Зеркальный raid массив. Что такое RAID. Как создать RAID массив и зачем он нужен

Если вы когда-либо задумывались о приобретении серверов или NAS хранилищ, то вы наверняка слышали магический термин “RAID”. RAID расшифровывается как Redundant Array of Independent Disks - избыточный массив независимых дисков. Вообще, системы с RAID используют два или более жестких дисков или для того, чтоб улучшить производительность, или для повышения отказоустойчивости, или для того и другого вместе. Отказоустойчивость, в этом случае означает то, что оборудование (например, сервер) сможет работать и данные не потеряются даже в том случае, если один (или даже больше) из дисков вышел из строя.

Для того, чтобы понять как именно RAID помогает улучшить производительность и отказоустойчивость, нужно разобраться какие бывают уровни RAID. Уровень RAID зависит от того, сколько дисков в массиве, насколько критична возможная поломка диска, насколько важна скорость работы системы. Например, для бизнес-приложений гораздо важнее сохранность данных в случае выхода компонентов из строя, а для домашних пользователей, возможно, скорость будет решающим фактором. Уровни RAID представляют разные комбинации баланса производительности, отказоустойчивости и стоимости решения.

Обзор технологии RAID

Как правило, RAID используется в компаниях, где отказоустойчивость и производительность – не роскошь, а необходимость. Серверы и NAS-хранилища, в большинстве случаев оснащены так называемыми RAID-контроллерами – аппаратными модулями, которые управляют массивами из SATA или SSD дисков. Также, в большинстве современных операционных систем поддерживается программный RAID, где управление дисками и массивами осуществляется силами самой операционной системы.

Какой уровень RAID нужен мне?

Как уже говорилось, существует несколько уровней RAID, в зависимости от того, чего хочется достичь – большей производительности, большей надежности или и того и другого. Также важно, используется аппаратный или программный RAID. Программный RAID поддерживает не все уровни, а в случае использования аппаратного – нужно подумать о выборе соответствующего контроллера.

Самые распространенные уровни RAID.

RAID0 – используется для повышения производительности. Также известен как массив с «чередованием». Это означает, что поток данных как-бы делится на несколько дисков, вместо того, чтоб все время использовать один. Таким образом достигается «параллельность» чтения или записи, что ускоряет работу. Для RAID0 нужно минимум два диска. RAID0 поддерживается как аппаратными, так и программными решениями. Недостаток RAID0 в том, что нет никакой отказоустойчивости – при выходе из строя любого диска теряется информация.

RAID1 – используется для повышения надежности. Также известен как массив с «зеркалированием». Из названия понятно, что в случае RAID1 информация одновременно записывается на два диска, получается две копии данных – два «зеркала». В случае отказа одного из дисков второй продолжает работать и данные не теряются. Это самый простой и относительно недорогой способ повысить отказоустойчивость. Минусом такого решения является небольшое уменьшение производительности. Для RAID1 требуется минимум два диска. RAID1 можно собрать как программно, так и с помощью аппаратного контроллера.

RAID5 – наверное, самая распространенная конфигурация RAID. RAID5 обеспечивает лучшую производительность, чем «зеркалирование», к тому же обеспечивая и отказоустойчивость. В конфигурации RAID5 блоки данных и так называемая четность (дополнительный блок данных для восстановления) записываются последовательно на три или более дисков. При отказе одного из дисков данные восстанавливаются из оставшихся блоков и четности автоматически и незаметно. Естественно, в таком случае система остается полностью работоспособной. Другим плюсом RAID5 является «горячая замена» - возможность менять любой из дисков не прерывая работы системы (сервера или хранилища). Негативным моментом использования RAID5 является резкое снижение производительности во время восстановления информации на вновь замененном диске. Также RAID5 в принципе требователен к вычислительным ресурсам, поэтому рекомендуется использовать аппаратный контроллер, хотя программными способами RAID5 создать тоже возможно.

RAID10 – комбинация RAID1 и RAID0. Сочетает «зеркалирование» RAID1 и «чередование» RAID0. Обеспечивает хорошую производительность и отказоустойчивость, однако достаточно дорог, ибо требует минимум четыре диска и общая емкость массива будет равна половине емкости физических дисков.

Существуют и другие уровни RAID – RAID2, RAID4, RAID7, RAID50, RAID01, в большинстве - они являются специфическими комбинациями и вариантами уже описанных конфигураций. Для малого бизнеса и типичных решений самыми распространенными являются уровни 0, 1, 5 и 10.

Стоит упомянуть, что в случае использования дисков разной емкости массив будет равен емкости наименьшего диска. Например, емкость RAID1 из двух дисков 1000 Гб и 500 Гб будет равна 500 Гб. Совершенно естественно, что для RAID рекомендуется использовать диски одинаковой емкости.

Также, из соображений производительности и надежности, рекомендуется использовать диски одинаковой модели и желательно в пределах одной партии. Разные диски, тем более разных производителей, могут изнашиваться и провоцировать задержки совершенно непредсказуемо.

Полезно помнить, что RAID не заменяет резервное копирование. RAID может быть отличным способом повышения надежности и производительности, но это лишь часть стратегии восстановления данных.

RAID (Redundant Array of Independent Disks) — избыточный массив независимых дисков, т.е. объединение физических жестких дисков в один логический для решения каких либо задач. Скорее всего, вы его будете использовать для отказоустойчивости. При выходе из строя одного из дисков система будет продолжать работать. В операционной системе массив будет выглядеть как обычный HDD. RAID – массивы зародились в сегменте серверных решений, но сейчас получили широкое распространение и уже используются дома. Для управления RAID-ом используется специальная микросхема с интеллектом, которая называется RAID-контроллер. Это либо чипсет на материнской плате, либо отдельная внешняя плата.

