Электронные средства сбора, обработки и отображения информации. Модели дискретных каналов связи Методы передачи данных на физическом уровне

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Теоретическая часть

1.1 Дискретный канал и его параметры

1.2 Модель частичного описания дискретного канала

1.3 Классификация дискретных каналов

1.4 Модели каналов

1.5 Модуляция

1.6 Структурная схема с РОС

2. Расчетная часть

2.1 Определение оптимальной длины кодовой комбинации, при которой обеспечивается наибольшая относительная пропускная способность

2.2 Определение числа проверочных разрядов в кодовой комбинации, обеспечивающих заданную вероятность необнаруженной ошибки

2.3 Определение объема передаваемой информации при заданном темпе Т пер и критерии отказа t отк

2.4 Определение емкости накопителя

2.5 Расчет характеристик основного и обходного каналов ПД

2.6 Выбор трассы магистрали

Заключение

Список использованных источников

Введение

дискретный связь информация сообщение

Развитие телекоммуникационных сетей привело к необходимости в более подробном изучении цифровых систем передачи данных. И дисциплина «Технологии цифровой связи» посвящена этому. Данная дисциплина излагает принципы и методы передачи цифровых сигналов, научные основы и современное состояние технологий цифровой связи; дает представление о возможностях и естественных границах реализации цифровых систем передачи и обработки; уясняет закономерности, определяющие свойства устройств передачи данных и задачи их функционирования.

Целью данной курсовой работы является освоение курса «Технологии цифровой связи», получение навыков в решении задач в методологии инженерных расчетов основных характеристик и обучение методам технической эксплуатации цифровых систем и сетей;

В курсовой работе необходимо спроектировать тракт передачи данных между источником и получателем информации с использованием системы с решающей обратной связью, непрерывной передачей и блокировкой приемника, а также построение схемы кодирующего и декодирующего устройства циклического кода с использованием модуляции и демодуляции с применением пакета «System View»; определение объема передаваемой информации при заданном темпе и критерии отказа; расчет характеристик основного и обходного дискретного канала; построение временной диаграммы работы системы.

Решение этих задач раскрывает выполнение основной цели задания - моделирование телекоммуникационных систем.

1 . Теоретическая часть

1.1 Дискретный канал и его параметры

Дискретный канал - канал связи, используемый для передачи дискретных сообщений.

Состав и параметры электрических цепей на входе и выходе ДК определены соответствующими стандартами. Характеристики могут быть экономичными, технологичными и техническими. Основными являются технические характеристики. Они могут быть внешними и внутренними.

Внешние - информационные, технико-экономические, технико-эксплуатационные.

На скорость передачи существует несколько определений.

Техническая скорость характеризует быстродействие аппаратуры входящих в состав передающей части.

где m i - основание кода в i-ом канале.

Информационная скорость передачи - связана с пропускной способностью канала. Она появляется с появлением и быстрым развитием новых технологий. Информационная скорость зависит от технической скорости, от статистических свойств источника, от типа КС, принимаемых сигналов и помех, действующих в канале. Предельным значением является пропускная способность КС:

где?F - полоса КС;

По скорости передачи дискретных каналов и соответствующих УПС принято подразделять на:

Низкоскоростные (до 300 бит/сек);

Среднескоростные (600 - 19600 бит/сек);

Высокоскоростные (более 24000 бит/сек).

Эффективная скорость передачи - количество знаков в единицу времени, предоставленных получателю с учетом непроизводительных затрат времени (время фазирования СС, время отводимое на избыточные символы).

Относительная скорость передачи:

Достоверность передачи информации - используется в связи, что в каждом канале имеются посторонние излучатели, которые искажают сигнал и затрудняют процесс определения вида передаваемого единичного элемента. По способу преобразования сообщений в сигнал помехи бывают аддитивные и мультипликативные. По форме: гармонические, импульсные и флуктуационные.

Помехи приводят к ошибкам в приеме единичных элементов, они случайны. В этих условиях вероятность характеризуется безошибочностью передачи. Оценкой верности передачи может служить отношение числа ошибочных символов к общему

Часто вероятность передатчика оказывается меньше требуемой, следовательно, принимают меры по увеличению вероятности ошибок, устранение принимаемых ошибок, включение в канал некоторых дополнительных устройств, которые уменьшают свойства каналов, следовательно, уменьшают ошибки. Улучшение верности связано с дополнительными материальными затратами.

Надежность - дискретный канал, как и любая ДС не может работать безотказно.

Отказом называют событие, заканчивающееся в полной или частичной утробе системы работоспособности. Применительно к системе передачи данных отказ - событие, вызывающее задержку принимаемого сообщения на время t зад >t доп. При этом t доп в разных системах различна. Свойство системы связи, обеспечивающее нормальное выполнение всех заданных функций называются надежностью. Надежность характеризуется средним временем наработки на отказ T о, средним временем восстановления T в, и коэффициентом готовности:

Вероятность безотказной работы показывает, с какой вероятностью система может работать без единого отказа.

1.2 Модель частичного описания дискретного канала

Зависимость вероятности появления искаженной комбинации от ее длины n и вероятность появления комбинации длиной n с t ошибками.

Зависимость вероятности появления искаженной комбинации от ее длины n характеризуется как отношение числа искаженной комбинации к общему числу переданных кодовых комбинаций.

Эта вероятность является неубывающей величиной функции n. Когда n=1, то Р=Р ОШ, когда, Р=1.

В модели Пуртова вероятность вычисляется:

где б - показатель группирования ошибок.

Если б = 0, то пакетирование ошибок отсутствует и появление ошибок следует считать независимым.

