Аргументы функции MAIN(). Несколько подробностей о функции main Практическое значение передачи данных в программу

Однажды заинтересовался, содержимым стека функции main процесса в linux. Провел некоторые изыскания и теперь представляю вам результат.

Варианты описания функции main:
1. int main()
2. int main(int argc, char **argv)
3. int main(int argc, char **argv, char **env)
4. int main(int argc, char **argv, char **env, ElfW(auxv_t) auxv)
5. int main(int argc, char **argv, char **env, char **apple)

Argc - число параметров
argv - нуль-терминальный массив указателей на строки параметров командной строки
env - нуль-терминальный массив указателей на строки переменных окружения. Каждая строка в формате ИМЯ=ЗНАЧЕНИЕ
auxv - массив вспомогательных значение (доступно только для PowerPC )
apple - путь к исполняемому файлу (в MacOS и Darwin )
Вспомогательный вектор - массив с различной дополнительной информацией, такой как эффективный идентификатор пользователя, признак setuid бита, размер страницы памяти и т.п.

Размер сегмента стека можно глянуть в файле maps:
cat /proc/10918/maps

7ffffffa3000-7ffffffff000 rw-p 00000000 00:00 0

Перед тем, как загрузчик передаст управление в main, он инициализирует содержимое массивов параметров командной строки, переменных окружения, вспомогательный вектор.
После инициализации верхняя часть стека выглядит примерно так, для 64битной версии.
Старший адрес сверху.

1. 0x7ffffffff000 Верхняя точка сегмента стека. Обращение вызывает segfault
0x7ffffffff0f8 NULL void* 8 0x00"
2. filename char 1+ «/tmp/a.out»
char 1 0x00
...
env char 1 0x00
...
char 1 0x00
3. 0x7fffffffe5e0 env char 1 ..
char 1 0x00
...
argv char 1 0x00
...
char 1 0x00
4. 0x7fffffffe5be argv char 1+ «/tmp/a.out»
5. Массив случайной длины
6. данные для auxv void* 48"
AT_NULL Elf64_auxv_t 16 {0,0}
...
auxv Elf64_auxv_t 16
7. auxv Elf64_auxv_t 16 Ex.: {0x0e,0x3e8}
NULL void* 8 0x00
...
env char* 8
8. 0x7fffffffe308 env char* 8 0x7fffffffe5e0
NULL void* 8 0x00
...
argv char* 8
9. 0x7fffffffe2f8 argv char* 8 0x7fffffffe5be
10. 0x7fffffffe2f0 argc long int 8" число аргументов + 1
11. Локальные переменные и аргументы, функций вызываемых до main
12. Локальные переменные main
13. 0x7fffffffe1fc argc int 4 число аргументов + 1
0x7fffffffe1f0 argv char** 8 0x7fffffffe2f8
0x7fffffffe1e8 env char** 8 0x7fffffffe308
14. Переменные локальных функций

" - описания полей в документах не нашел, но в дампе явно видны.

Для 32 битов не проверял, но скорее всего достаточно только разделить размеры на два.

1. Обращение к адресам, выше верхней точки, вызывает Segfault.
2. Строка, содержащая путь к исполняемому файлу.
3. Массив строк с переменными окружения
4. Массив строк с параметрами командной строки
5. Массив случайной длинны. Его выделение можно отключить командами
sysctl -w kernel.randomize_va_space=0
echo 0 > /proc/sys/kernel/randomize_va_space
6. Данные для вспомогательного вектора (например строка «x86_64»)
7. Вспомогательный вектор. Подробнее ниже.
8. Нуль-терминальный массив указателей на строки переменных окружения
9. Нуль-терминальный массив указателей на строки параметров командной строки
10.Машинное слово, содержащее число параметров командной строки (один из аргументов «старших» функций см. п. 11)
11.Локальные переменные и аргументы, функций вызываемых до main(_start,__libc_start_main..)
12.Переменные, объявленные в main
13.Аргументы функции main
14.Переменные и аргументы локальных функций.

