Языки программирования и их использование. Языки программирования: почему появились, яркие представители, как выбрать язык. Runtime – выполнение программы

Машина не понимает человеческий язык. Конечно, мы не про Siri и другие распознаватели голоса — мы про создание нового софта. Чтобы сделать калькулятор, машине нужно поставить задачу так же, как бригадир объясняет рабочим как класть кирпич. Но «Вася, ёпт, ну ровнее же надо!» нужно описать на языке программирования. Откуда вообще взялись эти языки?

Отправная точка современного компьютера — аналитическая машина Бэббиджа, но языки придумали раньше: в XIX веке изобрели механическое пианино и ткацкий станок, для которых инженеры описывали логику работы. Этот набор инструкций — прототип того, на чём сегодня пишут программисты.

В середине XX века появляется машина Тьюринга, затем первые компьютеры и первый современный язык программирования Plankalkül. Первый скачок развития произошёл, когда на компьютеры обратили внимание военные — DARPA и иже с ними начали активно инвестировать в молодую отрасль. Второй пришёл с распространением интернета — чем глубже люди погружаются в цифровую эпоху, тем более востребованы главные творцы окружения этой эпохи — программисты. И всё больше желающих к ним присоединиться.

Желание разумное и понятное, но первый вопрос в голове часто становится непреодолимым барьером — с какого языка начать обучаться программированию? Страх неправильного выбора основывается на страхе потратить время впустую. В итоге начинающий программист несколько лет ищет «свой» язык, никак не продвигаясь к заветной цели. Так, чёрт возьми, какой же выбрать язык?

Критерии выбора первого языка программирования

Выбор языка зависит от задач, которые хочет решить программист. Для интернет-проектов популярен Python, который используют в своих проектах Google и Facebook, для мобильных приложений под Android лучший друг — Java, а под iOS — Swift.

Истинная проблема выбора — отсутствие конкретной задачи. Это нормально, потому что понять, чем именно хочется заниматься можно, только оказавшись внутри среды. Поэтому специалисты рекомендуют в качестве первого языка взять тот, с помощью которого можно решить самый широкий спектр задач.

Конечно, узкоспециализированные языки лучше решают задачи, под которые они заточенны, но это следующий шаг. Новичку всё же нужна свобода выбора.

Помимо универсальности , есть ещё критерии:

  • Простота — спотыкаться о сложный синтаксис и застревать в дебрях нечитаемого кода — не самое приятное начало обучения.
  • Популярность — язык должен часто обновляться, иметь большое сообщество разработчиков, быть востребованным в крупных компаниях. Ещё один плюс — чем популярнее язык, тем легче найти ответ на возникший рабочий вопрос.

Под эти три описания лучше всего подходят языки Python, C#, Java и Ruby.

Разработан в 80-е годы голландским программистом Гвидо ван Россумом. Большие технологические компании работают с Python: Яндекс, Google, Facebook и YouTube. Это так называемый скриптовый язык — на нём пишут то, что у программы под капотом. Его используют для веб-приложений, в разработке игр, софта для серверов…

Простота Популярность Универсальность

Код легко читается, у него понятная структура. Стандартного инструментария достаточно для начала обучения.

Занимает 1-е место в программах начального обучения программированию в университетах США.

Регулярно обновляется — раз в 2,5 года. Входит в пятерку популярных языков по версии аналитической компании TIOBE Software на январь 2016 года.

На Python пишут почти всё: скрипты управления системами, веб-сайты, системы машинного обучения, игры.

Язык был разработан в конце 90-х на базе C++ и Java. В основном используется для больших enterprise-проектов, но не ограничивается только ими. Например, скрипты в игровом движке Unity пишут на C#.

Простота Популярность Универсальность

Структурно близок к C++ и Java — синтаксис (структура программного кода) сложнее, чем у Python и Ruby, но зато на изучение родственных языков уйдёт меньше времени. Интерфейсы библиотек хорошо вписываются в шаблоны проектирования — это упрощает изучение.

Последнее обновление было в 2015-м году.

На C# пишут под Windows Phone, iOS и Android. Большое количество документации, но библиотек со свободной лицензией не много — это значит, что для обучения программист может использовать чужой код, но вот для использования в коммерческом продукте нужно платить.

Язык придумали программисты из Microsoft для разработки Windows-приложений. Несмотря на это, его используют и в других системах. Также работает на встраиваемых, десктопных и серверных платформах.


Ruby

Создан японским разработчиком под влиянием языка Perl. Запущен в 1995 году. На Ruby написаны: Shopify, Github, Groupon, Yellow Pages, Twitter и Slideshare. Он набирает популярность, но чаще встречается в стартапах, нежели в крупных компаниях. Хорошо подходит для создания простого интернет-проекта.

Простота Популярность Универсальность

Как и Python, код легко читается. Структура также идентична Python. В сравнении с остальными языками, выбор стандартных библиотек скуднее — нужно потратить время на поиски.

Большое и лояльное сообщество разработчиков — замыкает десятку самых популярных языков по версии TIOBE Software. Много библиотек в свободном доступе.

Наименее универсальный из всей четвёрки — в основном подходит для web-разработок. С другой стороны, внутри интернет-проектов с ним можно делать очень разные и очень крутые вещи.


