Что такое пзу. Типы пзу. Все делаем по закону

Структура микропроцессора Устройство управления Устройство управления является функционально наиболее сложным устройством ПК. Оно вырабатывает управляющие сигналы, поступающие по кодовым шинам инструкций во все блоки машины. Упрощенная функциональная схема УУ показана на рис. 4.5. Здесь представлены: Рис. 4.5.Укрупненная функциональная схема устройства управления Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции. Регистр команд расположен в интерфейсной части МП, в блоке регистров команд. Дешифратор операций – логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов. Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Импульс по выбранному дешифратором операций в соответствии с кодом операции считывает из ПЗУ микропрограмм необходимую последовательность управляющих сигналов. Узел формирования адреса (находится в интерфейсной части МП) – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров МПП. Кодовые шины данных, адреса и инструкций – часть внутренней интерфейсной шины микропроцессора. В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:
  • выборки из регистра-счетчика адреса команды MПП адреса ячейки ОЗУ, где хранится очередная команда программы;
  • выборки из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;
  • расшифровки кода операции и признаков выбранной команды;
  • считывания из соответствующих расшифрованному коду операции ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках машины процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;
  • считывания из регистра команд и регистров МПП отдельных составляющих адресов операндов (чисел), участвующих в вычислениях, и формирования полных адресов операндов;
  • выборки операндов (по сформированным адресам) и выполнения заданной операции обработки этих операндов;
  • записи результатов операции в память;
  • формирования адреса следующей команды программы.
Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ (рис. 4.6) состоит обычно из двух регистров, сумматора и схем управления (местного устройства управления).
Рис. 4.6.Функциональная схема АЛУ Сумматор – вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов; сумматор имеет разрядность двойного машинного слова. Регистры - быстродействующие ячейки памяти различной длины: регистр 1 (Рг1) имеет разрядность двойного слова, а регистр 2 (Рг2) – разрядность слова. При выполнении операций в Рг1 помещается первое число, участвующее в операции, а по завершении операции – результат; в Рг2 – второе число, участвующее в операции (по завершении операции информация в нем не изменяется). Регистр 1 может и принимать информацию с кодовых шин данных, и выдавать информацию на них, регистр 2 только получает информацию с этих шин. Схемы управления принимают по кодовым шинам инструкций управляющие сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ. АЛУ выполняет арифметические операции (+, -, *, :) только над двоичной информацией с запятой, фиксированной после последнего разряда, т.е. только над целыми двоичными числами. Выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами осуществляется или с привлечением математического сопроцессора, или по специально составленным программам. Микропроцессорная память Микропроцессорная память - память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП, т.е. время, необходимое на поиск, запись или считывание информации из этой памяти, измеряется наносекундами – тысячными долями микросекунды). Она предназначена для кратковременного хранения, записи и выдачи информации, непосредственно в ближайшие такты работы машины участвующей в вычислениях; МПП используется для обеспечения высокого быстродействия машины, ибо основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Микропроцессорная память состоит из быстродействующих регистров с разрядностью не менее машинного слова. Количество и разрядность регистров в разных микропроцессорах различны: от 14 двухбайтных регистров у МП 8086 до нескольких десятков регистров разной длины у МП Pentium . Регистры микропроцессора делятся на регистры общего назначения и специальные. Специальные регистры применяются для хранения различных адресов (адреса команды, например), признаков результатов выполнения операций и режимов работы ПК (регистр флагов, например) и др. Регистры общего назначения являются универсальными и могут использоваться для хранения любой информации, но некоторые из них тоже должны быть обязательно задействованы при выполнении ряда процедур. Интерфейсная часть микропроцессора Интерфейсная часть МП предназначена для связи и согласования МП с системной шиной ПК, а также для приема, предварительного анализа команд выполняемой программы и формирования полных адресов операндов и команд. Интерфейсная часть включает в свой состав адресные регистры МПП, узел формирования адреса, блок регистров команд, являющийся буфером команд в МП, внутреннюю интерфейсную шину МП и схемы управления шиной и портами ввода-вывода. Порты ввода-вывода – это пункты системного интерфейса ПК, через которые МП обменивается информацией с другими устройствами. Всего портов у МП может быть 65536. Каждый порт имеет адрес – номер порта, соответствующий адресу ячейки памяти, являющейся частью устройства ввода-вывода, использующего этот порт, а не частью основной памяти компьютера. Порт устройства содержит аппаратуру сопряжения и два регистра памяти – для обмена данными и обмена управляющей информацией. Некоторые внешние устройства используют и основную память для хранения больших объемов информации, подлежащей обмену. Многие стандартные устройства (НЖМД, НГМД, клавиатура, принтер, сопроцессор и др.) имеют постоянно закрепленные за ними порты ввода-вывода. Схема управления шиной и портами выполняет следующие функции:
  • формирование адреса порта и управляющей информации для него (переключение порта на прием или передачу и др.);
  • прием управляющей информации от порта, информации о готовности порта и его состоянии;
  • организацию сквозного канала в системном интерфейсе для передачи данных между портом устройства ввода-вывода и МП.
Схема управления шиной и портами использует для связи с портами кодовые шины инструкций, адреса и данных системной шины: при доступе к порту МП посылает сигнал по КШИ, который оповещает все устройства ввода-вывода, что адрес на КША является адресом порта, а затем посылает и сам адрес порта. То устройство, адрес порта которого совпадает, дает ответ о готовности, после чего по КШД осуществляется обмен данными.