Если 0.5 < б < 0.7, то это пакетирование ошибок наблюдается на кабельных линиях связи, т.к. кратковременные прерывания приводят к появлению групп с большой плотностью ошибок.

Если 0.3 < б < 0.5, то это пакетирование ошибок наблюдается в радиорелейных линиях связи, где наряду с интервалами большой плотности ошибок наблюдаются интервалы с редкими ошибками.

Если 0.3 < б < 0.4, то наблюдается в радиотелеграфных каналах.

Распределение ошибок в комбинациях различной длины оценивает и вероятность комбинаций длиной n c t наперед заданными ошибками.

Сравнение результатов вычисленных значений вероятностей по формулам (2) и (3) показывает, что группирование ошибок приводит к увеличению числа кодовых комбинаций, пораженных ошибками большей кратности. Также можно заключить, что при группировании ошибок уменьшается число искаженных кодовых комбинаций, заданной длины n. Это понятно также из чисто физических соображений. При одном и том же числе ошибок пакетирование приводит к сосредоточению их на отдельных комбинациях (кратность ошибок возрастает), а число искаженных кодовых комбинаций уменьшается.

1.3 Классификация дискретных каналов

Классификацию дискретных каналов можно проводить по различным признакам или характеристикам.

По передаваемому переносчику и сигналу каналу бывают (непрерывный сигнал - непрерывный переносчик):

Непрерывно-дискретный;

Дискретно-непрерывный;

Дискретно-дискретный.

Различают понятие дискретная информация и дискретная передача.

С математической точки зрения канал можно определить алфавитом единичных элементов на входе и выходе канала. Зависимость этой вероятности зависит от характера ошибок в дискретном канале. Если при передаче i-ого единичного элемента i=j - ошибок не произошло, если при приеме элемент принял новый элемент, отличающийся от j, то произошла ошибка.

Каналы, в которых P(a j /a i) не зависит от времени при любых i и j называются стационарные, в противном случае - нестационарные.

Каналы, в которых вероятность перехода не зависит от значения ранее принятого элемента, то это канал без памяти.

Если i не равно j, P(a j /a i)=const, то канал симметричен, в противном случае - несимметричен.

Большинство каналов являются симметричными и обладают памятью. Каналы космической связи симметричны, но не обладают памятью.

1.4 Модели каналов

При анализе систем КС используют 3 основных модели для аналоговых и дискретных систем и 4 модели только для дискретных систем.

Основные математические модели КС:

Канал с аддитивным шумом;

Линейный фильтрованный канал;

Линейный фильтрованный канал и переменными параметрами.

Математические модели для дискретных КС:

ДКС без памяти;

ДКС с памятью;

Двоичный симметричный КС;

КС с двоичных источников.

КС с аддитивным шумом является наиболее простой математической моделью реализуемой по следующей схеме.

Рисунок 1.1 - Структурная схема КС с аддитивным шумом

В данной модели передаваемый сигнал S(t) подвергается влиянию добавочного шума n(t), который может возникнуть от посторонних электрических помех, электронных компонентов, усилителей или из-за явления интерференции. Данная модель применила к любому КС, но при наличие процесса затухания в суммарную реакцию необходимо добавить коэффициент затухания.

r(t)=бS(t)+n(t) (1.9)

Линейный фильтрованный канал применим для физических каналов содержащих линейные фильтры для ограничения полосы частот и устранения явления интерференции. с(t) является импульсной характеристикой линейного фильтра.

Рисунок 1.2 - Линейный фильтрованный канал

Линейный фильтрованный канал с переменными параметрами характерен специфическим физическим каналам, таким как акустический КС, ионосферные радиоканалы, которые возникают при меняющемся во времени передаваемом сигнале и описываются переменными параметрами.

Рисунок 1.3 - Линейный фильтрованный канал с переменными параметрами

Дискретные модели КС без памяти характеризуется входным алфавитом или двоичной последовательностью символов, а также набором входной вероятности передаваемого сигнала.

В ДКС с памятью в пакете передаваемых данных имеются помехи или канал подвергается воздействию замирания, то условная вероятность выражается как суммарная совместная вероятность всех элементов последовательности.

Двоичный симметричный КС является частным случаем дискретного канала без памяти, когда входными и выходными алфавитами могут быть только 0 и 1. Следовательно, вероятность имеют симметричный вид.

ДКС двоичных источников генерирует произвольную последовательность символов, при этом конечный дискретный источник определяется не только этой последовательностью и вероятность возникновения их, а также введением таких функций как самоинформация и математическое ожидание.

1.5 Модуляция

Сигналы формируются путем изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией.

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (переносчика) f(t,б,в, …) в соответствии с передаваемым сообщением. Так если в качестве переносчика выбрано гармоническое колебание f(t)=Ucos(щ 0 t+ц), то можно образовать три вида модуляции: амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ).

Рисунок 1.4 - Формы сигналов при двоичном коде для различных видов дискретной модуляции

Амплитудная модуляция состоит в пропорциональном первичному сигналу x(t) изменении амплитуды переносчика U AM =U 0 +ax(t). В простейшем случае гармонического сигнала x(t)=XcosЩt амплитуда равна:

В результате имеем АМ колебание:

Рисунок 1.5 - Графики колебаний x(t), u и u AM

Рисунок 1.6 - Спектр АМ колебания

На рисунке 1.5 изображены графики колебаний x(t), u и u AM . Максимальное отклонение амплитуды U AM от U 0 представляет амплитуду огибающей U Щ =aX. Отношение амплитуды огибающей к амплитуде несущего (немодулированного) колебания:

m - называется коэффициентом модуляции. Обычно m<1. Коэффициент модуляции, выраженный в процентах, т.е. (m=100%) называют глубиной модуляции. Коэффициент модуляции пропорционален амплитуде модулирующего сигнала.