Java

Первая версия языка вышла в мае 1995 года. Java используется в Amazon, eBay, LinkedIn и Yahoo!

Простота Популярность Универсальность

Как было сказано ранее, у Java и C# очень похожий синтаксис — выучил один, почти знаешь другой. Но как и в первом случае, синтаксис сложнее, чем у Ruby и Python.

В мире 3 миллиарда смартфонов на Android — это значит, что Java ещё долго будет востребован. Первый по популярности по версии TIOBE Software.

Чаще всего используется для enterprise-разработки и Android-приложений.


Итог препарирования

Вывод сделать сложно. С одной стороны манит возможность одним выстрелом убить двух зайцев и взять Java или C#, но Python манит свой универсальностью, а Ruby — простотой.

Мы сомневались и пошли говорить с опытными разработчиками — они всё же советуют остановиться на Python. Вот что говорит Григорий Петров, профессиональный разработчик, евангелист VoxImplant:

«Язык программирования Python часто называют «исполняемым псевдокодом», потому что синтаксис языка и стандартные библиотеки делают упор на читаемость и понятность. Добавим к этому широчайший выбор средств разработки, библиотек, обучающих материалов — и мы получим один из лучших языков программирования для начинающих».

Вывод: пока нет чётких задач и ясных целей, а есть только желание кодить, остановиться стоит на Python — он простой, популярный и универсальный. Никита Соболев, преподаватель программирования для начинающих в #tceh, также считает выбор этого языка оптимальным для новичка — образовательная программа получилась сложнее и длиннее, чем на курсе по Ruby, но свобода в выборе направления того стоит.

Языки программирования

Язык программирования – формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, ЭВМ, т.е. компьютера).

Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более 2500 языков программирования. Каждый год их число пополняется новыми.

Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Каждый язык программирования может быть представлен в виде набора формальных спецификаций, определяющих его синтаксис и семантику – систему правил истолкования отдельных языковых конструкций.

Эти спецификации обычно включают в себя описание:

    типов и структур данных;

    операционную семантику (алгоритм вычисления конструкций языка);

    семантические конструкции языка;

    библиотеки примитивов (например, команды ввода-вывода);

    философии, назначения и возможностей языка.

Для многих широко распространённых языков программирования созданы международные комитеты по стандартизации, которые выполняют регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.

Языки программирования принято делить на низкоуровневые и высокоуровневые . Такое разделение происходит взависимости от степени детализации команд – чем меньше детализация, тем выше уровень языка.

Языки программирования низкого уровня

Низкоуровневый язык программирования – язык программирования, близкий к программированию непосредственно в машинных кодах. Низкоуровневые языки, как правило, используют особенности конкретного семейства процессоров.

Низкоуровневым языком является язык ассемблера (от английского assembler - сборщик) - названия транслятора (компилятора) c языка ассемблера. Язык ассемблера, часто для краткости неверно называют "ассемблером".

Команды языка ассемблера один в один соответствуют командам процессора и фактически, представляют собой удобную символьную форму записи команд и аргументов.

Обычно программы или участки кода пишутся на низкоуровневом языке ассемблера в случаях, когда разработчику критически важно оптимизировать такие параметры, как быстродействие (например, при создании драйверов устройств) и размер кода (загрузочные сектора, программное обеспечение различных устройств, вирусы, навесные защиты и т.д.).

Языки программирования высокого уровня

Высокоуровневый язык программирования – язык программирования, разработанный для быстроты и удобства использования программистом. Термин «высокоуровневый» здесь означает, что язык предназначен для решения абстрактных высокоуровневых задач и оперирует не инструкциями к оборудованию, а логическими понятиями и абстракцией данный. Это позволяет быстрее программировать сложные задачи и обеспечивает относительную независимость от оборудования. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и различным аппаратным оборудованием, в то время как их исходный текст остаётся, в большей части, неизменным.

Высокоуровневый язык не даёт возможности создания точных инструкций оборудованию. Таким образом, программы, написанные на языках высокого уровня, проще для понимания программистом, но гораздо менее эффективны, чем их аналоги, написанные при помощи низкоуровневых языков. В частности, поэтому в большинство профессиональных высокоуровневых языков программирования сегодня встроена поддержка того или иного языка низкого уровня – языка ассемблера.

Первым языком программирования высокого уровня считается компьютерный язык Plankalkül , разработанный немецким инженером Конрадом Цузе ещё в период 1942–1946 гг. Однако, широкое применение высокоуровневых языков началось с возникновением Фортрана и созданием компилятора для этого языка (1957).

Наиболее распространёнными языками высокого уровня в настоящее время являются С++, Visual Basic, Delphi, Java, Python, Ruby, Perl, PHP.

Большинство современных компиляторов позволяют комбинировать в одной программе, код написанный на разных языках программирования. Это позволяет быстро писать сложные программы, используя высокоуровневый язык, не теряя быстродействия в критических ко времени задачах, используя для них части написанные на языке ассемблера. Комбинирование достигается несколькими приемами:

    Вставка фрагментов на языке ассемблера в текст программы (специальными директивами языка) или написание процедур на языке ассемблера. Способ хороший для несложных преобразований данных, но полноценного ассемблерного кода - с данными и подпрограммами, включая подпрограммы с множеством входов и выходов, не поддерживаемых высокоуровневыми языками, с помощью него сделать нельзя.