ПЗУ – память, информация в которой, будучи однажды записанной, изменению не подлежит. Например, программа загрузки в ОЗУ микропроцессорной системы информации из внешней памяти. Все типы ПЗУ используют один и тот же принцип построения схемы. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса и данных.

Условное графическое обозначение ПЗУ представлено на рис.26.10.

Рис.26.10. Условное графическое обозначение ПЗУ

Рис. 26.11. Схема ПЗУ

На рис. 26.11 приведена схема простейшего ПЗУ. Для реализации ПЗУ достаточно использовать дешифратор, диоды, набор резисторов и шинные формирователи. Рассматриваемое ПЗУ содержит разрядных слова, т.е. его общий объем составляет 32 бит. Количество столбцов определяет разрядность слова, а количество строк – количество 8 разрядных слов. Диоды устанавливаются в тех местах, где должны храниться биты, имеющие значение логического «0» (дешифратор подает 0 на выбранную строку). В настоящее время вместо диодов ставят МОП-транзисторы.

В табл. 26.1 приведено состояние ПЗУ, схема которого приведена на рис. 26.11.

Таблица 26.1

Состояние простого ПЗУ

Слово Двоичное представление
А0 А1 D1 D2 D3 D4 D5 D6 D7 D8

Как правило, ПЗУ имеют многоразрядную организацию со структурой 2DM . Технологии изготовления самые разнообразные – КМОП, n-МОП, ТТЛ(Ш) и диодные матрицы.

Все ПЗУ можно разделить на следующие группы: программируемые при изготовлении (масочные), с однократным программированием и перепрограммируемые.

В запоминающих устройствах, программируемых при изготовлении (ПЗУ или ROM), информация записывается непосредственно в процессе их изготовления с помощью фотошаблона, называемого маской, на завершающем этапе технологического процесса. Такие ПЗУ называемые масочными, построены на диодах, биполярных или МОП транзисторах.

Область использования масочных ПЗУ – хранение стандартной информации, например знакогенераторы (коды букв латинского и русского алфавита), таблицы типовых функций (синусы, квадратичные функции), стандартное программное обеспечение.

Программируемые постоянные запоминающие устройства (ППЗУ, или PROM ) – ПЗУ с возможностью однократного электрического программирования. Этот вид памяти позволяет пользователю однократно запрограммировать микросхему памяти с помощью программаторов.

Микросхемы ППЗУ построены на запоминающих ячейках с плавкими перемычками. Процесс программирование заключается в избирательном пережигании плавких перемычек с помощью импульсов тока достаточной амплитуды и длительности. Плавкие перемычки включаются в электроды диодов или транзисторов.

На рис. 26.12 приведена схема ППЗУ с плавкими перемычками. Оно изготавливается со всеми диодами и перемычками, т.е. в матрице все «0», а при программировании пережигаются те перемычки, в ячейках которых должны быть логические «1».