Вспомогательный вектор
Для i386 и x86_64 нельзя получить адрес первого элемента вспомогательного вектора, однако содержимое этого вектора можно получить другими способами. Один из них - обратиться к области памяти, лежащей сразу за массивом указателей на строки переменных окружения.
Это должно выглядеть примерно так:
#include #include int main(int argc, char** argv, char** env){ Elf64_auxv_t *auxv; //x86_64 // Elf32_auxv_t *auxv; //i386 while(*env++ != NULL); //ищем начало вспомогательного вектора for (auxv = (Elf64_auxv_t *)env; auxv->a_type != AT_NULL; auxv++){ printf("addr: %p type: %lx is: 0x%lx\n", auxv, auxv->a_type, auxv->a_un.a_val); } printf("\n (void*)(*argv) - (void*)auxv= %p - %p = %ld\n (void*)(argv)-(void*)(&auxv)=%p-%p = %ld\n ", (void*)(*argv), (void*)auxv, (void*)(*argv) - (void*)auxv, (void*)(argv), (void*)(&auxv), (void*)(argv) - (void*)(&auxv)); printf("\n argc copy: %d\n",*((int *)(argv - 1))); return 0; }
Структуры Elf{32,64}_auxv_t описаны в /usr/include/elf.h. Функции заполнения структур в linux-kernel/fs/binfmt_elf.c

Второй способ получить содержимое вектора:
hexdump /proc/self/auxv

Самый удобочитаемое представление получается установкой переменной окружения LD_SHOW_AUXV.

LD_SHOW_AUXV=1 ls
AT_HWCAP: bfebfbff //возможности процессора
AT_PAGESZ: 4096 //размер страницы памяти
AT_CLKTCK: 100 //частота обновления times()
AT_PHDR: 0x400040 //информация о заголовке
AT_PHENT: 56
AT_PHNUM: 9
AT_BASE: 0x7fd00b5bc000 //адрес интерпретатора, то бишь ld.so
AT_FLAGS: 0x0
AT_ENTRY: 0x402490 //точка входа в программу
AT_UID: 1000 //идентификаторы пользователя и группы
AT_EUID: 1000 //номинальные и эффективные
AT_GID: 1000
AT_EGID: 1000
AT_SECURE: 0 //поднят ли setuid флаг
AT_RANDOM: 0x7fff30bdc809 //адрес 16 случайных байт,
генерируемых при запуске
AT_SYSINFO_EHDR: 0x7fff30bff000 //указатель на страницу, используемую для
//системных вызовов
AT_EXECFN: /bin/ls
AT_PLATFORM: x86_64
Слева - название переменной, справа значение. Все возможные названия переменных и их описание можно глянуть в файле elf.h. (константы с префиксом AT_)

Возвращение из main()
После инициализации контекста процесса управление передается не в main(), а в функцию _start().
main() вызывает уже из __libc_start_main. Эта последняя функция имеет интересную особенность - ей передается указатель на функцию, которая должна быть выполнена после main(). И указатель этот передается естественно через стек.
Вообще аргументы __libc_start_main имеют вид, согласно файла glibc-2.11/sysdeps/ia64/elf/start.S
/*
* Arguments for __libc_start_main:
* out0: main
* out1: argc
* out2: argv
* out3: init
* out4: fini //функция вызываемая после main
* out5: rtld_fini
* out6: stack_end
*/
Т.е. чтобы получить адрес указателя fini нужно сместиться на два машинных слова от последней локальной переменной main.
Вот что получилось(работоспособность зависит от версии компилятора):
#include void **ret; void *leave; void foo(){ void (*boo)(void); //указатель на функцию printf("Stack rewrite!\n"); boo = (void (*)(void))leave; boo(); // fini() } int main(int argc, char *argv, char *envp) { unsigned long int mark = 0xbfbfbfbfbfbfbfbf; //метка, от которой будем работать ret = (void**)(&mark+2); // извлекаем адрес, функции, вызываемой после завершения (fini) leave = *ret; // запоминаем *ret = (void*)foo; // перетираем return 0; // вызов функции foo() }

Надеюсь, было интересно.
Удач.