    Модульная компиляция. Большинство современных компиляторов работают в два этапа. На первом этапе каждый файл программы компилируется в объектный модуль. А на втором объектные модули линкуются (связываются) в готовую программу. Прелесть модульной компиляции состоит в том что каждый объектный модуль будущей программы может быть полноценно написан на своем языке программирования и скомпилирован своим компилятором.

Среда визуального программирования Delphi

Бурное развитие вычислительной техники, потребность в эффективных средствах разработки программного обеспечения и языках программирования привели к появлению систем программирования, ориентированных на так называемую "быструю разработку" - RAD-систем (Rapid Application Development).

Среди таких систем быстрой разработки приложений можно выделить Borland Delphi , Borland C Builder и Microsoft Visual Basic. В их основе лежит технология визуального проектирования и событийного программирования, суть которой заключается в том, что среда разработки берет на себя большую часть рутинной работы, оставляя программисту работу по конструированию диалоговых окон и функций обработки событий.

Delphi – это среда быстрой разработки, в которой в качестве языка программирования используется язык объектно-ориентированный язык Object Pascal .

Object Pascal - результат развития языка Turbo Pascal, который, в свою очередь, развился из языка Pascal. Pascal, впервые предложенный швейцарским ученым Н. Виртом еще в 1970г., является полностью процедурным языком, Turbo Pascal начиная с версии 5.5 добавил в Pascal объектно-ориентированные свойства, а Object Pascal - объектно-ориентированный язык программирования с уникальным свойством доступа к метаданным классов (то есть к описанию классов и их членов) в компилируемом коде, также называемом интроспекцией.

Внедрение ЭВМ во все сферы человеческой деятельности требует от специалистов разного профиля овладения навыками использования вычислительной техники. Повышается уровень подготовки студентов вузов, которые уже с первых курсов приобщаются к использованию ЭВМ и простейших численных методов, не говоря уже о том, что при выполнении курсовых и дипломных проектов применение вычислительной техники становится нормой в подавляющем большинстве вузов.

Вычислительная техника используется сейчас не только в инженерных расчетах и экономических науках, но и таких традиционно нематематических специальностях, как медицина, лингвистика, психология. В связи с этим можно констатировать, что применение ЭВМ приобрело массовый характер. Возникла многочисленная категория специалистов - пользователей ЭВМ, которым необходимы знания по применению ЭВМ в своей отрасли - навыки работы с уже имеющимся программным обеспечением, а так же создания своего собственного ПО, приспособленного для решения конкретной задачи. И здесь на помощь пользователю приходят описания языков программирования.

2. Что такое язык программирования

Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более двух с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Создатели языков по-разному толкуют понятие язык программирования . Среди общиx мест, признаваемых большинством разработчиков, находятся следующие:

· Функция: язык программирования предназначен для написания компьютерных программ, которые применяются для передачи компьютеру инструкций по выполнению того или иного вычислительного процесса и организации управления отдельными устройствами.

· Задача: язык программирования отличается от естественных языков тем, что предназначен для передачи команд и данных от человека компьютеру, в то время как естественные языки используются лишь для общения людей между собой. В принципе, можно обобщить определение "языков программирования" - это способ передачи команд, приказов, чёткого руководства к действию; тогда как человеческие языки служат также для обмена информацией.

· Исполнение: язык программирования может использовать специальные конструкции для определения и манипулирования структурами данных и управления процессом вычислений.

3. Этапы решения задачи на ЭВМ.

Наиболее эффективное применение ВТ нашла при проведении трудоемких расчетов в научных исследованиях и инженерных расчетах. При решении задачи на ЭВМ основная роль все-таки принадлежит человеку. Машина лишь выполняет его задания по разработанной программе. роль человека и машины легко уяснить, если процесс решения задачи разбить на перечисленные ниже этапы.

Постановка задачи. Этот этап заключается в содержательной (физической) постановке задачи и определении конечных решений.

Построение математической модели. Модель должна правильно (адекватно) описывать основные законы физического процесса. Построение или выбор математической модели из существующих требует глубокого понимания проблемы и знания соответствующих разделов математики.

Разработка ЧМ. Поскольку ЭВМ может выполнять лишь простейшие операции, она «не понимает» постановки задачи, даже в математической формулировке. Для ее решения должен быть найден численный метод, позволяющий свести задачу к некоторому вычислительному алгоритму. В каждом конкретном случае необходимо выбрать подходящее решение из уже разработанных стандартных.

Разработка алгоритма. Процесс решения задачи(вычислительный процесс) записывается в виде последовательности элементарных арифметических и логических операций, приводящей к конечному результату и называемой алгоритмом решения задачи.

Программирование. Алгоритм решения задачи записывается на понятном машине языке в виде точно определенной последовательности операций - программы. Процесс обычно производится с помощью некоторого промежуточного языка, а ее трансляция осуществляется самой машиной и ее системой.

Оладка программы. Составленная программа содержит разного рода ошибки, неточности, описки. Отладка включает контроль программы, диагностику (поиск и определение содержания) ошибок, и их устранение. Программа испытывается на решении контрольных (тестовых) задач для получения уверенности в достоверности результатов.

