Метод ветвей и границ простыми словами. Решение задачи коммивояжера с помощью метода ветвей и границ

Здравствуй, Хабр! Реализовывая различные алгоритмы для нахождения гамильтонова цикла с наименьшей стоимостью, я наткнулся на публикацию , предлагающую свой вариант. Попробовав в деле, я получил неправильный ответ:

Дальнейшие поиски в Интернете не принесли ожидаемого результата: либо сложное для не-математиков теоретическое описание, либо понятное, но с ошибками.

Под катом вас будет ждать исправленный алгоритм и онлайн-калькулятор.

Сам метод, опубликованный Литтлом, Мерти, Суини, Кэрелом в 1963 г. применим ко многим NP-полным задачам, и представляет собой очень теоритеризованный материал, который без хороших знаний английского языка и математики сразу не применишь к нашей задаче коммивояжера.

Кратко о методе - это полный перебор всех возможных вариантов с отсеиванием явно неоптимальных решений.

Исправленный алгоритм, для нахождения действительно минимального маршрута

Алгоритм состоит из двух этапов:

Первый этап
Приведение матрицы затрат и вычисление нижней оценки стоимости маршрута r.
1. Вычисляем наименьший элемент в каждой строке (константа приведения для строки)
2. Переходим к новой матрице затрат, вычитая из каждой строки ее константу приведения
3. Вычисляем наименьший элемент в каждом столбце (константа приведения для столбца)
4. Переходим к новой матрице затрат, вычитая из каждого столбца его константу приведения.
Как результат имеем матрицу затрат, в которой в каждой строчке и в каждом столбце имеется хотя бы один нулевой элемент.
5. Вычисляем границу на данном этапе как сумму констант приведения для столбцов и строк (данная граница будет являться стоимостью, меньше которой невозможно построить искомый маршрут)
Второй (основной) этап
1.Вычисление штрафа за неиспользование для каждого нулевого элемента приведенной матрицы затрат.
Штраф за неиспользование элемента с индексом (h,k) в матрице, означает, что это ребро не включается в наш маршрут, а значит минимальная стоимость «неиспользования» этого ребра равна сумме минимальных элементов в строке h и столбце k.

А) Ищем все нулевые элементы в приведенной матрице
б) Для каждого из них считаем его штраф за неиспользование.
в) Выбираем элемент, которому соответствует максимальный штраф (любой, если их несколько)

2. Теперь наше множество S разбиваем на множества - содержащие ребро с максимальным штрафом(S w) и не содержащие это ребро(S w/o).
3. Вычисление оценок затрат для маршрутов, входящих в каждое из этих множеств.
а) Для множества S w/o все просто: раз мы не берем соответствующее ребро c максимальным штрафом(h,k), то для него оценка затрат равна оценки затрат множества S + штраф за неиспользование ребра (h,k)
б) При вычислении затрат для множества S w примем во внимание, что раз ребро (h,k) входит в маршрут, то значит ребро (k,h) в маршрут входить не может, поэтому в матрице затрат пишем c(k,h)=infinity, а так как из пункта h мы «уже ушли», а в пункт k мы «уже пришли», то ни одно ребро, выходящее из h, и ни одно ребро, приходящее в k, уже использоваться не могут, поэтому вычеркиваем из матрицы затрат строку h и столбец k. После этого приводим матрицу, и тогда оценка затрат для S w равна сумме оценки затрат для S и r(h,k), где r(h,k) - сумма констант приведения для измененной матрицы затрат.
4. Из всех неразбитых множеств выбирается то, которое имеет наименьшую оценку.

Так продолжаем, пока в матрице затрат не останется одна не вычеркнутая строка и один не вычеркнутый столбец.

Небольшая оптимизация - подключаем эвристику

Да, правда, почему бы нам не ввести эвристику? Ведь в алгоритме ветвей и границ мы фактически строим дерево, в узлах которого решаем брать ребро (h,k) или нет, и вешаем двух детей - Sw(h,k) и Sw/o(h,k). Но лучший вариант для следующей итерации выбираем только по оценке. Так давайте выбирать лучший не только по оценке, но и по глубине в дереве, т.к. чем глубже выбранный элемент, тем ближе он к концу подсчета. Тем самым мы сможем наконец дождаться ответа.