Рис. 26.12. Фрагмент схемы ППЗУ

Репрограммируемые постоянные запоминающие устройства (РПЗУ и РПЗУ УФ) – ПЗУ с возможностью многократного электрического программирования. В ИС РПЗУ УФ (EPROM ) старая информация стирается с помощью ультрафиолетовых лучей, для чего в корпусе микросхемы имеется прозрачное окошко; в РПЗУ (EEPROM ) – с помощью электрических сигналов.

Запоминающие ячейки РПЗУ строятся на n -МОП или КМОП транзисторах. Для построения ЗЭ используются различные физические явления хранения заряда на границе между двумя диэлектрическими средами или проводящей и диэлектрической средой.

В первом варианте диэлектрик под затвором МОП транзистора делают из двух слоев: нитрида кремния и двуокиси кремния. Этот транзистор называется МНОП: металл – нитрид кремния – окисел – полупроводник. На границе диэлектрических слоев возникают центры захвата зарядов. Благодаря туннельному эффекту носители заряда могут проходить сквозь тонкую пленку окисла и скапливаться на границе раздела слоев. Этот заряд, являющийся носителем информации, хранимой МНОП-транзистором, приводит к изменению порогового напряжения транзистора. При этом пороговое напряжение возрастает настолько, что рабочее напряжение на затворе транзистора не в состоянии его открыть. Транзистор, в котором заряд отсутствует, легко открывается. Одно из состояний определено как логическая единица, второе – ноль.

Во втором варианте затвор МОП транзистора делают плавающим, т.е. не связанным с другими элементами схемы. Такой затвор заряжается током лавинной инжекции при подаче на сток транзистора высокого напряжения. В результате заряд на плавающем затворе влияет на ток стока, что используется при считывании информации, как и в предыдущем варианте с МНОП транзистором. Такие транзисторы получили название ЛИЗМОП (МОП транзистор с лавинной инжекцией заряда). Так как затвор транзистора окружен изолятором, ток утечки очень мал и информация может храниться достаточно долго (десятки лет).

В РПЗУ с электрическим стиранием над плавающим затвором транзистора размещают второй – управляющий затвор. Подача напряжения на него вызывает рассасывание заряда на плавающем затворе за счет туннельного эффекта. РПЗУ имеют весомые преимущества перед РПЗУ УФ, так как не требуют для перепрограммирования специальных источников ультрафиолетового света. ЗУ с электрическим стиранием практически вытеснили ЗУ с ультрафиолетовым стиранием.

Фрагмент схемы РПЗУ с использованием двухзатворных транзисторов типа ЛИЗМОП показан на рис. 26.13. Запись логического нуля осуществляется в режиме программирования с помощью заряда плавающего затвора. Стирание информации, т.е. разряд плавающего затвора, означает запись логической единицы. В этом случае при подаче сигнала по линии выборки опрашиваемые транзисторы открываются и передают напряжение U ПИТ на линии считывания.

Современные РПЗУ имеют информационную емкость до 4 Мбит при тактовой частоте до 80 МГц.

26.5. Flash -память

Основные принципы работы и тип запоминающих элементов Flash -памяти аналогичны ППЗУ с электрической записью и стиранием информации, построенной на транзисторах с плавающим затвором. Как правило, благодаря своим особенностям, Flash -память выделяют в отдельный класс. В ней производится стирание или всей записанной информации одновременно, или больших блоков информации, а не стирание отдельных слов. Это позволяет исключить схемы управления записью и стиранием отдельных байтов, что дает возможность значительно упростить схему ЗУ и достичь высокого уровня интеграции и быстродействия при снижении стоимости.

Рис.26.13. Фрагмент схемы РПЗУ

Современные тенденции развития электронных приборов требуют постоянного увеличения объема используемой памяти. На сегодня инженеру доступны микросхемы как энергозависимой памяти типа DRAM , которую характеризуют предельно низкая цена за бит и большие уровни интеграции, так и энергонезависимой Flash -памяти, себестоимость которой постоянно снижается и стремится к уровню DRAM .

Потребность в энергонезависимой Flash -памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе Flash -памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в Flash -памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, Flash -память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR (ИЛИ-НЕ) и NAND (И-НЕ). Структура NOR (рис. 26.14, а) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис. 26.14, б) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

Рис.26.14. Структуры на основе NOR (a) и NAND (б)

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR . Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-Flash лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-Flash ниже, чем в других технологиях Flash -памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Более детально особенности микросхем Flash -памяти можно рассмотреть на примере кристаллов серии HY 27xx(08/16)1G 1M фирмы Hynix . На рис. 26.15 показана внутренняя структура и назначение выводов этих приборов.

