элементу x , а последний - больше или равен последнему элементу x.

BS:=bspline(x,y,u,n)

Cтроим В- сплайн по экспериментальным данным

BSf(x i):=(BS, x,y,x i)

Строим график всех функций аппроксимации на одной координатной плоскости.

Рисунок 4.1-График всех функций аппроксимации на одной координатной плоскости.

Заключение

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например, полученным в ходе некоторого эксперимента. Для вычисления многих функций, оказывается, эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений. Основным недостатком полиномиальной интерполяции является то, что она неустойчива на одной из самых удобных и часто используемых сеток - сетке с равноудаленными узлами. Если позволяет задача, эту проблему можно решить за счет выбора сетки с Чебышевскими узлами. Если же мы не можем свободно выбирать узлы интерполяции или нам просто нужен алгоритм, не слишком требовательный к выбору узлов, то рациональная интерполяция может оказаться подходящей альтернативой полиномиальной интерполяции.

К достоинствам сплайн-интерполяции следует отнести высокую скорость обработки вычислительного алгоритма, поскольку сплайн - это кусочно-полиномиальная функция и при интерполяции одновременно обрабатываются данные по небольшому количеству точек измерений, принадлежащих к фрагменту, который рассматривается в данный момент. Интерполированная поверхность описывает пространственную изменчивость различного масштаба и в то же время является гладкой. Последнее обстоятельство делает возможным прямой анализ геометрии и топологии поверхности с использованием аналитических процедур

Многие из нас сталкивались с непонятными терминами в разных науках. Но находится очень мало людей, которых не пугают непонятные слова, а наоборот, приободряют и заставляют всё больше углубиться в изучаемый предмет. Сегодня речь пойдёт о такой вещи, как интерполяция. Это способ построения графиков по известным точкам, позволяющий с минимальным количеством информации о функции предсказать её поведение на конкретных участках кривой.

Перед тем как перейти к сути самого определения и рассказать о нём подробнее, немного углубимся в историю.

История

Интерполяция была известна ещё с древнейших времён. Однако своим развитием это явление обязано нескольким самым выдающимся математикам прошлого: Ньютону, Лейбницу и Грегори. Именно они развили это понятие с помощью более продвинутых математических способов, доступных в то время. До этого интерполяцию, конечно, применяли и использовали в вычислениях, но делали это совершенно неточными способами, требующими большого количества данных для построения модели, более-менее близкой к реальности.

Сегодня мы можем даже выбирать, какой из способов интерполяции подходит больше. Всё переведено на компьютерный язык, который с огромной точностью может предсказывать поведение функции на определённом участке, ограниченном известными точками.

Интерполяция представляет собой достаточно узкое понятие, поэтому её история не так богата фактами. В следующем разделе разберёмся, что такое интерполяция на самом деле и чем она отличается от своей противоположности - экстраполяции.

Что такое интерполяция?

Как мы уже говорили, это общее название способов, позволяющих построить график по точкам. В школе в основном это делают с помощью составления таблицы, выявления точек на графике и примерного построения линий, их соединяющих. Последнее действие делается исходя из соображений похожести исследуемой функции на другие, вид графиков которых нам известен.

Однако есть другие, более сложные и точные способы выполнить поставленную задачу построения графика по точкам. Итак, интерполяция - это фактически "предсказание" поведения функции на конкретном участке, ограниченном известными точками.

Существует схожее понятие, связанное с этой же областью, - экстраполяция. Она представляет собой также предсказание графика функции, но за пределами известных точек графика. При таком способе предсказание делается на основе поведения функции на известном промежутке, и потом эта функция применяется и для неизвестного промежутка. Такой способ очень удобен для практического применения и активно используется, например, в экономике для прогнозирования взлётов и падения на рынке и для предсказания демографической ситуации в стране.

Но мы отошли от основной темы. В следующем разделе разберёмся, какая бывает интерполяция и с помощью каких формул можно произвести эту операцию.

Виды интерполяции

Самым простым видом является интерполяция методом ближайшего соседа. С помощью этого способа мы получаем очень приблизительный график, состоящий из прямоугольников. Если вы видели хоть раз объяснение геометрического смысла интеграла на графике, то поймёте, о каком графическом виде идёт речь.