Спасибо пользователю Xeor за полезную наводку.

Теги: Параметры командной строки

Параметры командной строки

С и - компилируемый язык. После сборки программа представляет собой исполняемый файл (мы не рассматриваем создание динамических библиотек, драйверов и т.д.). Наши программы очень простые и не содержат библиотек времени выполнения (Runtime libraries), поэтому могут быть перенесены на компьютер с такой же операционной системой (и подобной архитектурой) и там запущены.

Программа во время запуска может принимать параметры. Они являются аргументами функции main. Общий вид функции main следующий

Void main(int argc, char **argv) { ... }

Первым аргументом argc является число переданных функции параметров. Второй аргумент – массив строк – собственно сами параметры. Так как параметры у функции могут быть любыми, то они передаются как строки, и уже сама программа должна их разбирать и приводить к нужному типу.

Первым аргументом (argv) всегда является имя программы. При этом имя выводится в зависимости от того, откуда была запущена программа.

#include #include void main(int argc, char **argv) { printf("%s", argv); }

Теперь научимся немного работать с командной строкой. Это понадобится для того, чтобы передавать аргументы нашей программе. Сочетание клавиш Win+R вызывает окно "Выполнить". Наберите в нём cmd и вы откроете командную строку. Также можно найти cmd.exe поиском в меню Пуск. В юникс-подобных операционных системах можно вызвать программу "терминал".

Мы не будем изучать сколько-нибудь много команд. Только те, которые понадобятся в работе.

Стандартная для всех операционных систем команда cd осуществляет переход к нужной папке. Существует два зарезервированных имени - . (точка) и.. (две точки). Точка - это имя текущей папки.

Никуда не переходит

Обращение к родительской папке

Переход в родительскую папку

Для перехода по нужному пишется cd адрес. Например, нужно перейти на windows в папку C:\Windows\System32

Cd C:\Windows\System32

В линуксе если нужно перейти в папку /var/mysql

Cd /var/mysql

Если путь содержит пробелы, то он пишется в двойных кавычках

Cd "D:\Docuents and Settings\Prolog"

Терминал имеет следующие полезные особенности: если нажать стрелку вверх, по появится предыдущая выполненная команда. Если нажать tab, то терминал попытается дополнить строку до известной ему команды, или дополнить путь, перебирая все папки и файлы в текущей папке.
Наберите cd C:\
нажимайте tab и смотрите, что происходит.

Ещё одна важная команда dir на windows и ls на linux, выводит на консоль содержимое текущей папки (той папки, в которой вы находитесь в данный момент)

Ваша программа вернула своё полное имя. Перейдите в папку, где располагается ваша программа и посмотрите её содержимое


Теперь, после того, как мы перешли в нашу папку, можно выполнить нашу программу. Для этого наберите её имя.


Заметьте - имя изменилось. Так как программа вызывается из своей папки, то выводится относительно имя. Теперь изменим программу и сделаем так, чтобы она выводила все аргументы. которые ей переданы.

#include #include void main(int argc, char **argv) { int i; for (i = 0; i < argc; i++) { printf("%s\n", argv[i]); } }

Соберите проект. Перед сборкой убедитесь, что программа закрыта. Теперь вызовите программу, передав ей разные аргументы. Для этого напишите имя программы и через пробел аргументы


Давайте теперь напишем программу, которая получает два аргумента числа и выводит их сумму

#include #include #include void main(int argc, char **argv) { int a, b; if (argc != 3) { printf("Error: found %d arguments. Needs exactly 2", argc-1); exit(1); } a = atoi(argv); b = atoi(argv); printf("%d", a + b); }

Соберём и вызовем


Таким образом работает большинство программ. Кликая на ярлык, вы вызываете программу, на которую он ссылается. Большинство программ также принимают различные аргументы. Например, можно вызвать браузер firefox из командной строки и передать аргументы
firefox.exe "www.mozilla.org" "сайт" и он сразу же откроет в двух вкладках сайты по указанным адресам.