Теперь, собственно, об ошибках в той публикации

Ошибка была одна единственная - следует выбирать для разбиения множество с минимальной границей из всех возможных путей, а не из двух полученных в результате последнего разбиения детей.

Доказательство

Вернемся к картинке в начале поста:


А вот решение с исправленным алгоритмом:

Ответ: путь:3=>4=>2=>1=>5=>3 длина: 41
Как видите, включая ребро 5:2 в решение будет ошибкой. Что и требовалось доказать

График сравнения метода ветвей и границ и потраченного времени для случайной таблицы от 5х5 до 10х10:


График максимального и минимального потраченного времени для матриц от 5х5 до 66х66.


Попробовать с подробным решением можно

Ниже приведено условие задачи и текстовая часть решения. Все решение полностью, в формате doc в архиве, вы можете скачать. Некоторые символы могут не отображаться на странице, но документе word все отображается. Еще примеры работ по ЭМММ можно посмотреть

ПОСТАНОВКА ЗАДАЧИ

Издательское предприятие должно выполнить в течении недели (число дней m = 5) работу по набору текста с помощью работников n категорий (высокая, средняя, ниже средней, низкая). Требуются определить оптимальную численность работников по категориям, при которой обеспечивается выполнение работы с минимальным расходом фонда зарплаты при заданных ограничениях. Исходные данные приведены в таблице 1 и 2.

Таблица 1

Таблица 2

Задача должна решаться методом целочисленного линейного программирования в Mathcad 2000/2001.

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
РЕШЕНИЯ
ЗАДАЧИ

Для расчета оптимальной численности работников, при которой обеспечивается минимум расхода фонда зарплаты, составляется математическая модель целочисленного линейного программирования, так как численность работников не может быть дробной величиной.

Решение задачи целочисленного программирования выполняется в два этапа.

На первом этапе выполняется задача линейного программирования без учета целочисленности.

На втором этапе производится пошаговый процесс замены нецелочисленных переменных ближайшими верхними или нижними целыми значениями.

Сначала решается, задача без учета условия целочисленности.

Целевая функция определяется по формуле:

где Q - общий фонд зарплаты на выполнение работы;

x 1 , x 2 , …, x n - численность работников по категориям;

n - число категорий работников;

c 1 , c 2 ,…, c n - дневная тарифная ставка одного работника по категориям;

m - число рабочих дней в неделю, m = 5.

Целевую функцию можно записать в векторной форме:

При решении задачи должны выполняться следующие ограничения. Ограничение сверху

x d (1)

задает максимальную численность работников по категориям, где d —вектор, определяющий численность по категориям.

В ограничении

учтено, что общая численность работников не должна превышать k max .

В ограничении снизу

р × х≥Р (3)

отражается, что все работники вместе должны выполнить заданный объем работ Р .

В качестве последнего ограничения записывается условие неотрицательности вектора переменных

x ≥0 (4)

Математическая модель решения задачи без учета условия целочисленности включает следующие выражения:

x d

р × х≥Р ,

x ≥ 0 .

Модель целочисленного программирования должна включать выражения (5), а также дополнительные ограничения, с помощью которых нецелочисленные переменные х заменяются целочисленными значениями. Конкретные выражения модели с целочисленными переменными рассмотрены в следующем подразделе.

РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ В MATHCAD

Исходные данные для примера даны в табл. 1 и 2.

Для решения задачи используется пакет Mathcad с функцией Minimize. Данная функция определяет вектор решения задачи:

х := Minimize (Q , x ),

где Q — выражение целевой функции, определяющей минимальный фонд зарплаты, х - вектор переменных.

Сначала задача решается без учета условия целочисленности. Это решение приведено в Приложении 1. В первой строке введены нулевые начальные значения вектора х и целевая функция Q (x ) . После слова Given и перед функцией Minimize указаны ограничения. В результате получена нецелочисленная оптимальная численность по категориям:

х =

с фондом зарплаты Q = 135 у. е.

