Nand Flash iPhone — что это, ошибки и как их исправить? NAND и NOR: что они такое, и с чем их едят

2017-05-25 Дата последнего изменения: 2018-10-10

В статье рассматриваются: Особенности применения микросхем NAND FLASH , методы разметки страниц и управления плохими блоками. Рекомендации по программированию на программаторах.

CОДЕРЖАНИЕ:

1. ТЕОРИЯ

1.1. Отличие микросхем NAND FLASH от обычных микросхем

Если не вникать в тонкости технологий, то отличие микросхем NAND от других микросхем памяти заключается в следующем:

  • Микросхемы NAND имеют очень большой объем .
  • Микросхемы NAND могут иметь плохие (сбойные) блоки .
  • Размер страницы записи не является степенью 2 .
  • Запись в микросхему осуществляется только страницами , стирание - минимум блоками .

Есть еще несколько отличий, но первые две особенности являются ключевыми. Больше всего проблем доставляет наличие плохих блоков .

1.2. Организация микросхем NAND FLASH

Более подробно об организации и структуре микросхем NAND можно прочитать в специальной литературе, мы же отметим, что:

  • Микросхемы NAND организованы в страницы (pages ), страницы в блоки (bloks ), блоки в логические модули (lun ).
  • Размер страницы NAND не кратен степени 2 .
  • Страница состоит из основной и запасной (spare ) областей.

По замыслу разработчиков NAND в основной области должны находятся сами данные , а в запасной (резервной) области - маркеры плохих блоков , контрольные суммы основной области, прочая служебная информация .

Если говорят о размере страницы микросхемы NAND 512 байт или байт, то речь идет о размере основной области страницы, без учета запасной .

1.3. Способы использования запасной области страницы

Еще раз напомним, что по замыслу разработчиков NAND микросхем в запасной области должны находится: маркеры плохих блоков , контрольные суммы основной области данных, прочая служебная информация.

Большинство разработчиков описывает только место расположения маркеров плохих блоков в поставляемых микросхемах. По остальным аспектам использования запасной области даются общие рекомендации и алгоритм вычисления ЕСС, обычно по Хэмингу. Samsung идут несколько дальше, разработав рекомендации с названием "Запасная область флэш-памяти NAND. Стандарт назначения " ("NAND Flash Spare Area. Assignment Standard", 27. April. 2005, Memory Division, Samsung Electronics Co., Ltd).

Итак, этот стандарт предполагает следующее использование запасной области:

Для микросхем с размером страницы 2048+64 бай т основная и запасная область страницы разбивается на 4 фрагмента (сектора) каждая:

Область Размер (байт) Фрагмент
Основная 512 Сектор 1
512 Сектор 2
512 Сектор 3
512 Сектор 4
Запасная 16 Сектор 1
16 Сектор 2
16 Сектор 3
16 Сектор 4

Каждому фрагменту их основной области ставится в соответствие фрагмент запасной области .

Использование запасной области (для каждого из четырех фрагментов)
у микросхем с размером страницы 2048+64 байт:
Смещение
(байт)
Размер
(байт)
Назначение Описание
Маркер плохого блока
Зарезервировано
Логический номер сектора
Зарезервировано для номера сектора
Зарезервировано
ECC код для основной области страницы
ECC код для логического номера сектора
Зарезервировано

Но это не единственный "стандарт" для распределения памяти страниц, только нам известны их несколько десятков, например:

  • "NAND FLASH management under WinCE 5.0 ", NXP;
  • "Bad Block Management for NAND Flash using NX2LP ", December 15, 2006, Cypress Semiconductor;
  • "OLPC NAND Bad Block Management ", OLPC.

1.4. Образ NAND и двоичный образ

Вы можете столкнуться с двумя вариантами образа для записи :

  1. Двоичный файл не разбитый на страницы и без запасной области .
    Такой вариант возможен если вы - разработчик устройства с использованием NAND или получили такой файл от разработчика. Такой образ подходит для записи в микросхемы со страницами любого объема и любым распределением запасной области, только нужно знать каким методом будет формироваться запасная область.
  2. Образ, считанный из другой микросхемы (образца), содержащий запасную область с разметкой плохих блоков, служебной информацией и контрольными кодами.
    Такой образ можно записать только в микросхему с точно такими же размерами страниц и блоков.