Многие стандартные команды также имеют параметры. В windows принято, что они начинаются с прямого слеша, в юниксе с минуса или двух минусов. Например

Выводит только папки, а в терминале linux

Ls -l выводит все файлы и папки с указанием атрибутов

Для просмотра дополнительных команд windows наберите в командной строке help или смотрите руководство (его легко найти в интернете). Для линукса команд и их опций гораздо больше, а некоторые из них являются самостоятельными языками программирования, так что стоит выучить хотя бы минимальный набор и их опции.

Обратите внимание, в этой версии main() никаких параметров нет. Тем не менее, многие программы нуждаются в некоторых входных данных. Например, предположим, что вы пишете программу под названием Picture, которая принимает изображение в качестве входных данных, а затем делает из этого изображения миниатюру (уменьшенная версия изображения). Как функция Picture узнает, какое изображение нужно принять и обработать? Пользователь должен сообщить программе, какой файл следует открыть. Это можно сделать следующим образом:

// Программа: Picture #include #include int main() { std::cout << "Enter name of image-file to create a thumbnail for: "; std::string filename; std::cin >> filename; // Открываем файл-изображение // Создаём миниатюру // Выводим миниатюру }

Тем не менее, здесь есть потенциальная проблема. Каждый раз, при запуске, программа будет ожидать пользовательский ввод. Это не проблема, если вы вручную запускаете программу из командной строки один раз для одного изображения. Но это уже проблема, если вы хотите работать с большим количеством файлов или чтобы другая программа имела возможность запустить эту программу.

Рассмотрим это детальнее.

Например, вы хотите создать миниатюры для всех файлов-изображений, которые находятся в определённом каталоге. Как это сделать? Вы можете запускать эту программу столько раз, сколько есть изображений в каталоге, введя каждое имя файла вручную. Однако, если есть сотни изображений, такой подход будет, мягко говоря, не очень эффективен! Решением здесь будет написать программу, которая перебирала бы каждое имя файла в каталоге, вызывая каждый раз Picture для каждого файла.

Теперь рассмотрим случай, когда у вас есть веб-сайт, и вы хотите, чтобы он создавал миниатюру каждый раз, когда пользователь загружает изображение на сайт. Эта программа не может принимать входные данные из Интернета и следует логический вопрос: «Как тогда вводить имя файла?». Выход есть: вызов веб-сервером функции Picture автоматически каждый раз после загрузки файла.

В обоих случаях нам нужно, чтобы внешняя программа передавала имя файла в качестве входных данных в нашу программу при её запуске, вместо того, чтобы Picture сам дожидался, пока пользователь вручную введёт имя файла.

Аргументы командной строки — это необязательные строковые аргументы, передаваемые операционной системой в программу при её запуске. Программа может их использовать в качестве входных данных, либо игнорировать. Подобно тому, как параметры одной функции предоставляют данные для параметров другой функции, так и аргументы командной строки предоставляют возможность людям или программам предоставлять входные данные для программы.

Передача аргументов командной строки

Исполняемые программы могут запускаться в командной строке через вызов. Например, для запуска исполняемого файла MyProgram, который находится в корневом каталоге диска C в ОС Windows вам нужно ввести:

C:\>MyProgram

Чтобы передать аргументы командной строки в MyProgram, вам нужно будет их просто перечислить после имени исполняемого файла:

C:\>MyProgram SomeContent.txt

Теперь, при запуске MyProgram, SomeContent.txt будет предоставлен в качестве аргумента командной строки. Программа может иметь несколько аргументов командной строки, разделённых пробелами:

C:\>MyProgram SomeContent.txt SomeOtherContent.txt

Это также работает и с другими операционными системами, например, с Linux (хотя структура каталогов будет отличаться от структуры каталогов в Windows).

Если вы запускаете свою программу из среды IDE, то ваша IDE должна предоставить способ ввода аргументов командной строки.