Из данного решения находится целочисленное решение методом ветвей и границ.

Сначала в полученном решении анализируется дробная величина х 4 =
= 1,143. Для нее можно задать два целочисленных значения: х 4 = 1 и х 4 = 2. Начинается построение дерева решений (Приложение 2). На дереве решений откладывается начальный нулевой узел. Затем он соединяется первым узлом х 4 , и из этого узла проводятся две ветви, соответствующие ограничениям: х 4 = 1 и х 4 = 2.

Для ветви с ограничением х 4 = 1 решается задача линейного программирования, данная в Приложении 1, с учетом этого ограничения.

В результате получено решение этой задачи. Переменная х 1 стала целочисленная, но переменная х 2 стала дробной х 2 = 0,9.

Для продолжения ветви создается узел х 3 и ветвь х 3 = 1. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1. С этими ограничениями задача имеет решение х Т =
= (1,938 1 1 1).

Для продолжения ветви создается узел х 1 и ветвь х 1 = 2. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1, х 1 = 2. С этими ограничениями задача имеет решение х Т = = (2 1 1 1).

Процесс построения дерева решении и выполнение задачи линейного программирования повторяется, пока не будут построены все ветви.

В Приложении 2 приводится полное дерево возможных целочисленных решений, из которого следуют, что в задаче имеется 4 результативных решения.

Из результативных выбирается наилучшее и оно принимается как оптимальное целочисленное решение всей задачи с минимальной величиной Q (x ) . В нашем случае мы имеем два оптимальных целочисленных решения

Q (х) = 140,

x T = (2 1 1 1),

x T = (1 1 2 2).

Следовательно, издательская организация должна привлечь для набора текста двух работников высокой категории, одного работника средней категории, одного работника ниже средней категории и одного работника низкой категории. Возможен так же другой равнозначный вариант привлечения работников: один работник высокой категории, один работник средней категории, два работника категории ниже средней и два работника низкой категории. В обоих вариантах затраты будут минимальными и составят 140 ден. ед.

Скачать решение задачи:


Имя файла: 2.rar
Размер файла: 24.99 Kb

Если закачивание файла не начнется через 10 сек, кликните

4.3.1. Общая схема метода «ветвей и границ». Другим широко применяемым для решения задач дискретного програм­мирования методом является метод ветвей и границ . Впервые данный метод для решения ЦЗЛП предложили в 1960 г. Лэнг и Дойг, а его «второе рождение» произошло в 1963 г. в связи с выходом работы Литтла, Мурти, Суини и Кэрел, посвященной решению задачи о коммивояжере .

Вообще говоря, термин «метод ветвей и границ» является соби­рательным и включает в себе целое семейство методов, применяе­мых для решения как линейных, так и нелинейных дискретных задач, объединяемое общими принципами. Кратко изложим их.

Пусть стоит задача:

где D - конечное множество.

Алгоритм является итеративным, и на каждой итерации про­исходит работа с некоторым подмножеством множества D . На­зовем это подмножество текущим и будем обозначать его как D ( q ) , где q - индекс итерации. Перед началом первой итерации в качестве текущего множества выбирается все множество D (D (1) =D ), и для него некоторым способом вычисляется значе­ние верхней оценки для целевой функции max f(x) ≤ ξ( D (1)). Стандартная итерация алгоритма состоит из следующих этапов:

1°. Если можно указать план x (q ) ∊D (q ) , для которого f(x (q ) ) ≤ξ( D (q )), то x (q ) =х* - решение задачи (4.29).

2°. Если такой план не найден, то область определения D (q ) некоторым образом разбивается на подмножества D 1 (q ) , D 2 (q ) , ..., D lq (q ) , удовлетворяющие условиям:

Для каждого подмножества находятся оценки сверху (вер­хние границы) для целевой функции ξD 1 ( q ) , ξD 2 ( q ) , ..., ξD l 1 ( q ) , уточняющие ранее полученную оценку ξD ( q ) , то есть ξD i ( q ) ≤ ξD ( q ) , i ∊1:l q . Возможно одно из двух:

2.1. Если существует такой план х ( q ) , что

то этот план оптимальный.