Микросхема имеет следующие выводы:

I/O 8-15 – вход/выход данных для х16 устройств

I/O 0-7 – вход/выход данных, адресный вход или вход команд для х8 и х16 устройств;

ALE – включение адресной защелки;

CLE – включение защелки команд;

– выбор кристалла;

– разрешение чтения;

– чтение/занят (выход с открытым стоком);

– разрешение записи;

– защита от записи

V CC – напряжение питания;

V SS – общий вывод.

Рис.26.15. Схема внешних выводов (а), назначение выводов (б) и структурная схема (в) Flash -памяти

Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read ). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.

Рис.26.16. Организация массива памяти NАND -структуры

Массив памяти NAND -структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис. 26.16).

Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC ), программных флагов и идентификаторов негодных блоков (Bad Block ) основной области. В 8-битных устройствах страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В 16-ти битных устройствах страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.

Память на основе ячеек NOR имеет сравнительно большие времена стирания и записи, но обладает доступом к каждому биту на чтение. Данное обстоятельство позволяет применять такие микросхемы для записи и хранения программного кода, который не требует частого перезаписывания. Такими применениями могут быть, например, BIOS для встраиваемых компьютеров или ПО для телевизионных приставок.

Свойства NAND-Flash определили область ее применения: карты памяти и иные устройства хранения данных. Сейчас данный тип памяти применяется почти повсеместно в мобильных устройствах, фото- и видеокамерах и т.д. NAND-Flash лежит в основе практически всех типов карт памяти: SmartMedia , MMC , SecureDigital, MemoryStick

Достигнутая в настоящее время информационная емкость Flash -памяти достигает 8ГБит, типовая совокупная скорость программирования и стирания составляет до 33.6 мС / 64 кБ при тактовой частоте до 70 МГц.

Двумя основными направлениями эффективного использования Flash -памяти являются хранение редко изменяемых данных и замена памяти на магнитных дисках. Для первого направления используется Flash -память с адресным доступом, а для второго – файловая память.

26.6. ОЗУ типа FRAM

FRAM – оперативное энергонезависимое ЗУ, сочетающее высокое быстродействие и малую потребляемую мощность, присущие ОЗУ, со свойством хранения данных при отсутствии приложенного напряжения.

В сравнении с EEPROM и Flash -памятью время записи данных в ЗУ этого типа и потребляемая мощность намного меньше (менее 70 нс против нескольких миллисекунд), а ресурс по циклам записи намного выше (не менее 10 11 против 10 5 …10 6 циклов для EEPROM ).

FRAM должна стать в ближайшем будущем самой популярной памятью в цифровых устройствах. FRAM будет отличаться не только быстродействием на уровне DRAM , но и возможностью сохранять данные при отключении энергии. Словом, FRAM может вытеснить не только медленную Flash , но и обычную ОЗУ типа DRAM . Сегодня ферроэлектрическая память находит ограниченное применение, к примеру, в RFID -тэгах. Ведущие компании, в числе которых Ramtron, Samsung, NEC, Toshiba , активно развивают FRAM . Примерно к 2015 году на рынок должны поступить n -гигабайтные модули FRAM .

Указанные свойства FRAM обеспечивает сегнетоэлектрик (перовскит), используемый в качестве диэлектрика накопительного конденсатора ячейки памяти. При этом сегнетоэлектрическое ЗУ хранит данные не только в виде заряда конденсатора (как в традиционных ОЗУ), но и виде электрической поляризации кристаллической структуры сегнетоэлектрика. Сегнетоэлектрический кристалл имеет два состояния, которые могут соответствовать логическим 0 и 1.

Термин FRAM еще не устоялся. Первые FRAM получили название – ферродинамические ОЗУ. Однако в настоящее время в качестве запоминающих ячеек используется сегнетоэлектрик и сейчас FRAM часто называют сегнетоэлектрическим ОЗУ.