Типы RAID массивов

Аппаратный – это когда состоянием массива управляет специальная микросхема. На микросхеме есть свой CPU и все вычисления ложатся на него, освобождая CPU сервера от лишней нагрузки.

Программный – это когда состоянием массива управляет специальная программа в ОС. В этом случае будет создаваться дополнительная нагрузка на CPU сервера. Ведь все вычисления ложатся именно на него.

Однозначно сказать какой тип рейда лучше – нельзя. В случае программного рейда нам не нужно покупать дорогостоящий рейд-контроллер. Который обычно стоит от 250 у.е. (можно найти и за 70 у.е. но я бы не стал рисковать данными) Но все вычисления ложатся на CPU сервера. Программная

реализация хорошо подходит для рейдов 0 и 1. Они достаточно просты и для их работы не нужны большие вычисления. Поэтому программные рейды чаще используют в решениях начального уровня. Аппаратный рейд в своей работе использует рейд-контроллер. Рейд-контроллер имеет свой процессор для вычислений, и именно он производит операции ввода/вывода.

Уровни RAID-массивов

Их достаточно много. Это основные – 0, 1, 2, 3, 4, 5, 6, 7 и комбинированные – 10, 30, 50, 53… Мы рассмотрим только самые ходовые, которые используются в современной инфраструктуре предприятия. Буква D в схемах означает Data (данные), или блок данных.

RAID 0 (Striped Disk Array without Fault Tolerance)

Он же stripe. Это когда два или более физических дисков объединяются в один логический с целью объединения места. То есть берем два диска по 500 Гб, объединяем их в RAID 0 и в системе видим 1 HDD объемом в 1 Тб. Информация распределяется по всем дискам рейда равномерно в виде небольших блоков (страйпов).

Плюсы – Высокая производительность, простота реализации.

Минусы – отсутствие отказоустойчивости. При использование этого рейда надежность системы понижается в два раза (если используем два диска). Ведь при выходе из строя хотя бы одного диска вы теряете все данные.

RAID 1 (Mirroring & Duplexing)

Он же mirror. Это когда два или более физических дисков объединяются в один логический диск с целью повышения отказоустойчивости. Информация пишется сразу на оба диска массива и при выходе одного из них информация сохраняется на другом.

Плюсы – высокая скорость чтения/записи, простота реализации.

Минусы – высокая избыточность. В случае использования 2-х дисков это 100%.

RAID 1E

RAID 1E работает так: три физических диска объединяются в массив, после чего создается логический том. Данные распределяются по дискам, образуя блоки. Порция данных (strip), помеченная ** – это копия предшествующей ей порции *. При этом каждый блок зеркальной копии записывается со сдвигом на один диск

Наиболее простое в реализации из отказоустойчивых решений – это RAID 1 (mirroring), зеркальное отображение двух дисков. Высокая доступность данных гарантирована наличием двух полных копий. Такая избыточность структуры массива сказывается на его стоимости – ведь полезная емкость вдвое меньше используемой. Поскольку RAID 1 строится на двух HDD – этого явно мало современным, прожорливым до дискового пространства приложениям. В силу таких требований область применения RAID 1 обычно ограничивается служебными томами (OS, SWAP, LOG), для размещения пользовательских данных ими пользуются разве что в малобюджетных решениях.

RAID 1E – это комбинация распределения информации по дискам (striping) от RAID 0 и зеркалирования – от RAID 1. Одновременно с записью области данных на один накопитель создается их копия на следующем диске массива. Отличие от RAID 1 в том, что количество HDD может быть нечетным (минимум 3). Как и в случае с RAID 1, полезная емкость составляет 50% суммарной емкости дисков массива. Правда, если количество дисков четное, предпочтительней использовать RAID 10, который при той же утилизации емкости состоит из двух (или больше) «зеркал». При физическом отказе одного из дисков RAID 1E контроллер переключает запросы чтения и записи на оставшиеся диски массива.

Преимущества:

  • высокая защищенность данных;
  • неплохая производительность.

Недостатки:

  • как и в RAID 1, используется лишь 50% емкости дисков массива.

RAID 2

В массивах такого типа диски делятся на две группы - для данных и для кодов коррекции ошибок, причем если данные хранятся на дисках, то для хранения кодов коррекции необходимо дисков. Данные записываются на соответствующие диски так же, как и в RAID 0, они разбиваются на небольшие блоки по числу дисков, предназначенных для хранения информации. Оставшиеся диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо жёсткого диска из строя возможно восстановление информации. Метод Хемминга давно применяется в памяти типа ECC и позволяет на лету исправлять однократные и обнаруживать двукратные ошибки.

Недостаток массива RAID 2 в том, что для его функционирования нужна структура из почти двойного количества дисков, поэтому такой вид массива не получил распространения.

RAID 3

В массиве RAID 3 из дисков данные разбиваются на куски размером меньше сектора (разбиваются на байты) или блока и распределяются по дискам. Ещё один диск используется для хранения блоков чётности. В RAID 2 для этой цели применялся диск, но большая часть информации на контрольных дисках использовалась для коррекции ошибок на лету, в то время как большинство пользователей удовлетворяет простое восстановление информации в случае поломки диска, для чего хватает информации, умещающейся на одном выделенном жёстком диске.

Отличия RAID 3 от RAID 2: невозможность коррекции ошибок на лету и меньшая избыточность.

Достоинства:

  • высокая скорость чтения и записи данных;
  • минимальное количество дисков для создания массива равно трём.

Недостатки:

  • массив этого типа хорош только для однозадачной работы с большими файлами, так как время доступа к отдельному сектору, разбитому по дискам, равно максимальному из интервалов доступа к секторам каждого из дисков. Для блоков малого размера время доступа намного больше времени чтения.
  • большая нагрузка на контрольный диск, и, как следствие, его надёжность сильно падает по сравнению с дисками, хранящими данные.