Используя выражения (1.12), выражение (1.11) записывают в виде:

Для определения спектра АМ колебания раскроем скобки в выражении(1.13):

Согласно (1.14) АМ колебание является суммой трех высокочастотных гармонических колебаний близких частот (поскольку Щ<<щ 0 или F<

Колебания несущей частоты f 0 с амплитудой U 0 ;

Колебания верхней боковой частоты f 0 +F;

Колебания нижней боковой частоты f 0 -F.

Спектр АМ колебания (1.14) приведен на рисунке 1.6. Ширина спектра равна удвоенной частоте модуляции: ?f AM =2F. Амплитуда несущего колебания при модуляции не изменяется; амплитуды колебании боковых частот (верхней и нижней) пропорциональны глубины модуляции, т.е. амплитуде X модулирующего сигнала. При m=1 амплитуды колебаний боковых частот достигают половины несущей (0,5U 0).

Несущее колебание никакой информации не содержит, и в процессе модуляции оно не меняется. Поэтому можно ограничиться передачей только боковых полос, что и реализуется в системах связи на двух боковых полосах (ДБП) без несущей. Больше того, поскольку каждая боковая полоса содержит полную информацию о первичном сигнале, можно обойтись передачей только одной боковой полосы (ОБП). Модуляция, в результате которой получаются колебания одной боковой полосы, называется однополосной (ОМ).

Очевидными достоинствами систем связи ДБП и ОБП являются возможности использования мощности передатчика на передачу только боковых полос (двух или одной) сигнала, что позволяет повысить дальность и надежность связи. При однополосной модуляции, кроме того, вдвое уменьшается ширина спектра модулированного колебания, что позволяет соответственно увеличить число сигналов, передаваемых по линии связи в заданной полосе частот.

Фазовая модуляция заключается в пропорциональном первичному сигналу x(t) изменении фазы ц переносчика u=U 0 cos(щ 0 t+ц).

Амплитуда колебания при фазовой модуляции не изменяется, поэтому аналитическое выражение ФМ колебания

Если модуляция осуществляется гармоническим сигналом x(t)=XsinЩt, то мгновенная фаза

Первые два слагаемых (1.17) определяют фазу немодулированного колебания, третье - изменение фазы колебания в результате модуляции.

Фазомодулированное колебание наглядно характеризуется векторной диаграммой рисунок 1.7, построенной на плоскости, вращающейся по часовой стрелке угловой частотой щ 0 . Немодулированному колебанию соответствует подвижный вектор U 0 . Фазовая модуляция заключается в периодическом изменении с частотой Щ повороте вектора U относительно U 0 на угол?ц(t)=aXsinЩt. Крайние положения вектора U обозначены U" и U"". Максимальное отклонение фазы модулированного колебания от фазы немодулированного колебания:

где M - индекс модуляции. Индекс модуляции М пропорционален амплитуде Х модулирующего сигнала.

Рисунок 1.7 - Векторная диаграмма фазомодулированного колебания

Используя (1.18), перепишем ФМ колебание (1.16) как

u=U 0 cos(щ 0 t+ц 0 +MsinЩt) (1.19)

Мгновенная частота ФМ колебания

щ=U(щ 0 +MЩcosЩt) (1.20)

Таким образом, ФМ колебание в разные моменты времени имеет различные мгновенные частоты, отличающиеся от частоты несущего колебания щ 0 на величину?щ= MЩcosЩt, что позволяет рассматривать ФМ колебание как модулированное по частоте.

Частотная модуляция заключается в пропорциональном изменении первичному сигнала x(t) мгновенной частоты переносчика:

щ=щ 0 +ax(t) (1.21)

где a - коэффициент пропорциональности.

Мгновенная фаза ЧМ колебания

Аналитическое выражение ЧМ колебания с учетом постоянства амплитуды можно записать в виде:

Девиация частоты - максимальное ее отклонение от несущей частоты щ 0, вызванное модуляцией:

Щ A =aX (1.24)

Аналитическое выражение этого ЧМ колебания:

Слагаемое (?щ Д /Щ)sinЩt характеризует изменение фазы, получающееся при ЧМ. Это позволяет рассматривать ЧМ колебание, как ФМ колебание с индексом модуляции

и записать его аналогично:

Из сказанного следует, что ФМ и ЧМ колебания имеют много общего. Так колебание вида (1.27) может быть результатом как ФМ, так и ЧМ гармоническим первичным сигналом. Кроме того, ФМ и ЧМ характеризуются одними и теми же параметрами (индексом модуляции М и девиацией частоты?f Д), связанными между собой одинаковыми соотношениями: (1.21) и (1.24).

Наряду с отмеченным сходством частотной и фазовой модуляции между ними имеется и существенное отличие, связанное с различным характером зависимости величин М и?f Д от частоты F первичного сигнала:

При ФМ индекс модуляции не зависит от частоты F, а девиация частоты пропорциональна F;

При ЧМ девиация частоты не зависит от частоты F, а индекс модуляции обратно пропорционален F.

1.6 Структурная схема с РОС

Передача с РОС аналогична телефонному разговору в условиях плохой слышимости, когда один из собеседников, плохо расслышав какое-либо слово или фразу, просит другого повторить их еще раз, а при хорошей слышимости или подтверждает факт получения информации, или во всяком случае, не просит повторения.

Полученная по каналу ОС информация анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей кодовой комбинации или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятом решении, а затем соответствующие кодовые комбинации. В соответствии с полученными от передатчика служебными сигналами приемник или выдает накопленную кодовую комбинацию получателю информации, или стирает ее и запоминает вновь переданную.