2.2. Если такой план не найден, то выбирается одно из мно­жеств D i ( q ) , i ∊1:l q (как правило, имеющее наибольшую оценку

Все имеющиеся к текущему моменту концевые подмножества, т. е. те подмножества, которые еще не подверглись процессу дробления, переобозначаются как D 1 ( q +1) , D 2 ( q +1) ,..., D l ( q +1) ( q +1) , после чего процесс повторяется.

Схема дробления множества D представлена на рис. 4.3 в виде графа. Существуют и более сложные системы индексации подмножеств, при которых не требуется их переобозначение на каждом шаге.

Конкретные реализации метода ветвей и границ связаны с правилами разбиения на подмножества (правилами ветвления) и построения оценок значений целевых функций на данных под­множествах (границ).


4.3.2. Решение ЦЗЛП методом ветвей и границ. Рас­смотрим применение алгоритма метода ветвей и границ для решения ЦЗЛП (4.2)-(4.3). Как уже упоминалось, через D ( q ) обозначается подмножество множества допустимых планов за­дачи. Перед началом первой итерации (q = 1) в качестве теку­щего множества берется все множество D (D (1) = D ), после чего решается стандартная задача линейного программирования (D (1) , f ). Нетрудно заметить, что она является непрерывным аналогом

исходной задачи (4.2)-(4.3). Если найденный оптималь­ный план (1) содержит только целочисленные компоненты, то он является и оптимальным планом для (4.2)-(4.3): (1) = x* . В противном случае значение f ( (1)) становится оценкой (верх­ней границей) значения целевой функции на множестве D (1) , и мы переходим к выполнению стандартной итерации алгоритма. Опишем входящие в нее этапы.

1) Выбирается некоторая нецелочисленная компонента пла­на k ( q ) . Поскольку в оптимальном плане она должна быть це­лой, то можно наложить ограничения x k ≤ [ k ( q ) ] и x k ≥ [ k ( q ) ]+1. Таким образом, D ( q ) разбивается на подмножества

Графическая интерпретация такого разбиения множества D ( q ) приведена на рис. 4.4.

2) Решаются задачи линейного программирования

Соответствующие максимальные значения целевой функции принимаются как ее оценки на этих множествах:

Если оптимальный план для одной из решенных задач удов­летворяет условию

и содержит только целые компоненты, то, значит, найдено ре­шение основной задачи (4.2)-(4.3). В противном случае среди всех концевых подмножеств , полученных как на предыду­щих (D i ( q )), так и на текущем (D 1 ( q ) , D 2 ( q )) этапе, выбирается об­ласть с наибольшей оценкой ξ(D i ( q )). Она становится текущим рассматриваемым подмножеством (D ( q +1)). Далее производится перенумерация концевых множеств и вычислительный процесс итеративно повторяется.

При решении задач (D 1 ( q ) , f ) и (D 2 ( q ) , f ) можно воспользовать­ся результатами решения предыдущей задачи (D ( q ) , f ). Рас­смотрим вариант организации вычислительного процесса на примере задачи ( 1 ( q ) , f ) (для ( 2 ( q ) , f ) он выглядит аналогично с точностью до знаков неравенств).

Предположим, что на последнем шаге решения задачи (D ( q ) , f ) был получен оптимальный базис β. Без ограничения общности можно считать, что он состоит из первых m столбцов матрицы задачи. Данное предположение делается исключитель­но для обеспечения наглядности дальнейшего изложения и оче­видно, что его выполнения можно всегда добиться за счет про­стой перенумерации векторов а j . По аналогии с предыдущим параграфом введем обозначения для элементов матрицы задачи (D ( q ) , f ) и ее вектора ограничений относительно базиса :

Тогда система ограничений задачи (D ( q ) , f ) может быть пред­ставлена как

а получаемая на ее основе система ограничений задачи ( 1 ( q ) , f ) как

где х n +1 ≥ 0 - фиктивная переменная, которой соответствует нулевой коэффициент в целевой функции, добавляемая для пре­образования неравенства в строгое равенство.