Кроме этого, существуют и другие методы интерполяции. Самые известные и популярные связаны с многочленами. Они более точны и позволяют предсказывать поведение функции при достаточно скудном наборе значений. Первым методом интерполяции, который мы рассмотрим, будет линейная интерполяция многочленами. Это самый простой способ из данной категории, и им наверняка каждый из вас пользовался в школе. Суть его заключается в построении прямых между известными точками. Как известно, через две точки плоскости проходит единственная прямая, уравнение которой можно найти исходя из координат данных точек. Построив эти прямые, мы получаем ломаный график, который худо-бедно, но отражает примерные значения функций и в общих чертах совпадает с реальностью. Так и осуществляется линейная интерполяция.

Усложнённые виды интерполяции

Есть более интересный, но при этом более сложный способ интерполяции. Его придумал французский математик Жозеф Луи Лагранж. Именно поэтому расчет интерполяции по этому методу назван его именем: интерполяция по методу Лагранжа. Фокус тут вот в чём: если способ, изложенный в предыдущем абзаце, использует для расчета только линейную функцию, то разложение методом Лагранжа предполагает также использование многочленов более высоких степеней. Но не так просто найти сами формулы интерполяции для разных функций. И чем больше точек известно, тем точнее получается формула интерполяции. Но есть и масса других методов.

Существует и более совершенный и приближенный к реальности метод расчета. Формула интерполяции, используемая в нём, представляет собой совокупность многочленов, применение каждого из которых зависит от участка функции. Такой метод называется сплайн-функцией. Кроме того, есть ещё и способы, позволяющие провести такую вещь, как интерполяция функций двух переменных. Тут всего два метода. Среди них билинейная или двойная интерполяция. Этот способ позволяет без труда построить график по точкам в трёхмерном пространстве. Другие методы затрагивать не будем. Вообще, интерполяция - это универсальное называние для всех этих способов построения графиков, но многообразие способов, которыми можно осуществить это действие, заставляет делить их на группы в зависимости от вида функции, которая подлежит этому действию. То есть интерполяция, пример которой мы рассмотрели выше, относится к прямым способам. Есть также обратная интерполяция, которая отличается тем, что позволяет вычислить не прямую, а обратную функцию (то есть x от y). Рассматривать последние варианты мы не будем, так как это достаточно сложно и требует хорошей математической базы знаний.

Перейдём к, пожалуй, одному из важнейших разделов. Из него мы узнаем, как и где обсуждаемая нами совокупность методов применяется в жизни.

Применение

Математика, как известно, царица наук. Поэтому даже если вы сначала не видите смысла в тех или иных операциях, это не значит, что они бесполезны. Вот, например, кажется, что интерполяция - это бесполезная вещь, с помощью которой только графики строить можно, которые сейчас мало кому нужны. Однако при любых расчётах в технике, физике и многих других науках (например, биологии), крайне важно представлять достаточно полную картину о явлении, имея при этом определённый набор значений. Сами значения, разбросанные по графику, не всегда дают чёткие представления о поведении функции на конкретном участке, значениях её производных и точек пересечения с осями. А это очень важно для многих областей нашей с вами жизни.

А как это пригодится в жизни?

На подобный вопрос бывает очень сложно ответить. Но ответ прост: никак. Именно эти знания вам никак не пригодятся. А вот если вы поймёте этот материал и методы, с помощью которых осуществляются эти действия, вы потренируете свою логику, которая в жизни очень пригодится. Главное - не сами знания, а те навыки, которые человек приобретает в процессе изучения. Ведь недаром существует поговорка: "Век живи - век учись".

Смежные понятия

Вы можете сами понять, насколько важна была (и до сих пор не теряет свою важность) эта область математики, взглянув на многообразие других концепций, связанных с данной. Мы уже говорили об экстраполяции, но есть ещё и аппроксимация. Может быть, вы уже слышали это слово. В любом случае то, что оно обозначает, мы тоже разбирали в этой статье. Аппроксимация, как и интерполяция, - это понятия, связанные с построением графиков функций. Но отличие первой от второй в том, что она представляет собой приблизительное построение графика на основе сходных известных графиков. Эти два понятия очень похожи между собой, и тем интереснее изучать каждое из них.

Заключение

Математика - не такая сложная наука, как кажется на первый взгляд. Она, скорее, интересная. И в этой статье мы попытались вам это доказать. Мы рассмотрели понятия, связанные с построением графиков, узнали, что такое двойная интерполяция, и разобрали на примерах, где она применяется.