Виды системы с РОС: системы с ожиданием служебных сигналов, системы с непрерывной передачей и блокировкой, системы с адресным переносом. В настоящее время известны многочисленные алгоритмы работы систем с ОС. Наиболее распространенными являются системы: с РОС с ожиданием сигнала ОС; с безадресным повторением и блокировкой приемника с адресным повторением.

Системы с ожиданием после передачи комбинации либо ожидают сигнал с обратной связи, либо передают ту же кодовую комбинацию, но передачу следующей кодовой комбинации начинают только после получения подтверждения по ранее переданной комбинации.

Системы с блокировкой осуществляют передачу непрерывной последовательности кодовых комбинаций при отсутствии сигналов ОС по предшествующим S комбинациям. После обнаружения ошибок в (S+1)-й комбинации выход системы блокируется на время приема S комбинаций, в запоминающем устройстве приемника системы ПДС стираются S ранее принятых комбинаций, и посылается сигнал переспроса. Передатчик повторяет передачу S последних переданных кодовых комбинаций.

Системы с адресным повторением отличает то, что кодовые комбинации с ошибками отмечаются условными номерами, в соответствии с которыми передатчик производит повторную передачу только этих комбинаций.

Алгоритм защиты от наложения и потери информации. Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных кодовых комбинациях, с целью принятия более правильного решения. Системы первого типа получили название систем без памяти, а второго - системы с памятью.

На рисунке 1.8 представлена структурная схемы системы с РОС-ож. Функционирует системы с РОС-ож следующим образом. Поступающая от источника информации (ИИ), m - элементная комбинация первичного кода через логическую ИЛИ записывается в накопитель передатчика (НК 1). Одновременно с этим в кодирующем устройстве (КУ) формируются контрольные символы, представляющие собой контрольную последовательность блока (КПБ).

Рисунок 1.8 ? Структурная схема системы с РОС

Полученная n - элементная комбинация подается на вход прямого канала (ПК). С выхода ПК комбинация поступает на входы решающего устройства (РУ) и декодирующего устройства (ДКУ). ДКУ на основании m информационных символов, принимаемых из прямого канала, формирует свою контрольную последовательность блока. Решающее устройство сравнивает две КПБ (принимаемую из ПК и выработанную ДКУ) и принимает одно из двух решение: либо информационная часть комбинации (m-элементный первичный код) выдается получателю информации ПИ, либо стирается. Одновременно в ДКУ производится выделение информационной части и запись полученной m - элементной комбинации в накопитель приемника (НК 2).

Рисунок 1.9 - Структурная схема алгоритма системы с РОС НП

В случае отсутствия ошибок или необнаруженных ошибок принимается решение о выдаче информации ПИ и устройство управления приемника (УУ 2) выдает сигнал, открывающий элемент И 2 , что обеспечивает выдачу m - элементной комбинации из НК 2 к ПИ. Устройством формирования сигнала обратной связи (УФС) вырабатывается сигнал подтверждения приема комбинации, который по обратному каналу (ОК) передается в передатчик. Если приходящий из ОК сигнал дешифрирован устройством декодирования сигнала обратной связи (УДС) как сигнал подтверждения, то на вход устройства управления передатчика (УУ 1) передатчика подается соответствующий импульс, по которому УУ 1 производит запрос от ИИ следующей комбинации. Логическая схема И 1 в этом случае закрыта, и комбинация, записанная в НК 1 , стирается при поступлении новой.

В случае обнаружения ошибок РУ принимает решение о стирании комбинации, записанной в НК 2 , при этом УУ 2 вырабатываются управляющие импульсы, запирающие логическую схему И 2 и формирующие в УФС сигнал переспроса. При дешифровании схемой УДС поступающего на его вход сигнала как сигнала переспроса, блок УУ 1 вырабатывает управляющие импульсы, с помощью которых через схемы И 1 , ИЛИ и КУ в ПК производится повторная передача комбинации, хранящейся в НК 1 .

2 . Расчетная часть

2.1 Определение оптимальной длины кодовой комбинации, при которой обеспечивается наибольшая относительная пропускная способность

В соответствии с вариантом запишем исходные данные для выполнения данной курсовой работы:

B = 1200 Бод - скорость модуляции;

V = 80000 км/с - скорость распространения информации по каналу связи;

P ош = 0,5·10 -3 - вероятность ошибки в дискретном канале;

P но = 3·10 -6 - вероятность возникновения начальной ошибки;

L = 3500 км - расстояние между источником и получателем;

t отк = 180 сек - критерий отказа;

T пер = 220 сек - заданный темп;

d 0 = 4 - минимальное кодовое расстояние;

б = 0,6 - коэффициент группирования ошибок;

АМ, ЧМ, ФМ - тип модуляции.

Рассчитаем пропускную способность R, соответствующую заданному значению n, по формуле (2.1):

где n - длина кодовой комбинации;

Таблица 2.1

Из таблицы 2.1 находим наибольшее значение пропускной способности R=0.997, которому соответствует длина кодовой комбинации n = 4095.

2.2 Определение числа проверочных разрядов в кодовой комбинации, обеспечивающих заданную вероятность необнаруженной ошибки

Нахождение параметров циклического кода n, k, r.

Значение r находится по формуле (2.2)

Параметры циклического кода n, k, r связаны через зависимость k=n-r. Следовательно k=4089 символов.

2.3 Определение объема передаваемой информации при заданном темпе Т пер и критерии отказа t отк

Объем передаваемой информации находится по формуле (2.3):

W = 0.997 1200(220 - 180) = 47856 бит.