Первые FRAM имели 2Т /2С -архитектуру (рис.26.17, а), на основе которой выполняется и большинство современных микросхем сегнетоэлектрической памяти. Ячейка такого типа, в которой каждому биту соответствует индивидуальный опорный бит, позволяет определить разницу зарядов с высокой точностью. А благодаря считыванию дифференциального сигнала исключается влияние разброса параметров конденсаторов ячеек. Позже появились FRAM с архитектурой 1Т /1С (рис.26.17, б). Достоинство микросхем с такой архитектурой – меньшая, чем в обычных схемах площадь ячейки и, следовательно, меньшая стоимость микросхемы в пересчете на единицу информационной емкости.

На рис.26.18 приведена структурная схема сегнетоэлектрического ОЗУ (FRAM ) объемом 1 Мбит и параллельным интерфейсом доступа FM 20L 08 фирмы Ramtron . В таблице 26.1. показаны выводы микросхемы.

FM 20L 08 – энергонезависимая память с организацией 128К×8, которая считывается и записывается подобно стандартному статическому ОЗУ. Сохранность данных обеспечивается в течение 10 лет, при этом, нет необходимости задумываться о надежности хранения данных (неограниченная износостойкость), упрощается проектирование системы и исключается ряд недостатков альтернативного решения энергонезависимой памяти на основе статического ОЗУ с резервным батарейным питанием. Быстрота записи и неограниченное количество циклов перезаписи делают FRAM лидером по отношению к другим типам энергонезависимой памяти.

Рис.26.17. Ячейка памяти типа 2Т /2С (а) и 1Т /1С (б)

Рис.26.18. Структурная схема FRAM FM 20L 08

ПЗУ - быстрая, энергонезависимая память, которая, предназначенная только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System). BIOS (Basic Input Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

В ПЗУ находятся:

Тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;

Программы для управления основными периферийными устройствами - дисководом, монитором, клавиатурой;

Информация о том, где на диске расположена операционная система.

Типы ПЗУ:

ПЗУ с масочным программированием это память, в которую информация записана раз и навсегда в процессе изготовления полупроводниковых интегральных схем. Постоянные запоминающие устройства применяются только в тех случаях, когда речь идет о массовом производстве, т.к. изготовление масок для интегральных схем частного применения обходится весьма недешево.

ППЗУ (программируемое постоянное запоминающее устройство).

Программирование ПЗУ – это однократно выполняемая операция, т.е. информация, когда-то записанная в ППЗУ, впоследствии изменена быть не может.

СППЗУ (стираемое программируемое постоянное запоминающее устройство). При работе с ним, пользователь может запрограммировать его, а затем стереть записанную информацию.

ЭИПЗУ (электрически изменяемое постоянное запоминающее устройство). Его программирование и изменение осуществляются с помощью электрических средств. В отличии от СППЗУ для стирания информации, хранимой в ЭИПЗУ, не требуется специальных внешних устройств.

Наглядно ОЗУ и ПЗУ можно представить себе в виде массива ячеек, в которые записаны отдельные байты информации. Каждая ячейка имеет свой номер, причем нумерация начинается с нуля. Номер ячейки является адресом байта.

Центральный процессор при работе с ОЗУ должен указать адрес байта, который он желает прочитать из памяти или записать в память. Разумеется, из ПЗУ можно только читать данные. Прочитанные из ОЗУ или ПЗУ данные процессор записывает в свою внутреннюю память, устроенную аналогично ОЗУ, но работающую значительно быстрее и имеющую емкость не более десятков байт.

Процессор может обрабатывать только те данные, которые находятся в его внутренней памяти, в ОЗУ или в ПЗУ. Все эти виды устройства памяти называются устройствами внутренней памяти, они обычно располагаются непосредственно на материнской плате компьютера (внутренняя память процессора находится в самом процессоре).


Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.

Типы ПЗУ

ПЗУ – расшифровывается как постоянное запоминающее устройство, обеспечивающее энергонезависимое хранение информации на каком-либо физическом носителе. По способу хранения информации ПЗУ можно разделить на три типа:

1. ПЗУ, основанные на магнитном принципе хранения информации.

Принцип работы этих устройств основан на изменении направления вектора намагниченности участков ферромагнетика под воздействием переменного магнитного поля в соответствии со значениями битов записываемой информации.

Ферромагнетик – вещество, способное при температуре ниже определенного порога (точки Кюри) обладать намагниченностью при отсутствии внешнего магнитного поля.