Проведение расчетов. На этом этапе готовятся исходные данные для расчетов и проводится расчет по отлаженной программе. при этом для уменьшения ручного труда по обработке результатов можно широко использовать удобные формы выдачи результатов в виде текстовой и графической информации, в понятном для человека виде.

Анализ результатов. Результаты расчетов тщательно анализируются, оформляется научно-техническая документация.

4. Для чего нужны языки программирования

Процесс работы компьютера заключается в выполнении программы, то есть набора вполне определённых команд во вполне определённом порядке. Машинный вид команды, состоящий из нулей и единиц, указывает, какое именно действие должен выполнить центральный процессор. Значит, чтобы задать компьютеру последовательность действий, которые он должен выполнить, нужно задать последовательность двоичных кодов соответствующих команд. Программы в машинных кодах состоят из тысячи команд. Писать такие программы – занятие сложное и утомительное. Программист должен помнить комбинацию нулей и единиц двоичного кода каждой программы, а также двоичные коды адресов данных, используемых при её выполнении. Гораздо проще написать программу на каком-нибудь языке, более близком к естественному человеческому языку, а работу по переводу этой программы в машинные коды поручить компьютеру. Так возникли языки, предназначенные специально для написания программ, - языки программирования.

Имеется много различных языков программирования. Вообще-то для решения большинства задач можно использовать любой из них. Опытные программисты знают, какой язык лучше использовать для решения каждой конкретной задачи, так как каждый из языков имеет свои возможности, ориентацию на определённые типы задач, свой способ описания понятий и объектов, используемых при решении задач.

Всё множество языков программирования можно разделить на две группы: языки низкого уровня и языки высокого уровня.

К языкам низкого уровня относятся языки ассемблера (от англ. toassemble – собирать, компоновать). В языке ассемблера используются символьные обозначения команд, которые легко понятны и быстро запоминаются. Вместо последовательности двоичных кодов команд записываются их символьные обозначения, а вместо двоичных адресов данных, используемых при выполнении команды, - символьные имена этих данных, выбранные программистом. Иногда язык ассемблера называют мнемокодом или автокодом.

Большинство программистов пользуются для составления программ языками высокого уровня. Как и обычный человеческий язык, такой язык имеет свой алфавит – множество символов, используемых в языке. Из этих символов составляются так называемые ключевые слова языка. Каждое из ключевых слов выполняет свою функцию, так же как в привычном нам языке нам языке слова, составленные из букв алфавита данного языка, могут выполнять функции разных частей речи. Ключевые слова связываются друг с другом в предложения по определённым синтаксическим правилам языка. Каждое предложение определяет некоторую последовательность действий, которые должен выполнить компьютер.

Язык высокого уровня выполняет роль посредника между человеком и компьютером, позволяя человеку общаться с компьютером более привычным для человека способом. Часто такой язык помогает выбрать правильный метод решения задачи.

Перед тем как писать программу на языке высокого уровня, программист должен составить алгоритм решения задачи, то есть пошаговый план действий, который нужно выполнить для решения этой задачи. Поэтому языки, требующие предварительного составления алгоритма, часто называют алгоритмическими языками.

Программирование для начинающих

Для начала я хотел бы сказать, что управлять компьютером и создавать программы может любой человек. Для создания компьютерных программ не нужно обладать невероят­ным интеллектом или ученой степенью в математических дисциплинах. Вам понадобится только желание в чем-то разобраться и терпение, чтобы не бросить занятия.

Умение писать программы - это такое же умение, как и умение плавать, танце­вать или жонглировать. Некоторым людям действительно удается делать это намного лучше, чем другим, но любой человек сможет достичь определенных результатов при должной практике. Именно по этой причине дети становятся асами программирова­ния в раннем возрасте. Дети не обязательно гениальны; они просто склонны позна­вать новое и не боятся ошибаться.

Несмотря на то, что компьютеры кажутся очень сложными электронными чудови­щами, расслабьтесь. Совсем немногие знают, как именно работают поисковые машины, которые позволяют вам быстро находить необходимую информацию в Internet, a некоторые люди и не разобрались, как управлять автомобилем. Точно так же прак­тически любой может научиться создавать программы, не вдаваясь в подробности о том, как именно работает компьютер.

Вообще говоря, программа указывает компьютеру, как решить ту или иную проблему. Поскольку в мире полно проблем, количество программ, которые могут написать люди, бесконечно.

Однако, для того чтобы сообщить компьютеру, как решить одну громадную про­блему, обычно вам придется рассказать компьютеру, как решить целый ряд мелких проблем, из которых и состоит большая проблема.
На самом деле программирование совсем несложно и не является чем-то загадочным и сверхъестественным. Если вы в состоянии написать пошаговые инструкции, которые по­зволят человеку найти ваш дом, вы сможете написать и компьютерную программу.

Самое сложное в программировании - определение небольших проблем, обра­зующих проблему, которую вам необходимо решить. Так как компьютеры абсолютно глупы, вам придется рассказать им, как выполнять любые действия.