Используем полученное значение, по модулю, РWР = 95712бит.

2.4 Определение емкости накопителя

Емкость накопителя определяется по формуле (2.4):

где t p =L/V - время распространения сигнала по каналу связи, с;

t k =n/B - длительность кодовой комбинации из n разрядов, с.

2.5 Расчет характеристик основного и обходного каналов ПД

Распределение вероятности возникновения хотя бы одной ошибки на длине n определяется по формуле (2.5):

Распределение вероятности возникновения ошибок кратности t и более на длине n определяется по формуле (2.6):

где t об =d 0 -1 - время обходного канала передачи данных или кратность одной ошибке на длине n.

Вероятность возникновения начальной ошибки определяется по формуле (2.7):

Вероятность обнаружения кодом ошибки определяется по формуле (2.8):

Избыточность кода определяется по формуле (2.9):

Скорость закодированного символа во входном канале передачи данных определяется по формуле (2.10):

Средняя относительная скорость передачи данных в системе с РОС определяется по формуле (2.11):

где ф 0 - время обратное максимальной скорости работы канала или время обратное скорости модуляции (2.12);

t ож - время ожидания при передачи информации в канале с РОС.

где t ak и t ac - разница во времени в асинхронном режиме работы для кодовой ошибки в канале и для основного сигнала соответственно (2.14);

Вероятность правильного приема определяется по формуле (2.15):

2.6 Выбор трассы магистрали

На географической карте РК выбираем два пункта, которые отстоят друг от друга на 3500 км. В связи с тем, что территория Казахстана не позволяет выбрать такие пункты, проложим магистраль с юга на восток, с востока на север, с севера на восток, а после с востока на юг (рисунок 2.1). Начальным пунктом будет Павлодар, а конечным -Костанай, следовательно, наша магистраль будет носить название «Павлодар - Костанай».

Данную магистраль разобьем на участки длиной 500-1000 км, а также установим пункты переприема, которые привяжем крупным городам Казахстана:

Павлодар (начальный пункт);

Усть-Каменогорск;

Шымкент;

Костанай.

Рисунок 2.1 - Магистраль с пунктами переприема

Заключение

В данной курсовой работе произведены основные расчеты для проектирования кабельных линий связи.

В теоретической части работы изучена модель Пуртова Л.П., которая используется в качестве модели частичного описания дискретного канала, построена структурная схема системы РОС нпбл и описан принцип работы этой системы, а также рассмотрена относительная фазовая модуляция.

В соответствие с заданным вариантом найдены параметры циклического кода n, k, r. Определена оптимальная длина кодовой комбинации n, при которой обеспечивается наибольшая относительная пропускная способность R, а также число проверочных разрядов в кодовой комбинации r, обеспечивающих заданную вероятность не обнаружения ошибки.

Для основного канала передачи данных рассчитаны основные характеристики (распределение вероятности возникновения хотя бы одной ошибки на длине n, распределение вероятности возникновения ошибок кратности t и более на длине n, скорость кода, избыточность кода, вероятность обнаружения кодом ошибки и другое).

В конце работы была выбрана трасса магистрали передачи данных, по всей длине которой были выбраны пункты переприема данных.

В результате была выполнена основная задача курсовой работы - моделирование телекоммуникационных систем.

Список использованных источников

1 Бирюков С. А. Цифровые устройства на МОП-интегральных микросхемах / Бирюков С. А. - М.: Радио и связь, 2007 - 129 с.: ил. - (Массовая радиобиблиотека; Вып. 1132).

2 Гельман М. М. Аналого-цифровые преобразователи для информационно-измерительных систем / Гельман М. М. - М.: Изд-во стандартов, 2009. - 317с.

3 Оппенгейм А., Шафер Р. Цифровая обработка сигналов. Изд. 2-е, испр. -- М.: «Техносфера», 2007. -- 856 с. ISBN 978-5-94836-135-2

4 Сергиенко А. Б. Цифровая обработка сигналов. Издательство Питер. - 2008

5 Скляр Б. Цифровая связь. Теоретические основы и практическое применение: 2-е изд. / Пер. с англ. М.: Издательский дом «Вильямс», 2008. 1104 с.

Размещено на Allbest.ru

...

Подобные документы

    Модель частичного описания дискретного канала (модель Л. Пуртова). Определение параметров циклического кода и порождающего полинома. Построение кодирующего и декодирующего устройства. Расчет характеристик для основного и обходного канала передачи данных.

    курсовая работа , добавлен 11.03.2015

    Изучение закономерностей и методов передачи сообщений по каналам связи и решение задачи анализа и синтеза систем связи. Проектирование тракта передачи данных между источником и получателем информации. Модель частичного описания дискретного канала.

    курсовая работа , добавлен 01.05.2016

    Принцип работы кодирующего и декодирующего устройства циклического кода. Определение объема передаваемой информации. Нахождение емкости и построение диаграммы. Расчет надежностных показателей основного и обходного каналов. Выбор магистрали по карте.

    курсовая работа , добавлен 06.05.2015

    Модель частичного описания дискретного канала, модель Пуртова Л.П. Структурная схема системы с РОСнп и блокировкой и структурная схема алгоритма работы системы. Построение схемы кодера для выбранного образующего полинома и пояснение его работы.

    курсовая работа , добавлен 19.10.2010

    Составление обобщенной структурной схемы передачи дискретных сообщений. Исследование тракта кодер-декодер источника и канала. Определение скорости модуляции, тактового интервала передачи одного бита и минимально необходимой полосы пропускания канала.

    курсовая работа , добавлен 26.02.2012

    Модели частичного описания дискретного канала. Система с РОС и непрерывной передачей информации (РОС-нп). Выбор оптимальной длины кодовой комбинации при использовании циклического кода в системе с РОС. Длина кодовой комбинации.