RAID 4

RAID 4 похож на RAID 3, но отличается от него тем, что данные разбиваются на блоки, а не на байты. Таким образом, удалось отчасти «победить» проблему низкой скорости передачи данных небольшого объёма. Запись же производится медленно из-за того, что чётность для блока генерируется при записи и записывается на единственный диск. Из систем хранения широкого распространения RAID-4 применяется на устройствах хранения компании NetApp (NetApp FAS), где его недостатки успешно устранены за счет работы дисков в специальном режиме групповой записи, определяемом используемой на устройствах внутренней файловой системой WAFL.

RAID 5 (Independent Data Disks with Distributed Parity Blocks)

Самый популярный вид рейд-массива, в целом благодаря экономичности использования носителей данных. Блоки данных и контрольные суммы циклически записываются на все диски массива. При выходе из строя одного из дисков будет заметно снижена производительность, так как придется совершать дополнительные манипуляции для функционирования массива. Сам по себе рейд имеет достаточно хорошую скорость чтения/записи но немного уступает RAID 1. Нужно не менее трех дисков чтобы организовать RAID 5.

Плюсы – экономичное использование носителей, хорошая скорость чтения/записи. Разница в производительности по сравнению с RAID 1 не так сильно видна как экономия дискового пространства. В случае использования трех HDD избыточность составляет всего 33%.

Минусы – сложное восстановление данных и реализация.

RAID 5E

RAID 5E работает так. Из четырех физических дисков собирается массив, в нем создается логический диск. Распределенный резервный диск – это свободное пространство. Данные распределяются по накопителям, создавая блоки на логическом диске. Контрольные суммы также распределяются по дискам массива и записываются со сдвигом от диска к диску, как и в RAID 5. Резервный HDD остается пустым.

«Классический» RAID 5 много лет считается стандартом отказоустойчивости дисковых подсистем. В нем применяется распределение данных (striping) по HDD массива, для каждой из порций (stripe), определенной в нем, вычисляются и записываются контрольные суммы (четность, parity). Соответственно, скорость записи снижается из-за постоянного пересчета КС с поступлением новых данных. Для увеличения производительности записи КС распределяются по всем накопителям массива, чередуясь с данными. Под хранение КС расходуется емкость одного носителя, поэтому RAID 5 утилизирует на один диск меньше их общего количества в массиве. RAID 5 требует минимум трех (и максимум 16) НЖМД, его КПД использования дискового пространства находится в диапазоне 67–94% в зависимости от числа дисков. Очевидно, что это больше, чем у RAID 1, утилизирующего 50% доступной емкости.

Малые накладные расходы для реализации избыточности RAID 5 оборачиваются достаточно сложной реализацией и длительным процессом восстановления данных. Подсчет контрольных сумм и адресов возлагается на аппаратный RAID-контроллер с высокими требованиями к его процессору, логике и кэш-памяти. Производительность массива RAID 5 в его деградированном состоянии крайне низка, а время восстановления измеряется часами. В итоге проблема неполноценности массива усугубляется рисками повторного отказа одного из дисков до того момента, когда RAID будет восстановлен. Это приводит к разрушению тома данных.

Распространен подход c включением в RAID 5 выделенного диска горячего резерва (hot-spare) – для снижения времени простоя до физической замены сбойного диска. После отказа одного из накопителей исходного массива контроллер включает резервный диск в массив и начинает процесс перестройки RAID. Важно уточнить, что до этого первого отказа резервный накопитель работает на холостом ходу, годами может не участвовать в функционировании массива и не проверяться на ошибки поверхности. Равно как и тот, который позже принесут по гарантийной замене вместо сбойного, вставят в дисковую корзину и назначат резервным. Большим сюрпризом может стать его неработоспособность, причем выяснится это в самый неподходящий момент.

RAID 5E – это RAID 5 с включенным в массив резервным диском (hot-spare) постоянного использования, емкость которого добавляется поровну к каждому элементу массива. Для RAID 5E требуется минимум четыре HDD. Как и у RAID 5, данные и контрольные суммы распределяются по дискам массива. Утилизация полезной емкости у RAID 5E несколько ниже, зато производительность выше, чем у RAID 5 c hot-spare.

Емкость логического тома RAID 5E меньше общей емкости на объем двух носителей (емкость одного уходит под контрольные суммы, второго – под hot-spare). Зато чтение и запись на четыре физических устройства RAID 5E быстрее операций с тремя физическими накопителями RAID 5 с классическим hot-spare (в то время как четвертый, hot-spare, участия в работе не принимает). Резервный диск в RAID 5E – полноправный постоянный член массива. Его невозможно назначить резервным двум разным массивам («слугой двух господ» – как это допускается в RAID 5).

При отказе одного из физических дисков данные со сбойного накопителя восстанавливаются. Массив подвергается сжатию, и распределенный резервный диск становится частью массива. Логический диск остается уровня RAID 5E. После замены сбойного диска на новый данные логического диска разворачиваются в исходное состояние схемы распределения по HDD. При использовании логического диска RAID 5E в отказоустойчивых кластерных схемах он не будет выполнять свои функции во время компрессии-декомпрессии данных.

Преимущества:

  • высокая защищенность данных;
  • утилизация полезной емкости выше, чем у RAID 1 или RAID 1E;
  • производительность выше, чем у RAID 5.

Недостатки:

  • производительность ниже, чем у RAID 1E;
  • не может делить резервный диск с другими массивами.