Для пользователей Visual Studio : Щёлкните правой кнопкой мыши на нужный проект в Обозревателе Решений, а затем выберите «Свойства» :

Затем «Свойства конфигурации > Отладка» . На правой панели будет строка «Аргументы команды» . Вы сможете здесь ввести аргументы командной строки, и они будут автоматически переданы вашей программе при её запуске:

Пользователям Code::Blocks нужно выбрать «Project > Set program`s arguments»:

Использование аргументов командной строки

Теперь, когда вы знаете, как передавать аргументы командной строки в программу, следующим шагом будет доступ к ним из программы. Для этого используется уже другая форма функции main(), которая принимает два аргумента (argc и argv) следующим образом:

int main(int argc, char *argv)

Также вы можете увидеть и такой вариант:

int main(int argc, char** argv)

int main (int argc , char * * argv )

Хоть оба эти варианта идентичны по своей сути, но рекомендуется использовать первый, так как он интуитивно понятнее.

argc (англ. «arg ument c ount» = «количество аргументов») — это целочисленный параметр, содержащий количество аргументов, переданных в программу. argc всегда будет как минимум 1, так как первым аргументом всегда является имя самой программы. Каждый аргумент командной строки, который предоставляет пользователь, заставит argc увеличиться на 1.

argv (англ. «arg ument v alues» = «значения аргументов») — это место, где хранятся фактические значения аргументов. Хотя объявление argv выглядит немного пугающе, но это всего лишь массив . Длина этого массива — argc .

Давайте напишем короткую программу MyArguments, которая будет выводить значения всех аргументов командной строки:

// Программа: MyArguments #include int main(int argc, char *argv) { std::cout << "There are " << argc << " arguments:\n"; // Перебираем каждый аргумент и выводим его порядковый номер и значение for (int count=0; count < argc; ++count) std::cout << count << " " << argv << "\n"; return 0; }

// Программа: MyArguments

#include

int main (int argc , char * argv )

// Перебираем каждый аргумент и выводим его порядковый номер и значение

for (int count = 0 ; count < argc ; ++ count )

std :: cout << count << " " << argv [ count ] << "\n" ;

return 0 ;

Теперь, при вызове MyArguments с аргументами командной строки SomeContent.txt и 200 , вывод будет следующим:

There are 3 arguments:
0 C:\MyArguments
1 SomeContent.txt
2 200

Параметр 0 — это путь и имя текущей программы. Параметры 1 и 2 здесь являются аргументами командной строки, которые мы передали.

Обработка числовых аргументов

Аргументы командной строки всегда передаются в качестве строк, даже если предоставленное значение является числовым. Чтобы использовать аргумент командной строки в виде числа, вам нужно будет конвертировать его из строки в число. К сожалению, в C++ это делается немного сложнее, чем оно должно быть:

#include #include #include // для std::stringstream #include // для exit() int main(int argc, char *argv) { if (argc <= 1) { // В некоторых операционных системах, argv может быть просто пустой строкой, без имени программы // Обрабатываем случай, когда argv может быть пустым или не пустым if (argv) std::cout << "Usage: " << argv << " " << "\n"; else std::cout << "Usage: " << "\n"; exit(1); } std::stringstream convert(argv); // создаём переменную stringstream с именем convert, инициализируя её значением argv int myint; if (!(convert >> myint)) // выполняем конвертацию myint = 0; // если конвертация терпит неудачу, то задаём myint значение по умолчанию std::cout << "Got integer: " << myint << "\n"; return 0; }

#include

#include

#include // для std::stringstream

#include // для exit()

int main (int argc , char * argv )

if (argc <= 1 )

// В некоторых операционных системах, argv может быть просто пустой строкой, без имени программы

// Обрабатываем случай, когда argv может быть пустым или не пустым

if (argv [ 0 ] )

std :: cout << "Usage: " << argv [ 0 ] << " " << "\n" ;

else

std :: cout << "Usage: " << "\n" ;

exit (1 ) ;

При автоматизированном создании консольного приложения в языке программирования С++, автоматически создается главная функция очень похожая на эту:

int main(int argc, char * argv)
{…}

Заголовок функции содержит сигнатуру главной функции main() с аргументами argс и argv .
Если программу запускать через командную строку, то существует возможность передать какую-либо информацию этой программе. Для этого существуют аргументы командной строки argc и argv .
Параметр argc имеет тип int , и содержит количество параметров, передаваемых в функцию main . Причем argc всегда не меньше 1, даже когда функции main не передается никакой информации, так как первым параметром считается имя приложения.
Параметр argv представляет собой массив указателей на строки. Через командную строку можно передать только данные строкового типа.