    курсовая работа , добавлен 26.01.2007

    Методы кодирования сообщения с целью сокращения объема алфавита символов и достижения повышения скорости передачи информации. Структурная схема системы связи для передачи дискретных сообщений. Расчет согласованного фильтра для приема элементарной посылки.

    курсовая работа , добавлен 03.05.2015

    Информационные характеристики источника сообщений и первичных сигналов. Структурная схема системы передачи сообщений, пропускная способность канала связи, расчет параметров АЦП и ЦАП. Анализ помехоустойчивости демодулятора сигнала аналоговой модуляции.

    курсовая работа , добавлен 20.10.2014

    Предназначение канала связи для передачи сигналов между удаленными устройствами. Способы защиты передаваемой информации. Нормированная амплитудно-частотная характеристика канала. Технические устройства усилителей электрических сигналов и кодирования.

    контрольная работа , добавлен 05.04.2017

    Расчет характеристик системы передачи сообщений, ее составляющие. Источник сообщения, дискретизатор. Этапы осуществления кодирования. Модуляция гармонического переносчика. Характеристика канала связи. Обработка модулируемого сигнала в демодуляторе.

Информация – это совокупность сведений о каком-либо событии, явлении, предмете. Для того, чтобы информацию можно было хранить и передавать, ее представляют в виде сообщений.

Сообщение – это совокупность знаков (символов), содержащих ту или иную информацию. Для передачи сообщений системы связи могут использовать материальные носители (например, бумага, устройства хранения на магнитных дисках или лентах) или физические процессы (изменяющийся электрический ток, электромагнитные волны, луч света).

Физический процесс, отображающий передаваемое сообщение, называется сигналом . Сигнал всегда представляет собой функцию времени.

Если сигнал представляет собой функцию S(t) , принимающую для любого фиксированного значения t , только определенные, наперед заданные значения S k , такой сигнал и отображаемое им сообщение называются дискретными . Если сигнал принимает в некотором интервале времени любое значение, он называется непрерывным или аналоговым .

Множество возможных значений дискретного сообщения (или сигнала) ДС представляет собой алфавит сообщения. Алфавит сообщения обозначается заглавной буквой, например, А , а в фигурных скобках указываются все его возможные значения - символы .


ИДС –источник дискретных сообщений ПДС – получатель дискретных сообщений

СПДС – система передачи дискретных сообщений

Обозначим алфавит сообщения на передаче (алфавит входного сообщения, входной алфавит) – А, алфавит сообщения на приеме (алфавит выходного сообщения, выходной алфавит) – В.

В общем случае эти алфавиты могут иметь бесконечное множество значений. Но на практике они конечны и совпадают. Это значит, что при приеме символа b k считается, что передавался символ a k .

Различают два вида дискретных сигналов:

· Дискретные случайные процессы непрерывного времени (ДСНВ), в которых смена значений сигнала (символов) может происходить в любой момент времени на произвольном интервале.

· Дискретные случайные процессы дискретного времени (ДСДВ), в которых смена символов может происходить только в фиксированные моменты времени t 0 , t 1 , t 2 …t i …, где t i =t 0 +i* 0 . Величину   называют единичным интервалом .

Второй вид дискретных сигналов называют дискретными случайными последовательностями ДСП.

В случае непрерывного времени дискретный случайный процесс может иметь бесконечное множество реализаций на интервале времени  , а в случае сигнала в виде ДСП число возможных реализаций ограничивается множеством


Где k – индекс, обозначающий номер символа алфавита, i – индекс, обозначающий момент времени. При объеме алфавита равном K и длине последовательности n символов число возможных реализаций равно K n .

В общем случае, источник дискретных сообщений или сигналов (ИДС) – это любой объект, порождающий на своем выходе дискретный случайный процесс.

Дискретным каналом (ДК) – называют любой участок системы передачи, на входе и выходе которого имеют место взаимосвязанные дискретные случайные процессы.

Рассмотрим структурную схему преобразований в системе передачи дискретных сообщений.

Модели каналов связи и их математическое описание

Точное математическое описание любого реального канала связи обычно весьма сложное. Вместо этого используют упрощенные математические модели, которые позволяют выявить важнейшие закономерности реального канала.

Рассмотрим наиболее простые и широко используемые связи модели каналов.

Непрерывные каналы .

Идеальный канал без помех вносит искажения, связанные с изменением амплитуды и временного положения сигнала и представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот , имеющие ограниченную среднюю мощность . Эта модель используется для описания каналов малой протяженности с закрытым распространением сигналов (кабель, провод, волновод,световод и т. д.).

Канал с гауссовским белым шумом представляет собой идеальный канал, в котором на сигнал накладывается помеха:

. (1.4)

Коэффициент передачи и запаздывание считаются постоянными и известными в точке приема; – аддитивная помеха. Такая модель, например, соответствует радиоканалам, с приемо-передающими антеннами работающими и находящимися в пределах прямой видимости.

Гауссовский канал с неопределенной фазой сигнала

Эта модель отличается от предыдущей модели тем, что в ней запаздывание является случайной величиной. Для узкополосных сигналов выражение (1.4) при постоянном и случайных можно представить в виде:

, (1.5)

где – преобразование Гильберта от сигнала ; – случайная фаза.

Распределение вероятностей предполагается заданным, чаще всего равномерным на интервале от до . Эта модель удовлетворительно описывает те же каналы, что и предыдущая, если фаза сигнала в них флуктуирует. Флуктуации фазы обычно вызываются небольшими изменениями протяженности канала, свойств среды, в которой проходит сигнал, а также фазовой нестабильностью опорных генераторов.