RAID 5EE

Примечание: поддерживается не во всех контроллерах RAID level-5EE подобен массиву RAID-5E, но с более эффективным использованием резервного диска и более коротким временем восстановления. Подобно RAID level-5E, этот уровень RAID-массива создает ряды данных и контрольных сумм во всех дисках массива. Массив RAID-5EE обладает улучшенной защитой и производительностью. При применении RAID level-5E, емкость логического тома ограничивается емкостью двух физических винчестеров массива (один для контроля, один резервный). Резервный диск является частью массива RAID level-5EE. Тем не менее, в отличие от RAID level-5E, использующего неразделенное свободное место для резерва, в RAID level-5EE в резервный диск вставлены блоки контрольных сумм, как показывается далее на примере. Это позволяет быстрее перестраивать данные при поломке физического диска. При такой конфигурации, вы не сможете использовать его с другими массивами. Если вам необходим запасной диск для другого массива, вам следует иметь еще один резервный винчестер. RAID level-5E требует как минимум четырех дисков и, в зависимости от уровня прошивки и их емкости, поддерживает от 8 до 16 дисков. RAID level-5E обладает определенной прошивкой. Примечание: для RAID level-5EЕ, вы можете использовать только один логический том в массиве.

Достоинства:

  • 100% защита данных
  • Большая емкость физических дисков по сравнению с RAID-1 или RAID -1E
  • Большая производительность по сравнению с RAID-5
  • Более быстрое восстановление RAID по сравнению с RAID-5Е

Недостатки:

  • Более низкая производительность, чем в RAID-1 или RAID-1E
  • Поддержка только одного логического тома на массив
  • Невозможность совместного использования резервного диска с другими массивами
  • Поддержка не всех контроллеров

RAID 6

RAID 6 - похож на RAID 5, но имеет более высокую степень надёжности - под контрольные суммы выделяется ёмкость 2-х дисков, рассчитываются 2 суммы по разным алгоритмам. Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков - защита от кратного отказа. Для организации массива требуется минимум 4 диска. Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, по сравнению с аналогичными показателями RAID-5, что вызвано большим объёмом обработки для контроллера (необходимость рассчитывать вторую контрольную сумму, а также прочитывать и перезаписывать больше дисковых блоков при записи каждого блока).

RAID 7

RAID 7 — зарегистрированная торговая марка компании Storage Computer Corporation, отдельным уровнем RAID не является. Структура массива такова: на дисках хранятся данные, один диск используется для складирования блоков чётности. Запись на диски кешируется с использованием оперативной памяти, сам массив требует обязательного ИБП; в случае перебоев с питанием происходит повреждение данных.

RAID 10 или RAID 1+0 (Very High Reliability with High Performance)

Сочетание зеркального рейда и рейда с чередованием дисков. В работе этого вида рейда диски объединяются парами в зеркальные рейды (RAID 1) а затем все эти зеркальные пары объединяются в массив с чередованием (RAID 0). В рейд можно объединить только четное количество дисков, минимум – 4, максимум – 16. От RAID 1 мы наследуем надежность, от RAID 0 — скорость.

Плюсы – высокая отказоустойчивость и производительность

Минусы – высокая стоимость

RAID 50 или RAID 5+0 (High I/O Rates & Data Transfer Performance)

Он же RAID 50, это сочетание RAID 5 и RAID 0. Массив объединяет в себе высокую производительность и отказоустойчивость.

Плюсы – высокая отказоустойчивость, скорость передачи данных и выполнение запросов

Минусы – высокая стоимость

RAID 60

RAID-массив уровня 60 объединены характеристики из уровней 6 и 0. RAID 60 массива объединяет прямой уровне блоков чередование RAID 0 с распределенной дважды паритет в RAID 6, а именно: массива RAID 0 распределяются среди RAID 6 элементов. RAID 60 виртуальный диск может выжить о потере двух жестких дисков в каждом из RAID 6 устанавливает без потери данных. Она является наиболее эффективной с данными, нужна высокая надежность, высокая запрос курсы, высокие передачу данных, и средних и крупных емкости. Минимальное количество дисков-8.

Линейный RAID

Линейный RAID представляет собой простое объединение дисков, создающее большой виртуальный диск. В линейном RAID, блоки выделяются сначала на одном диске, включенном в массив, затем, если этот заполнен, на другом и т.д. Такое объединение не даёт выигрыша в производительности, так как скорее всего операции ввода/вывода не будут распределены между дисками. Линейный RAID также не содержит избыточности и, в действительности, увеличивает вероятность сбоя - если всего одни диск откажет, весь массив выйдет из строя. Ёмкость массива равняется суммарной ёмкости всех дисков.

Главный вывод, который можно сделать – у каждого уровня рейда есть свои плюсы и минусы.

Еще главнее вывод – рейд не гарантирует целостности ваших данных. То есть если кто-то удалит файл или он будет поврежден, каким либо процессом, рейд нам не поможет. Поэтому рейд не освобождает нас от необходимости делать бекапы. Но помогает, когда возникают проблемы с дисками на физическом уровне.

Привет всем читателям сайт! Друзья, я давно хотел с Вами поговорить о том, как создать на компьютере RAID массив (избыточный массив независимых дисков). Несмотря на кажущуюся сложность вопроса, на самом деле всё очень просто и я уверен, многие читатели сразу после прочтения этой статьи возьмут на вооружение и будут с удовольствием пользоваться данной очень полезной, связанной с безопасностью ваших данных технологией.

Как создать RAID массив и зачем он нужен

Не секрет, что наша информация на компьютере практически ничем не застрахована и находится на простом жёстком диске, который имеет свойство ломаться в самый неподходящий момент. Уже давно признан факт, что жёсткий диск самое слабое и ненадёжное место в нашем системном блоке, так как имеет механические части. Те пользователи, которые когда-либо теряли важные данные (я в том числе) из-за выхода из строя "винта", погоревав некоторое время задаются вопросом, как избежать подобной неприятности в будущем и первое, что приходит на ум, это создание RAID-массива .

Весь смысл избыточного массива независимых дисков в том, чтобы сберечь Ваши файлы на жёстком диске в случае полной поломки этого диска! Как это сделать, – спросите вы, да очень просто, нужно всего лишь два (можно даже разных в объёме) жёстких диска.