Считывание записываемых данных в таких устройствах основано на эффекте электромагнитной индукции или магниторезистивного эффекта. Этот принцип реализуется в устройствах с подвижным носителем в виде диска или ленты.

Электромагнитной индукцией называется эффект возникновения электрического тока в замкнутом контуре при изменении магнитного потока проходящего через него.

Магниторезистивный эффект основан на изменении электрического сопротивления твердотельного проводника под действием внешнего магнитного поля.

Основное преимущество данного типа – большой объем хранимой информации и низкая стоимость единицы хранимой информации. Основной недостаток – наличие подвижных частей, большие габариты, низкая надежность и чувствительность к внешним воздействиям (вибрация, удары, перемещения и т.д.)

2. ПЗУ, основанные на оптическом принципе хранения информации.

Принцип работы этих устройств основан на изменении оптических свойств участка носителя, например, за счет изменения степени прозрачности или коэффициента отражения. Примером ПЗУ, основанном на оптическом принципе хранения информации, могут служит CD -, DVD-, BluRay - диски.

Основное достоинство данного типа ПЗУ – низкая стоимость носителя, удобство транспортирования и возможность тиражирования. Недостатки – низкая скорость чтения/записи, ограниченное количество перезаписей, потребность в считывающем устройстве.

3. ПЗУ, основанные на электрическом принципе хранения информации.

Принцип работы этих устройств основан на пороговых эффектах в полупроводниковых структурах – возможности хранения и регистрации наличия заряда в изолированной области.

Этот принцип используется в твердотельной памяти – памяти, не требующей использование подвижных частей для чтения/записи данных. Примером ПЗУ, основанном на электрическом принципе хранения информации, может служить flash – память.

Основное достоинство данного типа ПЗУ – высокая скорость чтения/записи, компактность, надежность, экономичность. Недостатки – ограниченное число перезаписи.

На данный момент существуют или находятся на этапе разработки и другие, «экзотические» типы постоянной памяти, такие как:

Магнитно-оптическая память – память, сочетающая свойства оптических и магнитных накопителей. Запись на такой диск осуществляется путем нагрева ячейки лазером до температуры около 200 о С. Разогретая ячейка теряет магнитный заряд. Далее ячейку можно остудить, что будет означать, что в ячейку записан логический ноль, либо зарядить заново магнитной головкой, что будет означать, что в ячейку записана логическая единица.

После охлаждения магнитный заряд ячейки изменить нельзя. Считывание производится лазерным лучом меньшей интенсивности. Если в ячейки содержится магнитный заряд, то лазерный луч поляризуется, а считывающее устройство определяет, является ли лазерный луч поляризованным. За счет «закрепления» магнитного заряда при охлаждении магнитно-оптические обладают высокой надежностью хранения информации и теоретически могут иметь плотность записи большую, чем ПЗУ основанное только на магнитном принципе хранения информации. Однако заменить «жесткие» диски они не могут из-за очень низкой скорости записи, обусловленную необходимостью высокого нагрева ячеек.

Широкого распространения магнитно-оптическая память не получила и используется очень редко.

Молекулярная память – память, основанная на технологии атомной туннельной микроскопии, позволяющей изымать или добавлять в молекулы отдельные атомы, наличие которых затем может считываться специальными чувствительными головками. Данная технология была представлена в середине 1999 года компанией Nanochip, и теоретически позволяла достичь плотности упаковки около 40 Гбит/см 2 , что в десятки раз превосходит существующие серийные образцы «Жестких» дисков, однако слишком низкая скорость записи и надёжность технологии не позволяет говорить о практическом использовании молекулярной памяти в обозримом будущем.

Голографическая память – отличается от существующих наиболее распространенных типов постоянной памяти, использующих для записи один или два поверхностных слоя, возможностью записывать данных по «всему» объему памяти с помощью различных углов наклона лазера. Наиболее вероятно применение такого типа памяти в ПЗУ на базе оптического хранения информации, где уже не в новинку оптические диски с несколькими информационными слоями.

Существуют и другие, совсем уж экзотические типы постоянной памяти, но они даже в лабораторных условиях балансируют на грани научной фантастики, поэтому упоминать о них не буду, поживем – увидим.