При запуске программы через командную строку Windows можно передавать ей некоторую информацию. При этом командная строка будет иметь вид:
Диск:\путь\имя.exe аргумент1 аргумент2 …

Аргументы командной строки разделяются одним или несколькими пробелами.

Аргумент argv содержит полное имя приложения:

#include
using namespace std;

cout << argv << endl;

Return 0;
}

Результат выполнения

Пример : вычисление произведения двух целых чисел
В программе используется функция преобразования строки в целое число StrToInt() отсюда .

#include
using namespace std;
int StrToInt(char *s) {…}
int main(int argc, char * argv) {

Int a = 0, b=0;

If (argc > 1)

a = StrToInt(argv);

If (argc > 2)

b = StrToInt(argv);

cout << a <<«*» << b << «= « << a*b << endl;

Return 0;
}

Запуск программы осуществляется как

Результат выполнения

Отладка программы с аргументами командной строки

Для передачи аргументов командной строки при отладке программы необходимо обратиться к меню Свойства проекта.


На вкладке Свойства конфигурации ->Отладка выбрать Аргументы команды и задать их значения.

При запуске программы в режиме отладки введенные аргументы будут восприниматься программой как аргументы командной строки.

В программы на языке Си можно передавать некоторые аргументы. Когда вначале вычислений производится обращение к main(), ей передаются три параметра. Первый из них определяет число командных аргументов при обращении к программе. Второй представляет собой массив указателей на символьные строки, содержащие эти аргументы (в одной строке - один аргумент). Третий тоже является массивом указателей на символьные строки, он используется для доступа к параметрам операционной системы (к переменным окружения).

Любая такая строка представляется в виде:

переменная = значение\0

Последнюю строку можно найти по двум заключительным нулям.

Назовем аргументы функции main() соответственно: argc, argv и env (возможны и любые другие имена). Тогда допустимы следующие описания:

main(int argc, char *argv)

main(int argc, char *argv, char *env)

Предположим, что на диске A: есть некоторая программа prog.exe. Обратимся к ней следующим образом:

A:\>prog.exe file1 file2 file3

Тогда argv - это указатель на строку A:\prog.exe, argv - на строку file1 и т.д. На первый фактический аргумент указывает argv, а на последний - argv. Если argc=1, то после имени программы в командной строке параметров нет. В нашем примере argc=4.

Рекурсия

Рекурсией называется такой способ вызова, при котором функция обращается к самой себе.

Важным моментом при составлении рекурсивной программы является организация выхода. Здесь легко допустить ошибку, заключающуюся в том, что функция будет последовательно вызывать саму себя бесконечно долго. Поэтому рекурсивный процесс должен шаг за шагом так упрощать задачу, чтобы в конце концов для нее появилось не рекурсивное решение. Использование рекурсии не всегда желательно, так как это может привести к переполнению стека.

Библиотечные функции

В системах программирования подпрограммы для решения часто встречающихся задач объединяются в библиотеки. К числу таких задач относятся: вычисление математических функций, ввод/вывод данных, обработка строк, взаимодействие со средствами операционной системы и др. Использование библиотечных подпрограмм избавляет пользователя от необходимости разработки соответствующих средств и предоставляет ему дополнительный сервис. Включенные в библиотеки функции поставляются вместе с системой программирования. Их объявления даны в файлах *.h (это так называемые включаемые или заголовочные файлы). Поэтому, как уже упоминалось выше, в начале программы с библиотечными функциями должны быть строки вида:

#include <включаемый_файл_типа_h>

Например:

#include

Существуют также средства для расширения и создания новых библиотек с программами пользователя.