В сегодняшней статье мы с Вами с помощью операционной системы Windows 8.1 создадим из двух чистых жёстких дисков самый простой и популярный RAID 1 массив , его ещё называют "Зеркалирование" (mirroring). Смысл "зеркала" в том, что информация на обоих дисках дублируется (записывается параллельно) и два винчестера представляют из себя точные копии друг друга.

Если вы скопировали файл на первый жёсткий диск, то на втором появляется точно такой же файл и как вы уже поняли, если один жёсткий диск выходит из строя, то все ваши данные останутся целыми на втором винчестере (зеркале). Вероятность поломки сразу двух жёстких дисков ничтожна мала.

Единственный минус RAID 1 массива в том, что купить нужно два жёстких диска, а работать они будут как один единственный, то есть, если вы установите в системный блок два винчестера в объёме по 500 ГБ, то доступно для хранения файлов будет всё те же 500 ГБ, а не 1ТБ.

Если один жёсткий диск из двух выходит из строя, вы просто берёте и меняете его, добавляя как зеркало к уже установленному винчестеру с данными и всё.

Лично я, в течении многих лет, использую на работе RAID 1 массив из двух жёстких дисков по 1 ТБ и год назад произошла неприятность, один "хард" приказал долго жить, пришлось его тут же заменить, тогда я с ужасом подумал, чтобы было, не окажись у меня RAID-массива, небольшой холодок пробежал по спине, ведь пропали бы данные накопленные за несколько лет работы, а так, я просто заменил неисправный "терабайтник" и продолжил работу. Кстати, дома у меня тоже небольшой RAID-массив из двух винчестеров по 500 ГБ.

Создание программного RAID 1 массива из двух пустых жёстких дисков средствами Windows 8.1

Первым делом устанавливаем в наш системный блок два чистых жёстких диска. Для примера, я возьму два жёстких диска объёмом 250 ГБ.

Что делать, если размер винчестеров разный или на одном жёстком диске у вас уже находится информация, читаем в следующей нашей статье .

Открываем Управление дисками

Диск 0 - твердотельный накопитель SSD с установленной операционной системой Windows 8.1 на разделе (C:).

Диск 1 и Диск 2 - жёсткие диски объёмом 250 ГБ из которых мы соберём RAID 1 массив.

Щёлкаем правой мышью на любом жёстком диске и выбираем «Создать зеркальный том»

Добавляем диск, который будет зеркалом для выбранного ранее диска. Первым зеркальным томом мы выбрали Диск 1, значит в левой части выбираем Диск 2 и нажимаем на кнопку «Добавить».

Выбираем букву программного RAID 1 массива, я оставляю букву (D:). Далее

Отмечаем галочкой пункт Быстрое форматирование и жмём Далее.

В управлении дисками зеркальные тома обозначаются кроваво-красным цветом и имеют одну букву диска, в нашем случае (D:). Скопируйте на любой диск какие-либо файлы и они сразу появятся на другом диске.

В окне "Этот компьютер", программный RAID 1 массив отображается как один диск.

Если один из двух жёстких дисков выйдет из строя, то в управлении дисками RAID-массив будет помечен ошибкой "Отказавшая избыточность", но на втором жёстком диске все данные будут в сохранности.

  • Интерфейс scsi
  • 3.2. Запоминающие устройства на оптических дисках
  • 3.2.1. Оптические диски 3.2.2. Организация данных на оптических дисках
  • 3.2.3. Приводы оптических дисков
  • 3.2.1. Оптические диски
  • 3.2.2. Организация данных на оптических дисках
  • 3.2.3. Приводы оптических дисков
  • 3.3. Запоминающие устройства со сменными магнитными носителями
  • 3.3.1. Накопители на гибких магнитных дисках 3.3.2. Запоминающие устройства со сменными магнитными и магнитооптическими дисками 3.3.3. Накопители на магнитных лентах
  • 3.3.1. Накопители на гибких магнитных дисках
  • 3.3.2. Запоминающие устройства со сменными магнитными и магнитооптическими дисками
  • 3.3.3. Накопители на магнитных лентах
  • Глава 4. Методы оценки характеристик и повышения производительности памяти
  • 4.1. Методы оценки временных характеристик зу 4.2. Методы повышения производительности памяти эвм 4.3. Направления развития зу
  • 4.1. Методы оценки временных характеристик зу
  • 4.1.1. Экспериментальные методы оценки 4.1.2. Теоретические методы оценки
  • 4.1.1. Экспериментальные методы оценки
  • 4.1.2. Теоретические методы оценки
  • 4.2. Методы повышения производительности памяти эвм
  • 4.2.1. Использование кэш-памяти 4.2.2. Диспетчеризация (управление порядком) обслуживания обращений 4.2.3. Организация дисковых массивов (raid)
  • 4.2.1. Использование кэш-памяти
  • 4.2.2. Диспетчеризация (управление порядком) обслуживания обращений
  • 4.2.3. Организация дисковых массивов (raid)
  • 4.3. Направления развития зу
  • Литература и ссылки
  • 4.2.3. Организация дисковых массивов (raid)

    Еще одним способом повышения производительности дисковой памяти стало построение дисковых массивов, хотя этот нацелен не только (и не столько) на достижение более высокой производительности, но и большей надежности работы запоминающих устройств на дисках.

    Технология RAID (Redundant Array of Independent Disks – избыточный массив независимых дисков) задумывалась как объединение нескольких недорогих жестких дисков в один массив дисков для увеличения производительности, объема и надежности, по сравнению с одиночным диском. При этом ЭВМ должна видеть такой массив как один логический диск.

    Если просто объединить несколько дисков в (не избыточный) массив, то среднее время между отказами (СВМО) будет равно СВМО одного диска, деленному на количество дисков. Такой показатель слишком мал для приложений, критичных к аппаратным сбоям. Улучшить его можно применяя реализуемую различным образом избыточность при хранение информации.