Те специалисты, которые занимаются ремонтом различной аппаратуры, чаще сталкиваются со вторым случаем. В таком случае часто бывает затруднительно определить использованный способ распределения запасной области и метод управления плохими блоками.

1.5. Заводская маркировка плохих блоков

Единственное что более или менее стандартизовано, так это заводская маркировка плохих блоков .

  • Плохие блоки маркируются на 0-й или 1-й странице для микросхем с размером страницы менее 4К.
  • Для страниц 4К и более , маркировка может находиться на последней странице блока.
  • Сам маркер плохих блоков располагается в запасной области страницы в 5-м байте для маленьких страниц (512 байт) и в 0-м байте для больших (2K).
  • Маркер плохого блока может иметь значение 0x00 или 0xF0 для маленьких страниц и 0x00 для больши х.
  • Хорошие блоки всегда маркируются 0xFF .
  • В любом случае значение отличное от 0xFF программатор воспринимает как маркер плохого блока .
  • Как правило, в современных NAND плохой блок полностью заполнен значением 0x00 .

Есть одна проблема: плохой блок можно стереть . Таким способом можно потерять информацию о плохих блоках микросхемы.

Однако, если микросхема уже работала в устройстве, далеко не всегда используется такая методика маркировки плохих блоков. Иногда даже информация о плохих блоках не хранится в памяти NAND. Но, чаще всего, если даже разработчик программного обеспечения устройства использует иную схему управления плохими блоками, заводскую разметку предпочитает не стирать.

1.6. Управление плохими блоками

Разработчики NAND микросхем предлагают использовать следующие схемы управления плохими блоками:

  • Пропуск плохих блоков
  • Использование запасной области

Также к методам управления плохими блоками иногда относят использование коррекции ошибок (ECC). Необходимо отметить, что использование коррекции одиночных ошибок не избавляет от множественных ошибок и все равно вынуждает использовать одну из приведенных выше схем. Кроме этого, большинство NAND микросхем имеют гарантировано бессбойную область, в которой не появляются плохие блоки. Бессбойная область, как правило, располагается в начале микросхемы.

Указанные методы управления плохими блоками хорошо описаны в технической документации производителей NAND и широко обсуждены в литературе по использованию NAND . Однако коротко напомним их суть:

Пропуск плохих блоков:
Если текущий блок оказался сбойным он пропускается и информация пишется в следующий свободный блок. Эта схема универсальна, проста в реализации, однако несколько проблематична для случаев, когда плохие блоки появляются в процессе эксплуатации. Для полноценной работы этой схемы логический номер блока должен хранится внутри блока (стандарт назначения запасной области от Самсунг, собственно это и предполагает). При работе по этой схеме контроллер должен где-то хранить таблицу соответствия логических номеров блоков их физическим номерам иначе доступ к памяти будет сильно замедлен.

Поэтому логическим развитием является схема использования запасной области :
По этому методу весь объем памяти разбивается на две части: основная и резервная. При появлении сбойного блока в основной памяти он заменяется блоком из запасной памяти, а в таблице переназначения блоков делается соответствующая запись. Таблица переназначения хранится или в гарантировано бессбойном блоке или в нескольких экземплярах. Формат таблицы разный, хранится она в разных местах. Опять таки Самсунг описывает стандарт на формат и расположение таблицы, но ему мало кто следует.

2. ПРАКТИКА

2.1. Сканирование плохих блоков микросхемы NAND

Программатор ChipStar позволяет быстро сканировать микросхему NAND на наличие плохих блоков в соответствии с заводской маркировкой плохих блоков.

Выберите пункт меню "Микросхема|Искать плохие блоки ", микросхема будет проверена на наличие плохих блоков. Результат показан в виде таблицы.

Это действие необходимо выполнить только в том случае, если вы хотите просто просмотреть список плохих блоков. Во всех остальных случаях поиск плохих блоков выполняется автоматически, когда это необходимо.

2.2. Плохие блоки в образе NAND

При считывании образа микросхемы NAND программатор дополнительно сохраняет информацию о размере страницы и блока микросхемы. Информация сохраняется в отдельном файле. Так если вы считали и сохранили образ микросхемы в файле <имя_файла>.nbin программа создаст еще один файл: <имя_файла>.cfs . При открытии файла <имя_файла>.nbin файл <имя_файла>.cfs так же будет считан. В файле <имя_файла>.cfs записывается информация о размере страницы и блока микросхемы. После считывания микросхемы или открытия файла типа .nbin , производится фоновое сканирование образа на наличие плохих блоков исходя из информации о размере страницы и блока.