Очевидно, что 1≤k≤m , т. к. небазисные компоненты опти­мального плана (m +1≤j≤n ) равны нулю, т. е. являются заведо­мо целочисленными. Тогда с учетом сделанных предположений о виде базиса можно записать:

Как видно из (4.39), в k -м столбце имеется всего два отлич­ных от нуля элемента: в k -й и (m +1)-й строках. Если вычесть из (m +1)-го уравнения k -e, то, учитывая, что [ά k ] – ά k =-{ά k }, по­лучим эквивалентную систему:

Проведенные преобразования системы ограничений D 1 ( q ) по­зволили явно выделить сопряженный базис, образуемый столб­цами с номерами 1,..., m , n +1, и соответствующий ему псевдо­план (ά 1 , ..., ά m , 0,...., 0, -{ά k }), т.е. для решения задачи (D 1 ( q ) , f ) может быть применен алгоритм двойственного симплекс-мето­да. Практически вычислительный процесс для данного этапа сводится к преобразованию к симплекс-таблицы, показанному на рис. 4.5.

Для случая задачи (D 2 ( q ) , f ) преобразование симплекс-табли­цы, получаемое на базе аналогичных рассуждений, приведено на рис. 4.6.

Очевидным недостатком алгоритма метода ветвей и границ при решении задач большой размерности является необходи­мость перебрать слишком большое количество вариантов пе­ред тем, как будет найден оптимальный план. Однако он отчасти может быть преодолен, если ограничиться поиском не опти­мального, а просто «хорошего» (близкого к оптимальному) пла­на. О степени такой близости и скорости приближения к экст­ремуму нетрудно судить по изменению значений оценок.

Подчеркнем, что приведенная реализация метода ветвей и границ является одной из многих . Помимо нее, например, очень популярна версия метода решения задачи коммивояжера, в которой для ветвления и построения оценок используют специфические свойства данной модели. При желании о ней мож­но прочесть в .

КЛЮЧЕВЫЕ ПОНЯТИЯ

Ø Ø Задачи с неделимостями.

Ø Ø Экстремальные комбинаторные задачи.

Ø Ø Задачи с разрывными целевыми функциями.

Ø Ø Правильное отсечение.

Ø Ø Метод Гомори.

Ø Ø Методы ветвей и границ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

4.1. Какие основные проблемы возникают при решении дис­кретных задач?

4.2. Сформулируйте задачу о ранце.

4.3. Какие экономико-математические модели могут быть све­дены к задаче о коммивояжере?

4.4. Приведите пример моделей с разрывными целевыми функ­циями.

4.5. Какой принцип используется для построения правильно­го отсечения в методе Гомори?

4.6. Перечислите основные этапы, входящие в «большую» итерацию метода Гомори.

4.7. Какую роль играет алгоритм двойственного симплекс-ме­тода при решении целочисленной

линейной задачи мето­дом Гомори?

4.8. Перечислите принципиальные идеи, лежащие в основе ме­тодов ветвей и границ.

4.9. Как производится построение отсечения при решении це­лочисленной линейной задачи методом

ветвей и границ?

4.10. Опишите схему решения целочисленной задачи линейно­го программирования методом ветвей и

4.11. За счет каких преобразований удается построить сопря­женный базис при добавлении

отсекающего ограничения?

Введение

При рассмотрении целого ряда задач, необходимо учитывать требование целочисленности используемых переменных. Методы решения задач линейного программирования не гарантируют целочисленности решения.

Иногда задачи целочисленного линейного программирования решают приближенно. Для этого решают задачу без учета целочисленности переменных, затем в полученном оптимальном решении округляют результаты до ближайших целых значений. Использование таких решений допустимо в тех ситуациях, где значения переменных достаточно велики, и погрешностью округления можно пренебречь. Если значения переменных невелики, то округление может привести к значительному расхождению с оптимальным решением.

Одним из широко распространенных методов решения целочисленных задач является метод ветвей и границ, впервые, он был предложен Ленд и Дойг в 1960 г.