    В RAID системах для повышения надежности и производительности используются комбинации трех основных механизмов, каждый из которых хорошо известен и по отдельности: - организация “зеркальных” дисков, т.е. полное дублирование хранимой информации; - подсчет контрольных кодов (четность, коды Хэмминга), позволяющих восстановить информацию при сбое; - распределение информации по различным дискам массива так, как это делается при чередовании обращений по блокам памяти (см. interleave), что повышает возможности параллельной работы дисков при операциях над хранимой информацией. При описании RAID этот прием называют “stripped disks”, что буквально означает “разделенные на полоски диски”, или просто "полосатые диски"..

    Рис. 43. Разбиение дисков на чередующиеся блоки - “полоски”.

    Изначально было определено пять типов дисковых массивов, обозначаемых RAID 1 – RAID 5, различающихся по своим особенностям и производительности. Каждый из этих типов за счет определенной избыточности записываемой информации обеспечивал повышенную отказоустойчивость по сравнению с одиночным дисководом. Кроме того, массив дисков, не обладающих избыточностью, но позволяющий повысить производительность (за счет расслоения обращений), стали часто называть RAID 0.

    Основные типы RAID массивов можно кратко охарактеризовать следующим образом .

    RAID 0 . Обычно этот тип массива определяется как группа дисков с чередованием (stripped) расположения информации без контроля четности и без избыточности данных. Размеры чередующихся областей (stripes – “полосок”, или блоков) могут быть большими в многопользовательском окружении или малыми в однопользовательской системе при последовательном доступе к длинным записям.

    Организация RAID 0 как раз и соответствует той, которая показана на рис. 43. Операции записи и чтения могут выполняться одновременно на каждом дисководе. Минимальное количество дисководов для RAID 0 – два.

    Для этого типа характерны высокая производительность и наиболее эффективное использование дискового пространства, однако, выход из строя одного из дисков приводит к невозможности работы со всем массивом.

    RAID 1 . Этот тип дискового массива (рис. 44, а ) известен также как зеркальные диски и представляет собой просто пары дисководов, дублирующих хранимые данные, но представляющиеся компьютеру как один диск. И хотя в рамках одной пары зеркальных дисков разбиение на полоски не производится, чередование блоков может быть организовано для нескольких массивов RAID 1, образующих вместе один большой массив из нескольких зеркальных пар дисков. Такой вариант организации получил название RAID 1 + 0. Существует и обратный вариант.

    Все операции записи производятся одновременно в оба диска зеркальной пары, чтобы информация в них была идентична. Но при чтении каждый из дисков пары может работать независимо, что позволяет выполнять одновременно две операции чтения, удваивая тем самым производительность при чтении. В этом смысле RAID 1 обеспечивает наилучшую производительность среди всех вариантов дисковых массивов.

    RAID 2 . В этих дисковых массивах блоки – сектора данных чередуются по группе дисков, часть из которых используется только для хранения контрольной информации – ECC (error correcting codes) кодов. Но поскольку во всех современных дисках имеется встроенный контроль с помощью ECC кодов, то RAID 2 мало что дает, по сравнению с другими типами RAID, и сейчас редко используется.

    RAID 3 . Как и в RAID 2 в этом типе дискового массива (рис. 44, б ) блоки –сектора чередуются по группе дисков, но один из дисков группы отведен для хранения информации о четности. В случае выхода дисковода из строя восстановление данных осуществляется на основе вычисления значений функции "исключающее ИЛИ" (XOR) от данных, записанных на оставшихся дисках. Записи обычно занимают все диски (так как полоски короткие), что повышает общую скорость передачи данных. Так как каждая операция ввода-вывода требует доступа к каждому диску, массив RAID 3 может обслужить в каждый момент времени только один запрос. Поэтому данный тип обеспечивает наилучшую производительность для одного пользователя в однозадачном окружении с длинными записями. При работе с короткими записями во избежание снижения производительности требуется синхронизация шпинделей дисководов. По своим характеристикам RAID 3 близок к RAID 5 (см. ниже).

    RAID 4. Эта организация, показанная на рис. 35, в ), похожа на RAID 3 с той лишь разницей, что в нем используются блоки (полоски) большого размера, так что записи можно читать с любого диска массива (кроме диска, хранящего коды четности). Это позволяет совмещать операции чтения на разных дисках. При операциях записи всегда происходит обновление диска четности, поэтому их совмещение невозможно. В целом, данная архитектура не имеет особых преимуществ перед другими вариантами RAID.

    RAID 5. Этот тип дискового массива похож на RAID 4, но хранение кодов четности в нем осуществляется не на специально выделенном диске, а блоками, располагающимися поочередно на всех дисках. Эту организацию даже иногда называют массив с “вращающейся четностью” (можно отметить некую аналогию с назначением линий прерываний для слотов шины PCI или с циклическим приоритетом контроллера прерываний в процессорах линии x86). Такое распределение позволяет избежать ограничения возможности одновременной записи из-за хранения кодов четности только на одном диске, характерного для RAID 4. На рис. 44, г ) показан массив, состоящий из четырех дисководов, причем для каждых трех блоков данных имеется один блок четности (эти блоки заштрихованы), местоположение которого для каждой тройки блоков данных изменяется, перемещаясь циклически по всем четырем дисководам.

    Операции чтения могут выполняться параллельно для всех дисков. Операции записи, требующие участия двух дисководов (для данных и для четности) обычно также могут совмещаться, так как коды четности распределены по всем дискам.

    Сравнение различных вариантов организации дисковых массивов показывает следующее.

    Организация RAID 0 – это наиболее быстрый и эффективный вариант, но не обеспечивающий устойчивости к сбоям. Он требует минимум 2 дисковода. Операции записи и чтения могут выполняться одновременно на каждом дисководе.