Параметры NAND и информацию о плохих блоках можно посмотреть в закладке "NAND " редактора программатора:

Двоичный образ NAND можно просматривать в закладке "Основная память ":

В режиме редактора NAND запасная область страницы выделяется более тусклым цветом , так же становятся доступны кнопки перемещения по страницам, блокам и быстрого перехода в начало запасной области текущей страницы. В строке статуса редактора кроме адреса курсора дополнительно отображается номер страницы и номер блока в которых находится курсор. Все это позволяет более удобно просмотреть содержимое микросхемы.

2.3.Стирание NAND

По умолчанию программатор не стирает плохие блоки, но если отключить опцию "Проверка и пропуск плохих блоков " плохие блоки могут быть стерты и разметка плохих блоков может быть потеряна. Отключать эту опцию нужно только в случае необходимости.

Пропускаются только плохие блоки помеченные в соответствии с заводской маркировкой. Если в устройстве используется иная маркировка плохих блоков, то они будут стерты, поскольку программное обеспечение программатора их не увидит. Для работы с нестандартными разметками плохих блоков программатор может использовать внешние плагины.

2.4. Тестирование микросхемы на отсутствие записи

По умолчанию программатор игнорирует все плохие блоки при проверке, но если отключить опцию "Сканирование и пропуск плохих блоков " плохие блоки будут проверены что, естественно, приведет к ошибкам тестирования.

2.5. Запись готового образа в микросхему

Запись образа NAND в микросхему несколько отличается от обычных FLASH микросхем. Прежде всего должны совпадать размеры страниц образа и целевой микросхемы. Если используется управление плохими блоками должны совпадать размеры блоков образа и микросхемы.

Программное обеспечение всех программаторов ChipStar поддерживает три метода управления плохими блоками встроенными средствами и неограниченное количество с помощью плагинов. Кроме того, можно задать количество записываемых блоков в начале микросхемы, что фактически является четвертым способом управления плохими блоками.

Способ 1: игнорирование плохих блоков

Простое копирование с игнорированием плохих блоков (плохие блоки пишутся так же, как нормальные).

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 1
плохой
Блок
чистый
Блок 1
ложный
Блок 2
хороший
Блок
чистый
Блок 2
хороший
Блок 3
хороший
Блок
плохой
Блок 3
сбойный
Блок 4
хороший
Блок
чистый
Блок 4
хороший
Граница записи
Блок 5
хороший
Блок
чистый
Блок
чистый

Наиболее хорошо подходит для копирования микросхем NAND , не вникая в ее внутреннюю структуру, при условии, что записываемая микросхема не содержит плохих блоков . Если в исходном образе присутствовали плохие блоки , в итоге образуются ложные плохие блоки . Появление ложных плохих блоков не скажется на функционировании устройства. Однако, если микросхема уже содержит плохие блоки, при попытке записи в такую микросхему появятся сбойные блоки с непредсказуемыми последствиями. Совет: можно попытаться стереть микросхему полностью, включая плохие блоки, затем выполнить копирование. Если запись в плохой блок завершится успешно (такое часто бывает), ваше устройство будет функционировать правильно, в дальнейшем программное обеспечение устройства выявит плохой блок и заменит его хорошим в соответствии со своим алгоритмом работы.

Способ 2: обход плохих блоков

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 1
плохой
Блок
чистый
Блок
чистый
Блок 2
хороший
Блок
чистый
Блок 2
хороший
Блок 3
хороший
Блок
плохой
Блок
плохой
Блок 4
хороший
Блок
чистый
Блок 4
хороший
Граница записи
Блок 5
хороший
Блок
чистый
Блок
чистый

При обходе плохих блоков не записываются плохие блоки из исходного образа и не пишется информация в плохие блоки микросхемы . Это не самая лучшая политика копирования, но она безопасна в отношении плохих блоков микросхемы: не теряется информация о плохих блоках микросхемы и не появляются ложные плохие блоки . В ряде случаев такая политика копирования может помочь восстановить работоспособность неизвестного устройства.