ветвь граница линейное программирование

Метод ветвей и границ

Алгоритм метода ветвей и границ предусматривает декомпозицию исходной задачи линейного программирования (ЗЛП) на последовательность задач, содержащих дополнительные ограничения на переменные, которые затем оптимизируются.

1. Процесс начинают с решения задачи симплексным или графическим методом без учета требования на целочисленность переменных. Эту задачу называют ЗЛП-0. Если все переменные оптимального плана целые, то этот план также является оптимальными для задач целочисленного программирования.

2. Если некоторая переменная, не получила целочисленного значения, то производится ветвление на две новые задачи ЗЛП-1, ЗЛП-2. Одна из задач ЗЛП-1 представляет собой задачу ЗЛП-0, дополненную ограничением где - целая часть числа. Вторая образуется путем добавления к задаче ЗЛП-0 ограничения. Следует отметить, что выбор целочисленной переменной может быть произвольным определяться следующим образом:

по возрастанию или убыванию индексов;

переменная представляет важное решение принимаемое в рамках данной задачи;

коэффициент в целевой функции при этой переменной существенно превосходит все остальные.

3. Задачи ЗЛП-1 и ЗЛП-2 решаются самостоятельно. Ветвь оканчивается, если область допустимых решений пуста, либо её оптимальное решение полностью целочисленное. В противном случае возникает необходимость ветвления с п.2, обозначая следующие номера задач ЗЛП в естественном порядке ЗЛП-3, ЗЛП-4.

Процесс решения можно представить в виде дерева, в котором вершина ЗЛП-0 отвечает начальному плану решения задачи, а каждая из соединенных с ней ветвью вершин отвечает оптимальному плану следующей задачи.

Рассмотрим следующий пример. Максимизировать целевую функцию

при ограничениях

Воспользуемся графическим методом решения задачи линейного программирования.

1. Решим исходную задачу без учета требования целочисленности переменных.

Обозначим эту задачу линейного программирования ЗЛП-0.

На рисунке 1.1 штриховкой выделен многоугольник решений данной задачи. Максимальное значение достигается в точке Решение не является целочисленным.

Следующий шаг метода ветвей и границ состоит в ветвлении по одной из целочисленных переменных, имеющих дробное значение, например. Для этого добавим к задаче ЗЛП-0 два новых ограничения и Этими ограничениями удаляется интервал = в котором нет целых значений. Таким образом, в процессе ветвления создаются две новые задачи ЗЛП-1 и ЗЛП-2.

Рисунок 1.1 Решение задачи ЗЛП-0

2. Решим задачу ЗЛП-1 графически.

На рисунке 1.2 изображена допустимая область задачи ЗЛП-1. Максимальное значение достигается в точке. Решение задачи нецелочисленное.

Рисунок 1.2 Решение задачи ЗЛП-1

3. Решим задачу ЗЛП-2 графически.

В данном случае множество допустимых решений пусто (рисунок 1.2). Система ограничений несовместна, и задачу ЗЛП-2 можно исключить из дальнейшего рассмотрения.

Рисунок 1.3 Решение задачи ЗЛП-2

Теперь продолжим исследование задачи ЗЛП-1, поскольку значение нецелое. Произведем еще одно ветвление, путем введения ограничений и. В результате получаем две новые задачи ЗЛП-3 и ЗЛП-4.

Начало развитию подхода, получившего название метод ветвей и границ, положила работа Ленд и Дойг (1960). Это, скорее, даже не метод, а концепция или процедурная оболочка, на основе которой стали разрабатывать алгоритмы решения целочисленных задач различной природы. Ценность предложенной идеи стала особенно заметна после появления первого точного алгоритма решения задачи коммивояжера, построенного по схеме ветвей и границ (Литтл с соавторами, 1963). Метод можно применять как к полностью, так и частично целочисленным задачам.

Суть идеи схожа с известной шуткой о ловле льва в пустыне: делим пустыню пополам; если льва нет в первой половине, ищем во второй, которую делим пополам и т. д. В отличии от льва оптимум не перемещается, и в этом смысле наша задача легче.