Если вы считаете, что создавать программу интереснее, чем ее использовать, у вас есть все необходимое для того, чтобы создавать компьютерные программы. Если вы хотите изучить написание компьютерных программ, вам необходимы три следующих качества.

Стремление. Если вы чего-то очень сильно хотите, вы обязательно это получите (но если вы совершите что-то противозаконное, вы рискуете провести немало времени в тюрьме). Если вы хотите научиться про­граммировать, ваше желание обязательно вам поможет, независимо от того, сколько препятствий окажется у вас на пути.

Любознательность. Здоровая доза любознательности может подогревать ваше стремление к экспериментированию и дальнейшему совершенст­вованию навыков программирования даже после прочтения настоящей книги. Благодаря любопытству изучение программирования окажется для вас менее скучным и более интересным. А если вам интересно, вы обязательно изучите и запомните больше сведений, чем любой абсо­лютно незаинтересованный в этом человек (например, ваш начальник).
Воображение. Создание компьютерных программ - это навык, но во­ображение поможет сделать этот навык более совершенным и направ­ленным. Обладающий изрядной долей воображения начинающий про­граммист всегда будет создавать намного более интересные и полезные программы, чем замечательный программист без воображения. Если вы не знаете, что же делать со своими навыками программирования, ваш талант просто погибнет без воображения.

Стремление, любознательность и воображение - вот три самых важных качества, которыми должен обладать каждый программист. Если вы обладаете ими, вам стоит беспокоиться только о мелочах: какой язык программирования изучать (например, C++), что там с математикой и т.д.

Среди многих языков программирования вы всегда сможете найти именно тот язык, который подходит для решения данной задачи. При появлении нового типа проблем люди создают новые языки.

Конечно, на самом деле компьютер понимает только один язык, состоящий из ну­лей и единиц, который называется машинным языком. Обычно программа, написанная на машинном языке, выглядит приблизительно так:

0010 1010 0001 1101

ООН 1100 1010 1111

0101 ОНО 1101 0101

1101 1111 0010 1001

Далее, очень существенно, для какой цели выбирается язык - для обучения программированию либо для решения конкретной прикладной задачи. В первом случае язык должен быть простым для понимания, строгим и по возможности лишенным "подводных камней". Во втором - пусть сложным, но эффективным и выразительным инструментом для профессионала, знающего чего он хочет.

Теперь мне бы хотелось разъяснить вам, что следует отличать язык программирования (Basic, Pascal) от его реализации, которая обычно представлена в составе среды программирования (Quick Basic, Virtual Pascal) - набора средств для редактирования исходных текстов, генерации исполняемого кода, отладки, управления проектами и т.д. Синтаксис и семантика языка программирования фиксируется в стандарте языка. Каждая среда программирования предоставляет свой интерпретатор или компилятор с этого языка, который зачастую допускает использование конструкций, не фиксированных в стандарте.

Рассмотрим основные и популярные языки программирования

Assembler Это ярчайший представитель языков низкого уровня, набор понятий которого основан на аппаратной реализации. Это средство автоматизации для программирования непосредственно в кодах процессора. Машинные команды описываются в виде мнемонических операций, что позволяет добиться достаточно высокой модифицируемости кода. Поскольку набор команд на разных процессорах различен, то и о совместимости говорить не приходится. Использование ассемблера целесообразно в случаях, когда необходимо напрямую взаимодействовать с оборудованием, либо получить большую эффективность для некоторой части программы за счет более высокого контроля над генерацией кода.

Кобол - Язык программирования высокого уровня, разработанный в конце 1950-х гг. ассоциацией КАДАСИЛ для решения коммерческих и экономических задач. Отличается развитыми средствами работы с файлами. Поскольку команды программ, написанных на этом языке, активно используют обычную английскую лексику и синтаксис, Кобол рассматривается как один из самых простых языков программирования. В настоящее время используется для решения экономических, информационных и других задач.

Фортран - Язык программирования высокого уровня, разработанный фирмой IBM в 1956 г. для описания алгоритмов решения вычислительных задач. Относится к категории процедурно-ориентированных языков. Наиболее распространенными версиями этого языка являются Фортран IV, Фортран 77 и Фортран 90. Используется на всех классах ЭВМ. Последняя его версия также применяется на ЭВМ с параллельной архитектурой.

Ада - Язык программирования высокого уровня, ориентированный на применение в системах реального времени и предназначенный для автоматизации задач управления процессами и/или устройствами, например, в бортовых (корабельных, авиационных и др.) ЭВМ. Разработан по инициативе министерства обороны США в 1980-х гг. Назван в честь английского математика Ады Августы Байрон (Лавлейс), жившей в 1815-1851 гг.

BASIC (Beginner"s All-purpose Symbolic Instruction Code) Рожденный в 60-е годы в Америке. Бейсик был задуман как простой язык для быстрого освоения. Бейсик стал фактическим стандартом для МикроЭВМ именно благодаря своей простоте как в освоении так и в реализации. Однако для достижения этого качества был принят ряд решений (отсутствие типизации, нумерация строк и неструктурное GOTO, и др.), негативно сказывающихся на стиле изучающих программирование. Кроме того, недостаток выразительных средств привел к появлению огромного количества диалектов языка, не совместимых между собой. Современные, специализированные версии Бейсика (такие как Visual Basic) несмотря на приобретенную "структурность" обладают все теми же недостатками, прежде всего - небрежностью по отношению к типам и описаниям. Пригоден для использования на начальном этапе обучения, как средство автоматизации (в случаях когда он встроен в соответствующие системы) либо как средство для быстрого создания приложений.