Дискретно-непрерывные каналы.

Дискретно-непрерывный канал имеет дискретный вход и непрерывный выход. Примером такого канала является канал, образованный совокупностью технических средств между выходом кодера канала и входом демодулятора. Для его описания необходимо знать алфавит входных символов , , вероятности появления символов алфавита , полосу пропускания непрерывного канала , входящего в рассматриваемый канал и плотности распределения вероятностей (ПРВ) появления сигнала на выходе канала при условии, что передавался символ .

Зная вероятности и ПРВ по формуле Байеса можно найти апостериорные вероятности передачи символа :

,

Решение о переданном символе обычно принимается из условия максимума .

Дискретные каналы.

Примером дискретного канала без памяти может служить m канал. Канал передачи полностью описывается если заданы алфавит источника , , вероятности появления символов алфавита , скорость передачи символов , алфавит получателя , и значения переходных вероятностей появления символа при условии передачи символа .

Первые две характеристики определяются свойствами источника сообщений, скорость – полосой пропускания непрерывного канала, входящего в состав дискретного. Объем алфавита выходных символов зависит от алгоритма работы решающей схемы; переходные вероятности находятся на основе анализа характеристик непрерывного канала.

Стационарным называется дискретный канал, в котором переходные вероятности не зависят от времени.

Дискретным каналом называется каналом без памяти, если переходные вероятности не зависят от того, какие символы передавались и принимались ранее.

В качестве примера рассмотрим двоичный канал (рис. 1.5). В этом случае , т.е. на входе канала алфавит источника и алфавит получателя состоит из двух символов «0» и «1».

Стационарный двоичный канал называется симметричным, если алфавиты на входе и выходе совпадают. Каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью и правильно с вероятностью .

Необходимо отметить, что в общем случае в дискретном канале объемы алфавитов входных и выходных символов могут не совпадать. Примером может быть канал со стиранием(рис. 1.6). Алфавит на его выходе содержит один добавочный символ по сравнению с алфавитом на входе. Этот добавочный символ (символ стирания « ») появляется на выходе канала тогда, когда анализируемый сигнал не удается отождествить ни с одним из передаваемых символов. Стирание символов при применении соответствующего помехоустойчивого кода позволяет повысить помехоустойчивость.

Большинство реальных каналов имеют «память», которая проявляется в том, что вероятность ошибки в очередном символе зависит от того, какие символы передавались до него и как они были приняты. Первый факт обусловлен межсимвольными искажениями, являющимися результатом рассеяния сигнала в канале, а второй – изменением отношения сигнал-шум в канале или характера помех.

В постоянном симметричном канале без памяти условная вероятность ошибочного приема ()-го, символа если -й символ принят ошибочно, равна безусловной вероятности ошибки. В канале с памятью она может быть больше или меньше этой величины.

Наиболее простой моделью двоичного канала с памятью является марковская модель, которая задается матрицей переходных вероятностей:

,

где – условная вероятность принять ()-й символ ошибочно, если -й принят правильно; – условная вероятность принять ()-й символ правильно, если -й принят правильно; – условная вероятность принять ()-й символ ошибочно, если -й принят ошибочно; – условная вероятность принять ()-й символ правильно, если -й принят ошибочно.

Безусловная (средняя) вероятность ошибки в рассматриваемом канале должна удовлетворять уравнению:

или

.

Данная модель имеет достоинство – простоту использования, не всегда адекватно воспроизводит свойства реальных каналов. Большую точность позволяет получить модель Гильберта для дискретного канала с памятью. В такой модели канал может находиться в двух состояниях и . В состоянии ошибок не происходит; в состоянии ошибки возникают независимо с вероятностью . Также считаются известными вероятности перехода из состояния в и вероятности перехода из состояния в состояние . В этом случае простую марковскую цепь образует не последовательность ошибок, а последовательность переходов: заменяется заданием некоторого начального состояния цепи. Зная характеристики цепи, начальное состояние и сигнал, действующий только на промежутке от

Литература:

1.Радиотехника / Под ред. Мазора Ю.Л., Мачусского Е.А., Правды В.И.. - Энциклопедия. - М.: ИД «Додэка-XXI», 2002. - С. 488. - 944 с. - 2.Прокис, Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. - М.: Радио и связь, 2000. - 800 с.

3.Скляр Б. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. - 2-е изд. - М.: Вильямс, 2007. - 1104 с

4.Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра = Wireless Digital Communications: Modulation and Spread Spectrum Applications. - М.: Радио и связь, 2000. - 552 с.

Дискретный канал - канал связи, используемый для передачи дискретных сообщений.

Состав и параметры электрических цепей на входе и выходе ДК определены соответствующими стандартами. Характеристики могут быть экономичными, технологичными и техническими. Основными являются технические характеристики. Они могут быть внешними и внутренними.

Внешние - информационные, технико-экономические, технико-эксплуатационные.

На скорость передачи существует несколько определений.

Техническая скорость характеризует быстродействие аппаратуры входящих в состав передающей части.

где m i - основание кода в i-ом канале.

Информационная скорость передачи - связана с пропускной способностью канала. Она появляется с появлением и быстрым развитием новых технологий. Информационная скорость зависит от технической скорости, от статистических свойств источника, от типа КС, принимаемых сигналов и помех, действующих в канале. Предельным значением является пропускная способность КС:

где?F - полоса КС;

По скорости передачи дискретных каналов и соответствующих УПС принято подразделять на:

  • - низкоскоростные (до 300 бит/сек);
  • - среднескоростные (600 - 19600 бит/сек);
  • - высокоскоростные (более 24000 бит/сек).