Важно знать разницу между ОЗУ и ПЗУ. Если вы понимаете эту разницу вы сможете лучше понять, как работает компьютер. ОЗУ и ПЗУ, как различные типы запоминающих устройств, и они оба хранят данные в компьютере. В этой статье мы расскажем вам об основных различиях между этими двумя воспоминаниями, а именно ОЗУ и ПЗУ.

Random Access Memory (RAM)

Оперативная память представляет собой тип памяти , которая позволяет получить доступ к хранимым данным в любой последовательности и из любого физического расположения в памяти. RAM могут быть считаны и записаны с новыми данными. Основное преимущество оперативной памяти является то, что она занимает почти такое же время в доступе в него любые данные, независимо от места нахождения данных. Это делает RAM очень быстрой памяти. Компьютеры могут читать из памяти очень быстро, а также они могут записывать новые данные в оперативной памяти очень быстро.

Как RAM выглядит?

Коммерчески доступные обычные чипы памяти могут быть легко подключен в и подключен выход материнской платы компьютера. На следующем рисунке показаны чипы памяти.

Постоянное запоминающее устройство (ПЗУ)

Как следует из названия, данные записываются в ПЗУ только один раз и навсегда. После этого, данные могут быть прочитаны только с помощью компьютеров. Только для чтения памяти часто используется, чтобы установить постоянные инструкции в компьютер. Эти инструкции никогда не изменится. Чипы ROM хранить базовую систему ввода / вывода (BIOS) компьютера. На следующем рисунке показан коммерчески доступный чип ROM BIOS.

Разница между ОЗУ и ПЗУ

В следующей таблице перечислены основные различия между произвольным доступом и только для чтения памяти.

Сравнительная таблица ОЗУ и ПЗУ
ОЗУ ПЗУ
1. Подставки для RANDON-доступа памяти Подставки для памяти только для чтения
2. RAM для чтения и записи в память Обычно ПЗУ постоянное запоминающее устройство и оно не может быть перезаписана. Тем не менее, СППЗУ может быть перепрограммирован
3. RAM быстрее ROM относительно медленнее, чем RAM
4. Оперативная память представляет собой энергонезависимое запоминающее устройство. Это означает, что данные в оперативной памяти будут потеряны, если блок питания отсечку ROM является постоянной памяти. Данные в ПЗУ будет оставаться как есть, даже если мы удалим источника питания
5. Есть в основном два типа оперативной памяти; статическая оперативная память и динамическое ОЗУ Есть несколько типов ROM; Стираемое программируемое ПЗУ, программируемом ПЗУ, СППЗУ и т.д.
6. RAM хранит все приложения и данные, когда компьютер работает в нормальном режиме ROM обычно хранятся инструкции, необходимые для запуска (загрузки) компьютера
7. Цена ОЗУ сравнительно высока чипы ROM сравнительно дешевле
8. чипы памяти больше по размеру микросхемы ROM меньше по размеру
9. Процессор может непосредственно получить доступ к содержимому памяти Содержание ROM, как правило, сначала переносится в оперативную память, а затем доступ к процессору. Это делается для того, чтобы иметь возможность получить доступ к содержимому диска с более высокой скоростью.
10. RAM часто устанавливается с большим объемом памяти. Емкость запоминающего устройства ПЗУ, установленного в компьютере намного меньше, чем RAM

ОЗУ и ПЗУ являются неотъемлемой частью современной компьютерной системы. Вы хотите знать, когда диск работает и когда RAM находится в игре? Ну, когда вы переключаетесь на вашем компьютере, вы можете увидеть черный экран с каким-то белым текстом. Этот текст из ПЗУ. Инструкции ПЗУ управления компьютером для первого несколько секунд, когда вы включить его. В этот период, как инструкции " , как читать с жесткого диска", "как печатать на экране" загружаются из ПЗУ. После того, как компьютер способен делать эти основные операции, операционная система (Windows / Linux / OSX и т.д.) для чтения с жесткого диска и загружается в оперативную память. Следующее видео объясняет RAM против концепции ROM дополнительно.

При открытии программы, как Microsoft Word , программа загружается с жесткого диска компьютера в оперативную память.

Мы надеемся, что эта статья помогла вам понять основные различия между ОЗУ и ПЗУ. Если у вас есть какие-либо вопросы, связанные с этой темой, пожалуйста, не стесняйтесь задавать в разделе комментариев. Мы постараемся помочь вам. Благодарим Вас за использование TechWelkin!