    Архитектура RAID 1 наиболее пригодна для высокопроизводительных высоконадежных приложений, но и наиболее дорогая. Кроме того, это единственный вариант, устойчивый к сбоям, если используются только два дисковода. Операции чтения могут выполняться одновременно для каждого дисковода, операции записи всегда дублируются для зеркальной пары дисководов.

    Архитектура RAID 2 используется редко.

    Дисковый массив типа RAID 3 можно использовать для ускорения передачи данных и повышения устойчивости к сбоям в однопользовательской среде при последовательном доступе к длинным записям. Но он не позволяет совмещать операции и требует синхронизации вращения шпинделей дисководов. Для него нужно, как минимум, три дисковода: 2 для данных и один для кодов четности.

    Архитектура RAID 4 не поддерживает одновременные операции и не имеет преимуществ, по сравнению с RAID 5.

    Организацию RAID 5 характеризует эффективность, устойчивость к сбоям и хорошая производительность. Но производительность при записи и в случае отказа дисковода хуже, чем у RAID 1. В частности, поскольку блок кодов четности относится ко всему записываемому блоку, то, если пишется только часть его, необходимо сперва считать ранее записанные данные, затем вычислить новые значения кодов четности и только после этого записать новые данные (и четность). Операции перестройки также требуют больше времени из-за необходимости формирования кодов четности. Для данного типа RAID нужно, как минимум, три дисковода.

    Кроме того, на основе наиболее распространенных вариантов RAID: 0, 1 и 5 могут формироваться так называемые двухуровневые архитектуры, в которых сочетаются принципы организации различных типов массивов. Например, несколько RAID массивов одного и того же типа можно объединить в одну группу массивов данных или массив четности.

    За счет такой двухуровневой организации можно достичь требуемого баланса между увеличением надежности хранения данных, характерным для массивов RAID 1 и RAID 5 и высокой скоростью чтения, присущей чередованию блоков на дисках в массиве типа RAID 0. Такие двухуровневые схемы иногда называют RAID 0+1 или 10 и 0+5 или 50.

    Управление работой RAID массивов может осуществляться не только аппаратно, но и программно, возможность чего предусматривается в некоторых серверных вариантах операционных систем. Хотя понятно, что такая реализация будет иметь существенно худшие характеристики производительности.

    Сегодня мы поговорим о RAID-массивах . Разберемся, что это такое, зачем это нам надо, какое оно бывает и как все это великолепие использовать на практике.

    Итак, по порядку: что такое RAID-массив или просто RAID ? Расшифровывается эта аббревиатура как "Redundant Array of Independent Disks" или "избыточный (резервный) массив независимых дисков". Говоря по-простому, RAID-массив это совокупность физических дисков, объединенных в один логический.

    Обычно бывает наоборот - в системный блок установлен один физический диск, который мы разбиваем на несколько логических. Здесь обратная ситуация - несколько жестких дисков сначала объединяются в один, а потом операционной системой воспринимаются как один. Т.е. ОС свято уверена, что у нее физически только один диск.

    RAID-массивы бывают аппаратные и программные.

    Аппаратные RAID-массивы создаются до загрузки ОС посредством специальных утилит, зашитых в RAID-контроллер - нечто вроде BIOS. В результате создания такого RAID-массива уже на стадии инсталляции ОС, дистрибутив "видит" один диск.

    Программные RAID-массивы создаются средствами ОС. Т.е. во время загрузки операционная система "понимает", что у нее несколько физических дисков и только после старта ОС, посредством программного обеспечения диски объединяются в массивы. Естественно сама операционная система располагается не на RAID-массиве , поскольку устанавливается до его создания.

    "Зачем все это нужно?" - спросите Вы? Отвечаю: для повышения скорости чтения/записи данных и/или повышения отказоустойчивости и безопасности.

    "Каким образом RAID-массив может увеличить скорость или обезопасить данные?" - для ответа на этот вопрос рассмотрим основные типы RAID-массивов , как они формируются и что это дает в результате.

    RAID-0 . Называемый так же "Stripe" или "Лента". Два или более жестких дисков объединяются в один путем последовательного слияния и суммирования объемов. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-0 , операционной системой это будет восприниматься как один диск объемом в терабайт. При этом скорость чтения/записи у этого массива будет вдвое больше, нежели у одного диска, поскольку, например, если база данных расположена таким образом физически на двух дисках, один пользователь может производить чтения данных с одного диска, а другой пользователь производить запись на другой диск одновременно. В то время как в случае расположения базы на одном диске, сам жесткий диск задачи чтения/записи разных пользователей будет выполнять последовательно. RAID-0 позволит выполнять чтение/запись параллельно. Как следствие - чем больше дисков в массиве RAID-0 , тем быстрее работает сам массив. Зависимость прямопропорциональная - скорость возрастается в N раз, где N - количество дисков в массиве.
    У массива RAID-0 есть только один недостаток, который перекрывает все плюсы от его использования - полное отсутствие отказоустойчивости. В случае смерти одного из физических дисков массива, умирает весь массив. Есть старая шутка на эту тему: "Что обозначает "0" в названии RAID-0 ? - объем восстанавливаемой информации после смерти массива!"

    RAID-1 . Называемый так же "Mirror" или "Зеркало". Два или более жестких дисков объединяются в один путем параллельного слияния. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-1 , операционной системой это будет восприниматься как один диск объемом в 500Гб. При этом скорость чтения/записи у этого массива будет такая же, как у одного диска, поскольку, чтение/запись информации производятся на оба диска одновременно. RAID-1 не дает выигрыша в скорости, однако обеспечивает большую отказоустойчивость, поскольку в случае смерти одного из жестких дисков, всегда есть полный дубль информации, находящийся на втором диске. При этом необходимо помнить, что отказоустойчивость обеспечивается только от смерти одного из дисков массива. В случае если данные были удалены целенаправленно, то они удаляются со всех дисков массива одновременно!