Способ 3: пропуск плохих блоков

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 1
плохой

Блок
чистый
Блок 2
хороший
Блок 2
хороший
Блок
чистый
Блок 3
хороший
Блок 3
хороший
Блок
плохой
Блок
плохой
Блок 4
хороший
Блок
чистый
Блок 4
хороший
Граница записи
Блок 5
хороший
Блок
чистый
Блок
чистый

Запись с пропуском плохих блоков предполагает что в устройстве используется именно такой алгоритм управления плохими блоками, а не какой-либо другой. При этих условиях гарантировано правильное копирование информации.

Способ 4: запись только гарантированно бессбойной области

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 2
хороший
Блок
чистый
Блок 1
хороший
Граница записи
Блок
плохой
Блок
чистый
Блок
чистый
Блок 3
хороший
Блок
плохой
Блок
плохой
Блок 4
хороший
Блок
чистый
Блок
чистый
Блок 5
хороший

Блок
чистый

Блок
чистый

В большинстве современных NAND микросхем первые блоки (как минимум один) гарантированно не имеют сбоев. Во многих устройствах в начале микросхемы располагается код загрузчика и операционной системы устройства. Часто бывает достаточно копирования только этих областей.

В диалоге настроек режимов записи укажите записываемый размер в блоках.

Другие способы управления плохими блоками

Программное обеспечение программаторов ChipStar поддерживает любые алгоритмы управления плохими блоками NAND при помощи внешних плагинов. При наличии установленных плагинов описания дополнительных методов появляются в списке "Управление плохими блоками NAND ". Настроить параметры выбранного метода можно нажав кнопку "Внешний плагин ".

Использование кодов, исправляющих ошибки (ECC)

Использование кодов, исправляющих ошибки позволяет восстанавливать одиночные ошибки на странице NAND.

Могут быть использованы разные алгоритмы, восстанавливающие одиночные ошибке в секторе. В зависимости от алгоритма ECC , может быть восстановлено разное количество ошибок на сектор (512+16 байт). Под термином "одиночные " понимается ошибка только в одном бите данных. Для NAND с размером страницы 512+16 байт понятие "сектор " и "страница " совпадают. Для NAND с большим размером страниц программатор ChipStar использует схему разметки страницы на сектора, как описано . В установках записи или верификации можно указать, сколько ошибок на сектор может исправлять используемый в вашем устройстве алгоритм. Соответственно, микросхемы с допустимым количеством ошибок не будут забракованы, информация о количестве исправимых ошибок выводится в окне статистики:

Информацию о количестве допустимых ошибок на сектор для каждой конкретной микросхемы можно уточнить в документации на микросхему. Все вновь добавляемые микросхемы NAND вносятся в базу данных программатора с учетом количества допустимых ошибок.

При самостоятельном добавлении микросхем:

  • если поддерживается ONFI , то допустимое количество ошибок на сектор считывается из таблицы параметров микросхемы и устанавливается в нужное значение.
  • если микросхема не поддерживает ONFI , пользователь должен установить значение самостоятельно , используя документацию на микросхему.

Для новых микросхем NAND производства Samsung значение допустимого количества ошибок на сектор закодировано в составе идентификатора микросхемы. Поэтому, для таких микросхем допустимое количество ошибок на сектор также будет установлено правильно.

При считывании содержимого микросхемы с целью его дальнейшего сохранения или копирования, одиночные ошибки не могут быть достоверно выявлены . Полученный образ может быть затем отдельно подвергнут анализу на ошибки путем вычисления проверочных кодов ECC внешним приложением, при условии, что точно известен используемый алгоритм и разметка страницы .

Программное обеспечение программатора ChipStar предлагает косвенный статистический способ выявления и устранения одиночных ошибок. Способ позволяет выявить только неустойчивые ошибки с не гарантированной достоверностью. Для выполнения чтения с выявлением ошибок нужно выбрать режим "Выборочное чтение " и на закладке "NAND" отметить флажок "Включить режим исправления ошибок "

Можно настроить количество повторов чтения для сравнения и общее количество повторов чтения при ошибке. Следует иметь в виду, что использование данного способа существо замедляет процесс чтения.