Эффективная скорость передачи - количество знаков в единицу времени, предоставленных получателю с учетом непроизводительных затрат времени (время фазирования СС, время отводимое на избыточные символы).

Относительная скорость передачи:

Достоверность передачи информации - используется в связи, что в каждом канале имеются посторонние излучатели, которые искажают сигнал и затрудняют процесс определения вида передаваемого единичного элемента. По способу преобразования сообщений в сигнал помехи бывают аддитивные и мультипликативные. По форме: гармонические, импульсные и флуктуационные.

Помехи приводят к ошибкам в приеме единичных элементов, они случайны. В этих условиях вероятность характеризуется безошибочностью передачи. Оценкой верности передачи может служить отношение числа ошибочных символов к общему

Часто вероятность передатчика оказывается меньше требуемой, следовательно, принимают меры по увеличению вероятности ошибок, устранение принимаемых ошибок, включение в канал некоторых дополнительных устройств, которые уменьшают свойства каналов, следовательно, уменьшают ошибки. Улучшение верности связано с дополнительными материальными затратами.

Надежность - дискретный канал, как и любая ДС не может работать безотказно.

Отказом называют событие, заканчивающееся в полной или частичной утробе системы работоспособности. Применительно к системе передачи данных отказ - событие, вызывающее задержку принимаемого сообщения на время t зад >t доп. При этом t доп в разных системах различна. Свойство системы связи, обеспечивающее нормальное выполнение всех заданных функций называются надежностью. Надежность характеризуется средним временем наработки на отказ T о, средним временем восстановления T в, и коэффициентом готовности:

Вероятность безотказной работы показывает, с какой вероятностью система может работать без единого отказа.

Наиболее распространенный тип канала - телефонный с полосой пропускания кГц и диапазоном частот от = 0,3 кГц до = 3,4 кГц.

Данные от источника информации, после преобразования параллельного кода в последовательный, представляют обычно в виде беспаузного сигнала без возвращения к нулю (БВН), который соответствует сигналу с двуполярной АМ (рис. 2.1). Для передачи прямоугольных импульсов без искажений требуется полоса частот от нуля до бесконечности. Реальные каналы имеют конечную полосу частот, с которой необходимо согласовать передаваемые сигналы путем модуляции.

Структурная схема дискретного канала с ЧМ приведена на рис. 2.2.

Передаваемое сообщение от источника информации ИИ в параллельном коде поступает на кодер канала КК, который преобразует параллельный код в последовательный двоичный БВН-код. При этом кодер канала вводит избыточные символы в сообщение (например, бит контроля на четность) и формирует стартовый и стоповый биты на каждый кадр передаваемых данных. Таким образом, выходной сигнал с кодера является модулирующим сигналом для модулятора.

В зависимости от состояния модулирующего сигнала («0» или «1») частотный модулятор формирует частотные посылки с частотой и . При поступлении на модулятор сигнала положительной полярности модулятор формирует частоту , называемой верхней характеристической частотой.

Рис. 14.2 - Структурная схема системы передачи информации с частотной модуляцией:

ИИ - источник информации; ИП - источник помех; КК - кодер канала; ПФ2 - полосовой фильтр приемника; М - модулятор; УО - усилитель-ограничитель; ПФ1 - полосовой фильтр передачи; ДМ - демодулятор; ДК - декодер канала; ЛС - линия связи; П - получатель информации ИИ - источник информации; ИП - источник помех; КК - кодер канала; ПФ2 - полосовой фильтр приемника; М - модулятор; УО - усилитель-ограничитель; ПФ1 - полосовой фильтр передачи; ДМ - демодулятор; ДК - декодер канала; ЛС - линия связи; П - получатель информации

Частота является средней частотой, - девиацией (отклонением) частоты. При поступлении на вход модулятора отрицательной посылки на его выходе появляется частота , называемая нижней характеристической частотой. Сигнал на выходе модулятора можно рассматривать как суперпозицию двух АМ сигналов, один из которых имеет несущую , а другой . Соответственно спектр ЧМ сигнала может быть представлен как суперпозиция спектров двух АМ сигналов (рис. 2.3).

Ширина спектра ЧМ сигнала шире чем у АМ сигнала на величину, определяемую расстоянием между несущими и . Значение характеризует изменение частоты при передаче единицы или нуля относительно ее среднего значения и называется девиацией частоты. Отношение девиации частоты к скорости модуляции В называется индексом частотной модуляции:

.

Рис. 14.3 - Спектр ЧМ сигнала

Полосовой фильтр передатчика ПФ1 ограничивает спектр сигнала, передаваемого в канал связи в соответствии с нижней и верхней границей полосы канала. Ширина спектра сигнала на выходе модулятора зависит от скорости двоичной модуляции и девиации частоты. Приблизительно . Чем больше индекс модуляции, тем шире при прочих равных условиях спектр ЧМ сигнала.

Полосовой фильтр приемника ПФ2 выделяет полосу частот телефонного канала, что позволяет избавиться от помех, находящихся вне полосы пропускания ПФ2. Далее сигнал усиливается усилителем-ограничителем УО. Усилитель компенсирует потери энергии сигнала в линии за счет затухания. Кроме этого усилитель выполняет дополнительную функцию - функцию ограничения сигнала по уровню. При этом удается обеспечить постоянство уровня сигнала на входе частотного демодулятора Д при изменении уровня на входе приемника в довольно широких пределах. В демодуляторе импульсы переменного тока преобразуются в посылки постоянного тока. В декодере канала происходит преобразование символов в сообщения. При этом, в зависимости от используемого способа кодирования, происходит обнаружение или исправление ошибок.