    RAID-5 . Более безопасный вариант RAID-0. Объем массива рассчитывается по формуле (N - 1) * DiskSize RAID-5 из трех дисков по 500Гб, мы получим массив объемом в 1 терабайт. Суть массива RAID-5 в том, что несколько дисков объединятся в RAID-0, а на последнем диске хранится так называемая "контрольная сумма" - служебная информация, предназначенная для восстановления одного из дисков массива, в случае его смерти. Скорость записи в массиве RAID-5 несколько ниже, поскольку тратится время на расчет и запись контрольной суммы на отдельный диск, зато скорость чтения такая же, как в RAID-0.
    Если один из дисков массива RAID-5 умирает, резко падает скорость чтения/записи, поскольку все операции сопровождаются дополнительными манипуляциями. Фактически RAID-5 превращается в RAID-0 и если своевременно не позаботиться восстановлением RAID-массива есть существенный риск потерять данные полностью.
    С массивом RAID-5 можно использовать так называемый Spare-диск, т.е. запасной. Во время стабильной работы RAID-массива этот диск простаивает и не используется. Однако в случае наступления критической ситуации, восстановление RAID-массива начинается автоматически - на запасной диск восстанавливается информация с поврежденного с помощью контрольных сумм, расположенных на отдельном диске.
    RAID-5 создается как минимум из трех дисков и спасает от одиночных ошибок. В случае одновременного появления разных ошибок на разных дисках RAID-5 не спасает.

    RAID-6 - является улучшенным вариантом RAID-5. Суть та же самая, только для контрольных сумм используется уже не один, а два диска, причем контрольные суммы считаются с помощью разных алгоритмов, что существенно повышает отказоустойчивость всего RAID-массива в целом. RAID-6 собирается минимум из четырех дисков. Формула расчета объема массива выглядит как (N - 2) * DiskSize , где N - количество дисков в массиве, а DiskSize - объем каждого диска. Т.е. при создании RAID-6 из пяти дисков по 500Гб, мы получим массив объемом в 1,5 терабайта.
    Скорость записи RAID-6 ниже чем у RAID-5 примерно на 10-15%, что обусловлено дополнительными временными затратами на расчет и запись контрольных сумм.

    RAID-10 - так же иногда называется RAID 0+1 или RAID 1+0 . Представляет собой симбиоз RAID-0 и RAID-1. Массив строится минимум из четырех дисков: на первом канале RAID-0, на втором RAID-0 для повышения скорости чтения/записи и между собой они в зеркале RAID-1 для повышения отказоустойчивости. Таким образом, RAID-10 совмещает в себе плюс первых двух вариантов - быстрый и отказоустойчивый.

    RAID-50 - аналогично RAID-10 является симбиозом RAID-0 и RAID-5 - фактически строится RAID-5, только его составляющими элементами являются не самостоятельные жесткие диски, а массивы RAID-0. Таким образом, RAID-50 дает очень хорошую скорость чтения/записи и содержит устойчивость и надежность RAID-5.

    RAID-60 - та же самая идея: фактически имеем RAID-6, собранный из нескольких массивов RAID-0.

    Так же существуют другие комбинированные массивы RAID 5+1 и RAID 6+1 - они похожи на RAID-50 и RAID-60 с той лишь разницей, что базовыми элементами массива являются не ленты RAID-0, а зеркала RAID-1.

    Как Вы сами понимаете комбинированные RAID-массивы: RAID-10 , RAID-50 , RAID-60 и варианты RAID X+1 являются прямыми наследниками базовых типов массивов RAID-0 , RAID-1 , RAID-5 и RAID-6 и служат только для повышения либо скорости чтения/записи, либо повышения отказоустойчивости, неся при этом в себе функционал базовых, родительских типов RAID-массивов .

    Если перейти к практике и поговорить о применении тех или иных RAID-массивов в жизни, то логика довольно проста:

    RAID-0 в чистом виде не используем вообще;

    RAID-1 используем там, где не особо важна скорость чтения/записи, но важна отказоустойчивость - например на RAID-1 хорошо ставить операционные системы. В таком случае к дискам никто кроме ОС не обращается, скорости самих жестких дисков для работы вполне достаточно, отказоустойчивость обеспечена;

    RAID-5 ставим там, где нужна скорость и отказоустойчивость, но не хватает денег на покупку большего количества жестких дисков или есть необходимость восстанавливать массивы в случае их повреждения, не прекращая работы - тут нам помогут запасные Spare-диски. Обычное применение RAID-5 - хранилища данных;

    RAID-6 используется там, где просто страшно или есть реальная угроза смерти сразу нескольких дисков в массиве. На практике встречается достаточно редко, в основном у параноиков;

    RAID-10 - используется там, где нужно чтобы работало быстро и надежно. Так же основным направлением для использования RAID-10 являются файловые серверы и серверы баз данных.

    Опять же, если еще упростить, то приходим к выводу, что там где нет большой и объемной работы с файлами вполне достаточно RAID-1 - операционная система, AD, TS, почта, прокси и т.д. Там же, где требуется серьезная работа с файлами: RAID-5 или RAID-10 .

    Идеальным решением для сервера баз данных представляется машина с шестью физическими дисками, два из которых объединены в зеркало RAID-1 и на нем установлена ОС, а оставшиеся четыре объединены в RAID-10 для быстрой и надежной работы с данными.

    Если прочитав, все вышеизложенное Вы решили установить на своих серверах RAID-массивы , но не знаете, как это делать и с чего начать - обращайтесь к нам ! - мы поможем подобрать необходимое оборудование, а так же проведем инсталляционные работы по внедрению RAID-массивов .