Метод заключается в построении дерева задач, корнем которого является исходная задача, возможно без условия целочисленности (НЗ). Нижележащие задачи порождаются вышележащими так, что их допустимые множества (ДМ) являются непересекающимися подмножествами ДМ вышележащей задачи. Рост дерева происходит за счет перспективных ветвей. Перспективность определяется по оценке критерия терминальной задачи ветвиV ирекорду Z. ОценкаV – это значение критерия, заведомо не хуже оптимального, аZ – достигнутое в процессе решения значение критерия исходной задачи (в качестве начального может приниматься значение, заведомо хуже оптимального). Значит, задача будет порождающей только при условии, что ее оценка лучше рекорда. При этом уровень, на котором находится задача, не имеет значения.

Рассмотрим метод применительно к линейной целочисленной задаче. Хотя нет каких-либо ограничений на число задач, непосредственно порождаемых перспективной, в алгоритмах, как правило, используется разбиение на две задачи, то есть строится бинарное дерево (рис. 7.5). При этом для целочисленных множеств выполняются соотношения

Очевидно, что если, например,V 22 окажется хуже рекорда илиD 22 =, правая ветвь обрывается (говорят также, что она прозондирована). Если же оценкаV 22 будет лучше Z , производится ветвление: множествоD 22 разбивается на 2 подмножества. Решение завершится, когда все ветви будут прозондированы.

Вид оценки зависит от направленности критерия: при максимизации используется верхняя оценка, при минимизации – нижняя. Последующее изложение метода будет относиться к задаче на максимум.

Для алгоритмической реализации схемы ветвей и границ необходимо решить два основополагающих вопроса:

    Каким образом разбивать перспективное множество на подмножества;

    Как определять верхнюю оценку критерия на рассматриваемом множестве.

Ответы на них зависят от типа задачи (частично или полностью целочисленная, имеет особые свойства или нет, с булевыми или не булевыми переменными). Ниже рассматривается общий случай.

Пусть известен диапазон возможных значений j -й переменной

0  х j d j ,

которая в непрерывном оптимальном решении оказалась нецелочисленной и равной x j * . Тогда целочисленное значение этой переменной может достигаться либо в интервале 0  х j
,либо в интервале
+1 х j d j , где
- целая часть (рис. 7.6).

Это соответствует разбиению непрерывного множестваD н на два непересекающихся подмножества D 1 н и D 2 н , объединение которых не равно D н . В то же время такое разбиение целочисленного множества удовлетворяет соотношениям (7.9). При этом целочисленные множества, как исходное, так и порожденные, включены в соответствующие непрерывные множества. Следовательно, поиск целочисленного решения на непрерывном множестве даст тот же результат, что и на целочисленном. Легко увидеть, что приведенное выделение подинтервалов по одной переменной приводит к разбиению исходного множества на два подмножества при любом числе переменных.

Теперь перейдем ко второму вопросу. Так как целочисленное множество является подмножеством соответствующего непрерывного, оптимальное значение критерия на непрерывном множестве всегда будет не меньше, чем на целочисленном. Поэтому в качестве верхней оценки V можно брать оптимальное значение критерия L * непрерывной задачи.

Выбор начального значения рекорда зависит от ситуации:

    если известно какое-либо целочисленное значение, то рекорд принимается равным критерию в этом решении;

    при положительности всех коэффициентов критерия можно взять нулевое значение рекорда;

    в иных случаях за начальное значение рекорда берется –М , где М- максимально представимое в компьютере число.

По ходу разбиения формируются порождаемые задачи, которые помещаются в список задач. Первоначальный список содержит только одну задачу – исходную задачу без условий целочисленности. И в последующем список будет содержать только непрерывные задачи.

Таким образом, базовый алгоритм, реализующий метод ветвей и границ, включает следующие шаги.


Приведенный алгоритм является базовым, так как не включает однозначных правил выбора задачи из списка и ветвящей переменной. Для частично целочисленных задач при выборе переменной для ветвления исключаются непрерывные переменные.

Пример 7.3 . Применим алгоритм ветвей и границ к задаче

L= 9x 1 + 5x 2 max;

3x 1 - 6x 2 1;

5x 1 +2x 2  28;

x j 0 , целые.