Для глобальных переменных отводится фиксированное место в памяти на все время работы программы. Локальные переменные хранятся в стеке. Между ними находится область памяти для динамического распределения.

Функции malloc() и free() используются для динамического распределения свободной памяти. Функция malloc() выделяет память, функция free() освобождает ее. Прототипы этих функций хранятся в заголовочном файле stdlib.h и имеют вид:

void *malloc(size_t size);

void *free(void *p);

Функция malloc() возвращает указатель типа void; для правильного использования значение функции надо преобразовать к указателю на соответствующий тип. При успешном выполнении функция возвращает указатель на первый байт свободной памяти размера size. Если достаточного количества памяти нет, возвращается значение 0. Чтобы определить количество байтов, необходимых для переменной, используют операцию sizeof().

Пример использования этих функций:

#include

#include

p = (int *) malloc(100 * sizeof(int)); /* Выделение памяти для 100

целых чисел */

printf("Недостаточно памяти\n");

for (i = 0; i < 100; ++i) *(p+i) = i; /* Использование памяти */

for (i = 0; i < 100; ++i) printf("%d", *(p++));

free(p); /* Освобождение памяти */

Перед использованием указателя, возвращаемого malloc(), необходимо убедиться, что памяти достаточно (указатель не нулевой).

Препроцессор

Препроцессор Си - это программа, которая обрабатывает входные данные для компилятора. Препроцессор просматривает исходную программу и выполняет следующие действия: подключает к ней заданные файлы, осуществляет подстановки, а также управляет условиями компиляции. Для препроцессора предназначены строки программы, начинающиеся с символа #. В одной строке разрешается записывать только одну команду (директиву препроцессора).

Директива

#define идентификатор подстановка

вызывает замену в последующем тексте программы названного идентификатора на текст подстановки (обратите внимание на отсутствие точки с запятой в конце этой команды). По существу, эта директива вводит макроопределение (макрос), где "идентификатор" - это имя макроопределения, а "подстановка" - последовательность символов, на которые препроцессор заменяет указанное имя, когда находит его в тексте программы. Имя макроопределения принято набирать прописными буквами.

Рассмотрим примеры:

Первая строка вызывает замену в программе идентификатора MAX на константу 25. Вторая позволяет использовать в тексте вместо открывающей фигурной скобки ({) слово BEGIN.

Отметим, что поскольку препроцессор не проверяет совместимость между символическими именами макроопределений и контекстом, в котором они используются, то рекомендуется такого рода идентификаторы определять не директивой #define, а с помощью ключевого слова const с явным указанием типа (это в большей степени относится к Си++):

const int MAX = 25;

(тип int можно не указывать, так как он устанавливается по умолчанию).

Если директива #define имеет вид:

#define идентификатор(идентификатор, ..., идентификатор) подстановка

причем между первым идентификатором и открывающей круглой скобкой нет пробела, то это определение макроподстановки с аргументами. Например, после появления строки вида:

#define READ(val) scanf("%d", &val)

оператор READ(y); воспринимается так же, как scanf("%d",&y);. Здесь val - аргумент и выполнена макроподстановка с аргументом.

При наличии длинных определений в подстановке, продолжающихся в следующей строке, в конце очередной строки с продолжением ставится символ \.

В макроопределение можно помещать объекты, разделенные знаками ##, например:

#define PR(x, у) x##y

После этого PR(а, 3) вызовет подстановку а3. Или, например, макроопределение

#define z(a, b, c, d) a(b##c##d)

приведет к замене z(sin, x, +, y) на sin(x+y).

Символ #, помещаемый перед макроаргументом, указывает на преобразование его в строку. Например, после директивы

#define PRIM(var) printf(#var"= %d", var)

следующий фрагмент текста программы

преобразуется так:

printf("year""= %d", year);

Опишем другие директивы препроцессора. Директива #include уже встречалась ранее. Ее можно использовать в двух формах:

#include "имя файла"

#include <имя файла>

Действие обеих команд сводится к включению в программу файлов с указанным именем. Первая из них загружает файл из текущего или заданного в качестве префикса каталога. Вторая команда осуществляет поиск файла в стандартных местах, определенных в системе программирования. Если файл, имя которого записано в двойных кавычках, не найден в указанном каталоге, то поиск будет продолжен в подкаталогах, заданных для команды #include <...>. Директивы #include могут вкладываться одна в другую.