Pascal Разработанный известным теоретиком Н.Виртом на основе идей Алгола-68, Паскаль предназначался прежде всего для обучения программированию. Построенный по принципу "необходимо и достаточно", он располагает строгим контролем типов, конструкциями для описания произвольных структур данных, небольшим, но достаточным набором операторов структурного программирования. К сожалению, обратной стороной простоты и строгости является громоздкость описаний конструкций языка. Наиболее известная реализация - Turbo/Borland Pascal - несмотря на отличия от стандарта Паскаля, представляет из себя среду и набор библиотек, сделавшие из учебного языка промышленную систему для разработки программ в среде MS-DOS.

C и C++ В основе языка C - требования системного программиста: полный и эффективный доступ ко всем ресурсам компьютера, средства программирования высокого уровня, переносимость программ между различными платформами и операционными системами. С++, сохраняя совместимость с C, вносит возможности объектно-ориентированного программирования, выражая идею класса (объекта) как определяемого пользователем типа. Благодаря перечисленным качествам, C/C++ занял позицию универсального языка для любых задач. Но его применение может стать неэффективным там, где требуется получить готовый к употреблению результат в кратчайшие сроки, либо там, где невыгодным становится сам процедурный подход.

Delphi - это не продолжатель дела Borland Pascal / Borland C, его ниша - т.е. быстрое создание приложений (Rapid Application Developing, RAD). Подобные средства позволяют в кратчайшие сроки создать рабочую программу из готовых компонентов, не растрачивая массу усилий на мелочи. Особое место в таких системах занимают возможности работы с базами данных.

Лисп - Алгоритмический язык, разработанный в 1960 г. Дж. Маккарти и предназначенный для манипулирования перечнями элементов данных. Используется преимущественно в университетских лабораториях США для решения задач, связанных с искусственным интеллектом. В Европе для работ по искусственному интеллекту предпочитают использовать Пролог.

Пролог - Язык программирования высокого уровня декларативного, предназначенный для разработки систем и программ искусственного интеллекта. Относится к категории языков пятого поколения. Был разработан в 1971 г. в университете г. Марсель (Франция), относится к числу широко используемых и постоянно развиваемых языков. Последняя его версия Prolog 6.0

ЛОГО - Язык программирования высокого уровня, разработан в Массачусетском технологическом институте в ориентировочно 1970 г. для целей обучения математическим понятиям. Используется также в школах и пользователями ПЭВМ при написании программ для создания чертежей на экране монитора и управления перьевым графопостроителем.

Java Как яркий пример специализации, язык Java появился в ответ на потребность в идеально переносимом языке, программы на котором эффективно исполняются на стороне клиента WWW. В ввиду специфики окружения, Java может быть хорошим выбором для системы, построенной на Internet/Intranet технологии.

Алгол - Язык программирования высокого уровня, ориентированный на описание алгоритмов решения вычислительных задач. Был создан в 1958 г. специалистами западно-европейских стран для научных исследований. Версия этого языка Алгол-60 была принята Международной конференцией в Париже (1960 г.) и широко использовалась на ЭВМ 2-го поколения. Версия Алгол-68, разработанная группой специалистов Международной федерации по обработке информации (ИФИП) в 1968 г., получила статус международного универсального языка программирования, ориентированного на решение не только вычислительных, но и информационных задач. Хотя в настоящее время Алгол практически не используется, он послужил основой или оказал существенное влияние на разработку более современных языков, например, Ада, Паскаль и др.

Самого лучшего языка не существует. Если вы собираетесь стать профессионалом в написании программ, вам необходимо изучить один из языков программирования высокого уровня (наиболее популярен язык программирования C++), а также один из языков программирования баз данных (например, SQL). Изучив язык программиро­вания C++, вы не ошибетесь. Зная этот язык, вы всегда сможете найти работу в любой компании, занимающей­ся программированием.
Несмотря на большую популярность языка программирования C++, часто исполь­зуются и другие языки. На многих устаревших компьютерах до сих пор работают программы, написанные на языке программирования COBOL. Поэтому нужны про­граммисты, которые умеют усовершенствовать данные программы, а также писать но­вые. Очень часто крупные компании выплачивают таким программистам высокую за­работную плату.
Если вы собираетесь работать самостоятельно, предпочтительнее всего научиться создавать собственные программы для баз данных. Для этого вам понадобится изучить такие языки программирования, как SQL или VBA, которые используются в програм­ме Microsoft Access. Для того чтобы создавать Web-страницы, необходимо знать HTML, а также немного знать Java, JavaScript, VBScript и другие языки программиро­вания для Internet. Самым нужным будет тот язык программирования, который по­зволит решить поставленные перед вами задачи легко и быстро. Это может быть язык программирования C++, BASIC, Java, SQL или язык ассемблера.