Отбрасывая условие цедочисленности, получаем непрерывную задачу, которую помещаем в список задач. Так как коэффициенты критерия положительны, начальное значение рекорда принимаем равным нулю. Берем из списка единственную задачу и решаем ее. Получаем оптимальное решение в вершине А (рис. 7.7):x 1 * =4,72; x 2 * =2,19 . Ветвление производим по переменнойx 1 . Добавляя к решенной задаче ограничение x 1 4, образуем задачу 2, а добавление x 1 5 дает задачу 3. Допустимые множества новых задач покзаны на рис. 7.7. Эти задачи помещаем в список задач. Решение задачи 2 достигается в точке В, а задачи 3 – в С. Весь ход решения исходной задачи представлен в виде дерева решений на рис. 7.10. Порядок решения задач из списка отражает счетчик итераций k . На 3-й итерации (задача 4) получено целочисленное решение со значением критерия 41 (точка D нарис. 7.8). Поэтому изменяется рекорд: Z =41.Задача 6 имеет нецелочисленное решение (вершина Е на рис. 7.9), задача 8 – целочисленное решение в точкеF. В результате после 7-й итерации рекорд становится равным 50.

Остальные задачи не имеют допустимых решений, то есть список задач исчерпывается и, таким образом, констатируем получение оптимального решения исходной задачи, равное решению непрерывной задачи 8.

Из приведенного дерева решений видно, что число задач в списке могло быть меньше при другом порядке решения задач. Действительно, если бы сначала были решены задачи правой ветви с рекордом Z= 50, то после решения задачи 2 не произошло бы ветвления, так как верхняя оценка оказалась бы ниже рекорда (V=L * =45,17<50).

Естественно возникает вопрос: а как на числе задач и дереве решений может отразиться выбор другой переменной для ветвления? Так, в нашем примере если после 1-й итерации произвести ветвление по переменнойx 2 , то получим дерево, показанное на рис. 7.11. Оно содержит на 2 задачи больше, чем на рис. 7.10. Конечно, оно может быть также другим при ином порядке решения задач.

Таким образом, число решаемых задач существенно зависит от выбора задачи из списка и переменной для ветвления.

Из алгоритма и приведенного примера следует, что ветвь обрывается по одной из трех причин:

    неразрешимость задачи;

    задача имеет целочисленное решение;

    верхняя оценка не больше рекорда.

Теперь сделаем ряд замечаний относительно метода ветвей и границ. Как уже отмечалось, в базовом алгоритме не оговариваются правила выбора задачи и переменной. В большинстве программных реализаций метода используются правила, основанные на эвристических оценках перспективности задач и переменных. В некоторых пакетах, например, "ЛП в АСУ" предлагается несколько вариантов управления процессом решения: от автоматического до ручного, в котором пользователь может сам делать выбор как задачи, так и переменной. Кроме того, алгоритмы, основанные на методе ветвей и границ, могут существенно отличаться в связи с учетом особенностей класса задач. Например, для задачи коммивояжера, определение оценки значительно упрощено (не требуется решать непрерывную линейную задачу).

Метода ветвей и границ имеет преимущества в сравнении с методом отсечений:

    накопление ошибок менее значительное, так как решение идет по разным ветвям;

    при принудительной остановке процесса решения высока вероятность получения целочисленного результата, но без установления его оптимальности;

    при решении непрерывных задач размеры симплекс-таблиц не увеличиваются.

Недостатки метода ветвей и границ:

    Нельзя оценить число задач, которые придется решать. Чем ближе снизу начальное значение рекорда и сверху оценка критерия задачи к искомому оптимальному значению критерия, тем меньше вершин будет иметь дерево решений, а значит, и затрат ресурсов. Однако завышение начального рекорда может привести к неразрешимости задачи, что всегда следует иметь в виду.

    Отсутствие признака оптимальности. Оптимальное решение может быть получено задолго до останова алгоритма, но обнаружить это в общем случае нельзя. Оптимальность устанавливается только по исчерпании списка задач.

Очевидно, что эффективность метода повышается с уменьшением диапазонов значений переменных и числа нецелых переменных в решении первой непрерывной задачи.