Следующая группа директив позволяет избирательно компилировать части программы. Этот процесс называется условной компиляцией. В эту группу входят директивы #if, #else, #elif, #endif, #ifdef, #ifndef. Основная форма записи директивы #if имеет вид:

#if константное_выражение последовательность_операторов

Здесь проверяется значение константного выражения. Если оно истинно, то выполняется заданная последовательность операторов, а если ложно, то эта последовательность операторов пропускается.

Действие директивы #else подобно действию команды else в языке Си, например:

#if константное_выражение

последовательность_операторов_2

Здесь если константное выражение истинно, то выполняется последовательность_операторов_1, а если ложно - последовательность_операторов_2.

Директива #elif означает действие типа "else if". Основная форма ее использования имеет вид:

#if константное_выражение

последовательность_операторов

#elif константное_выражение_1

последовательность_операторов_1

#elif константное_выражение_n

последовательность_операторов_n

Эта форма подобна конструкции языка Си вида: if...else if...else if...

Директива

#ifdef идентификатор

устанавливает определен ли в данный момент указанный идентификатор, т.е. входил ли он в директивы вида #define. Строка вида

#ifndef идентификатор

проверяет является ли неопределенным в данный момент указанный идентификатор. За любой из этих директив может следовать произвольное число строк текста, возможно, содержащих инструкцию #else (#elif использовать нельзя) и заканчивающихся строкой #endif. Если проверяемое условие истинно, то игнорируются все строки между #else и #endif, а если ложно, то строки между проверкой и #else (если слова #else нет, то #endif). Директивы #if и #ifndef могут "вкладываться" одна в другую.

Директива вида

#undef идентификатор

приводит к тому, что указанный идентификатор начинает считаться неопределенным, т.е. не подлежащим замене.

Рассмотрим примеры. Три следующие директивы:

проверяют определен ли идентификатор WRITE (т.е. была ли команда вида #define WRITE...), и если это так, то имя WRITE начинает считаться неопределенным, т.е. не подлежащим замене.

Директивы

#define WRITE fprintf

проверяют является ли идентификатор WRITE неопределенным, и если это так, то определятся идентификатор WRITE вместо имени fprintf.

Директива #error записывается в следующей форме:

#error сообщение_об_ошибке

Если она встречается в тексте программы, то компиляция прекращается и на экран дисплея выводится сообщение об ошибке. Эта команда в основном применяется на этапе отладки. Заметим, что сообщение об ошибке не надо заключать в двойные кавычки.

Директива #line предназначена для изменения значений переменных _LINE_ и _FILE_, определенных в системе программирования Си. Переменная _LINE_ содержит номер строки программы, выполняемой в текущий момент времени. Идентификатор _FILE_ является указателем на строку с именем компилируемой программы. Директива #line записывается следующим образом:

#line номер "имя_файла"

Здесь номер - это любое положительное целое число, которое будет назначено переменной _LINE_, имя_файла - это необязательный параметр, который переопределяет значение _FILE_.

Директива #pragma позволяет передать компилятору некоторые указания. Например, строка

говорит о том, что в программе на языке Си имеются строки на языке ассемблера. Например:

Рассмотрим некоторые глобальные идентификаторы или макроимена (имена макроопределений). Определены пять таких имен: _LINE_, _FILE_, _DATE_, _TIME_, _STDC_. Два из них (_LINE_ и _FILE_) уже описывались выше. Идентификатор _DATE_ определяет строку, в которой сохраняется дата трансляции исходного файла в объектный код. Идентификатор _TIME_ задает строку, сохраняющую время трансляции исходного файла в объектный код. Макрос _STDC_ имеет значение 1, если используются стандартно - определенные макроимена. В противном случае эта переменная не будет определена.