В заключение отметим, что с профессиональной точки зрения не так важно на каком языке и в какой среде работает программист, сколько как он выполняет свою работу. Меняется аппаратура и операционные системы. Возникают новые задачи из самых различных предметных областей. Уходят в прошлое и появляются новые языки. Но остаются люди - те, кто пишет и те, для кого пишут новые программы и чьи требования к качеству остаются теми же вне зависимости от этих изменений.
Вот с вами мы и рассмотрели основы программирования и основные языки программирования.

Желаю удачи в освоение программирования!

ЯЗЫК ПРОГРАММИРОВАНИЯ И ЕГО ВИДЫ

Язык программирования - формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под её управлением.

Высокоуровневый язык программирования - язык программирования, разработанный для быстроты и удобства использования программистом. Основная черта высокоуровневых языков - это абстракция, то есть введение смысловых конструкций, кратко описывающих такие структуры данных и операции над ними, описания которых на машинном коде (или другом низкоуровневом языке программирования) очень длинны и сложны для понимания.

Низкоуровневый язык программирования (язык программирования низкого уровня) - язык программирования, близкий к программированию непосредственно в машинных кодах используемого реального или виртуального (например, Java, Microsoft .NET) процессора. Для обозначения машинных команд обычно применяется мнемоническое обозначение. Это позволяет запоминать команды не в виде последовательности двоичных нулей и единиц, а в виде осмысленных сокращений слов человеческого языка (обычно английских).

ЯЗЫКИ ПРОГРАММИРОВАНИЯ НИЗКОГО УРОВНЯ

Первым компьютерам приходилось программировать двоичными машинными кодами. Однако программировать таким образом - достаточно трудоемкая и сложная задача. Для упрощения этой задачи стали появляться языки программирования низкого уровня, которые позволяли задавать машинные команды в более понятном для человека виде. Для преобразования их в двоичный код были созданы специальные программы - трансляторы.

Рис.1. Пример машинного кода и представления его на ассемблере

Трансляторы делятся на:

    компиляторы - превращают текст программы в машинный код, который можно сохранить и затем использовать уже без компилятора (примером являются исполняемые файлы с расширением *. exe);

    интерпретаторы - превращают часть программы в машинный код, выполняют и после этого переходят к следующей части. При этом каждый раз при выполнении программы используется интерпретатор.

Примером языка низкого уровня является ассемблер. Языки низкого уровня ориентированы на конкретный тип процессора и учитывают его особенности, поэтому для переноса программы на ассемблере на другую аппаратную платформу ее нужно почти полностью переписать. Определенные различия имеются и в синтаксисе программ под разные компиляторы. Правда, центральные процессоры для компьютеров фирм AMD и Intel практически совместимы и отличаются лишь некоторыми специфическими командами. А вот специализированные процессоры для других устройств, например, видеокарт, телефонов содержат существенные различия.

Преимущества

С помощью языков низкого уровня создаются эффективные и компактные программы, поскольку разработчик получает доступ ко всем возможностям процессора.

Недостатки

    Программист, работающий с языками низкого уровня, должен быть высокой квалификации, хорошо понимать устройство микропроцессорной системы, для которой создается программа. Так, если программа создается для компьютера, нужно знать устройство компьютера и, особенно, устройство и особенности работы его процессора;

    результирующая программа не может быть перенесена на компьютер или устройство с другим типом процессора;

    значительное время разработки больших и сложных программ.

Языки низкого уровня, как правило, используют для написания небольших системных программ, драйверов устройств, модулей стыков с нестандартным оборудованием, программирование специализированных микропроцессоров, когда важнейшими требованиями являются компактность, быстродействие и возможность прямого доступа к аппаратным ресурсам.

Ассемблер - язык низкого уровня, что широко применяется до сих пор.

ЯЗЫКИ ПРОГРАММИРОВАНИЯ ВЫСОКОГО УРОВНЯ

Первым языком программирования высокого уровня считается компьютерный язык Plankalkül, разработанный немецким инженером Конрадом Цузе ещё в период 1942-1946 годах. Однако транслятора для него не существовало до 2000 г. Первым в мире транслятором языка высокого уровня является ПП (Программирующая Программа), он же ПП-1, успешно испытанный в 1954 г. Транслятор ПП-2 (1955 г., 4-й в мире транслятор) уже был оптимизирующим и содержал собственный загрузчик и отладчик, библиотеку стандартных процедур, а транслятор ПП для ЭВМ Стрела-4 уже содержал и компоновщик (linker) из модулей. Однако, широкое применение высокоуровневых языков началось с возникновением Фортрана и созданием компилятора для этого языка (1957).

Высокоуровневые языки стремятся не только облегчить решение сложных программных задач, но и упростить портирование программного обеспечения. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и оборудованием, в то время как их исходный код остаётся, в идеале, неизменным.

Такого рода оторванность высокоуровневых языков от аппаратной реализации компьютера помимо множества плюсов имеет и минусы. В частности, она не позволяет создавать простые и точные инструкции к используемому оборудованию. Программы, написанные на языках высокого уровня, проще для понимания программистом, но менее эффективны, чем их аналоги, создаваемые при помощи низкоуровневых языков. Одним из следствий этого стало добавление поддержки того или иного языка низкого уровня (язык ассемблера) в ряд современных профессиональных высокоуровневых языков программирования.

Примеры: C, C++,C#, Java, Python, PHP, Ruby, Perl, Паскаль, Delphi, Lisp . Языкам высокого уровня свойственно умение работать с комплексными структурами данных. В большинстве из них интегрирована поддержка строковых типов, объектов, операций файлового ввода-вывода и т. п.Недостатком языков высокого уровня является больший размер программ по сравнению с программами на языке низкого уровня. Поэтому в основном языки высокого уровня используются для разработок программного обеспечения компьютеров и устройств, которые имеют большой объем памяти. А разные подвиды ассемблера применяются для программирования других устройств, где критичным является размер программы.

В основе императивных языков лежат несколько важных идей, в их числе представление действий в виде математических формул, концепция типа данных и теорема о структурном преобразовании.

Пpогpамма на императивном языке стpоится из функций (подпpогpамм). Пpогpаммы на языке ассемблеpа тоже могут состоять из подпpогpамм и в этом нет ничего нового, но языки высокого уpовня позволяют не думать о таких вопpосах как оpганизация вызовов, пеpедача исходных данных и возвpат pезультатов. Описание функции состоит из имени, списка паpаметpов (исходных данных), типа pезульта и действий, пpиводящих к получению этого pезультата. Одна из функций пpогpаммы является главной, ее выполнение и есть pабота пpогpаммы.

Простой пример - функция, вычисляющая синус числа. Она может называться sin, ее исходные данные состоят из одного вещественного числа, pезультат - тоже вещественное число, получаемое путем суммиpования отpезка известного бесконечного pяда (или выполнения команды fsin математического сопроцессора).

Набоp действий, котоpые могут выполняться внутpи функции очень огpаничен. Он состоит из вычисления фоpмульных выpажений, вызовов дpугих функций (что не является отдельным действием - вызов функции часто входит в выpажение), присваиваний, ветвлений (гpуппа действий, котоpая выполняется лишь при истинности некоторого условия) и циклов (гpуппа действий, выполняемых многокpатно, число повтоpений зависит от некотоpого условия). Действия могут быть вложены дpуг в дpуга. Может показаться, что набоp из ветвлений и циклов слишком мал, но это не так. Доказано, что любой алгоpитм, составленный из функциональных блоков (на низком уpовне - арифметических команд и команд пеpесылки данных), условных и безусловных пеpеходов может быть пpеобpазован в эквивалентный алгоpитм, составленный только из стpуктуpных блоков - функциональных блоков, ветвлений и циклов с пpовеpкой условия в конце. Это утвеpжение было сфоpмулиpовано в статье Бома и Джакопини (Corrado Bohm and Giuseppe Jacopini) "Flow diagrams, turing mashines and languages with only two formation rules" (Communications of ACM, Volume 9 / Number 5 / May, 1965).

Если для выполнения необходимых действий нужно где-то хpанить пpомежуточные pезультаты, внутpи функции помещаются специальные описания, содеpжащие имена переменных и, возможно, другую информацию. Адpеса ячеек опеpативной памяти будут назначены им автоматически. В некоторых языках внутри функций также могут содержаться определения констант и типов. В Pascal-подобных языках функция подобна программе и может включать определения не только констант, типов и переменных, но и других функций.

Объявление данных пpедставляет собой список именованых объектов. Эти объекты называются пеpеменными. В ряде языков должен задаваться тип переменной, определяющий необходимый для ее pазмещения объем памяти и набоp опеpаций, в котоpых она может участвовать. Но это не обязательно так, существуют языки, в которых тип переменной не задается и может меняться по ходу выполнения программы.

Обычно языки пpогpаммиpования пpедоставляют достаточно огpаниченный набоp пpедопpеделенных типов пеpеменных и сpедства создания новых типов. Пpедопpеделены некотоpые из следующих типов:

    натуpальные и целые числа pазличной pазpядности;

    вещественные числа;

    символы - буквы, цифpы, знаки аpифметических действий и пp.;

    стpоки символов;

    логические значения;

    указатели

Действия над данными могут выполняться с помощью функций и операторов.

В языке C, напpимеp, не опpеделены символы, строки и логические значения. Его тип char на самом деле является коpотким целым и допускает аpифметические действия.

Новые типы обpазуются путем объединения в единое целое нескольких элементов одного типа (массив, каждый его элемент имеет поpядковый номеp) или элементов pазных типов (стpуктуpа, каждый ее элемент имеет собственное имя). Напpимеp, в большинстве языков комплексные числа не опpеделены, но их можно опpеделить:

В некоторых языках (например, в C++) для создаваемых типов могут быть определены и операторы, что позволяет использовать переменные этих типов так же, как и переменные предопределенных типов.

Есть и другие способы создания новых типов. Например, в языке Pascal возможно создание:

    типов-диапазонов (посредством задания диапазона значений);

    типов-перечислений (посредством перечисления возможных значений);

    типов-множеств

Переменные типов-множеств могут быть использованы для хранения информации о наборе свойств каких-либо объектов. Нечто подобное можно сделать с помощью переменных целого типа, установленные биты которых озачают наличие соответствующих совойств. По-видимому, использование множеств более устойчиво к ошибкам программиста.