Статистический алгоритм выявления ошибок работает следующим образом:

  1. Страница NAND считывается несколько раз подряд (не менее трех).
  2. Считанные данные побайтно сравниваются.
  3. Если ошибок сравнения не выявлено, предполагается, что страница не содержит ошибок.
  4. Если обнаружены ошибки при сравнении, страница считывается еще несколько раз.
  5. По каждой ошибке подсчитывается количество считанных единиц и нулей .
  6. Правильным значением ("0" или "1") считается, то, которых оказалось больше.

Алгоритм хорошо работает в том случае, если вероятность ошибки в конкретном бите микросхемы меньше 0.5. При чтении микросхемы ведется подсчет "исправленных" ошибок и вероятности правильного чтения.

2.6. Преобразование двоичного образа в образ NAND

Все описанное выше больше касалось копирования NAND и записи по образцу микросхемы, однако часто бывает нужно записать исходный бинарный образ программы в чистую микросхему . Перед записью нужно преобразовать двоичный образ в образ NAND, добавив к каждой странице запасную область и правильно заполнив ее. Для этого откройте ваш двоичный файл, выберите пункт меню " ". Появится диалог:

Задайте режим преобразования в формат NAND: "Образ двоичный... ", укажите размер страницы и блока NAND или выберите необходимую микросхему. Выберите формат запасной области. Программатор поддерживает простое заполнение области значениями FF встроенными средствами и другие способы при помощи плагинов. Вместе с программатором поставляется плагин, реализующий назначения запасной области, рекомендованный Самсунг.

Если вам необходимо реализовать какой-либо иной вариант распределения - сообщите нам, и мы подготовим соответствующий плагин, либо вы можете реализовать необходимый плагин самостоятельно.

2.7. Совместимость с образами NAND, считанными другими программаторами

Если у вас есть образ NAND , считанный другим программатором или полученный из другого источника, его нужно преобразовать в формат, пригодный для записи программатором ChipStar .

Для этого выполните следующие действия:

  • Откройте ваш файл, выберите пункт меню "Правка|Переключить режим NAND редактора ". Появится диалог, как показано выше.
  • Задайте режим преобразования в формат NAND : "Образ уже NAND... ", укажите размер страницы и блока NAND или выберите необходимую микросхему. Нажмите "Продолжить ".
  • В редакторе появится закладка "NAND " и начнется сканирование образа на плохие блоки.
  • Полученный файл можно сохранить в формате NAND , файл получит расширение .nbin по умолчанию.

NAND и NOR: что они такое, и с чем их едят

Думаю, многие, читая в новостях о флэш-памяти, сталкивались с какими-то странными ругательными сокращениями типа NOR и NAND. При этом расшифровки значений, как правило, не приводилось, и найти им какое-либо объяснение вам, скорее всего, вряд ли удалось. Попробуем внести хоть какую-то ясность в этот вопрос.

Итак, сокращения NOR и NAND обозначают тип логических элементов, используемых в данной единице флэш-памяти. NOR обозначает логический элемент ИЛИ-НЕ (NOT OR), а NAND - И-НЕ (NOT AND). Но, поскольку мне сейчас не хочется читать вам курс булевой алгебры и основ цифровой логики, которая вам, к тому же, и не нужна, остановимся лишь на результатах использования этих технологий.
Основная функция накопителей на флэш - хранить информацию. И отсюда вытекает первое различие: достигнутые сегодня плотности записи для технологии NAND превосходят достигнутые в NOR, причем разница измеряется в порядках. И требования хранения больших объемов и компактности однозначно определяют технологию используемой флэш-памяти. Впрочем, это не единственный критерий. Не менее важной является возможность выполнять в памяти записанный программный код, т.е. так называемая XIP Capability (XIP - eXecute In Place). Такая возможность существует у NOR-технологии и отсутствует у NAND. Так получается, что основным назначением памяти, произведенной по технологии NAND, является хранение данных, а по технологии NOR - хранение исполнимого программного кода и, в меньшей степени, данных (что обусловлено не только доступным малым объемом - чуть позже мы вернемся к этому).

Флэш-устройства делятся на части, которые называются блоками. Это необходимо делать для преодоления некоторых физических ограничений и из ценовых соображений. Запись в любом устройстве флэш определенного блока может быть произведена только если этот блок пуст или очищен. В большинстве случаев получается так, что операции записи должна предшествовать операция стирания. И если в NAND-устройствах операция стирания блока может быть произведена сразу, то в NOR-устройствах необходимо предварительно установить все байты блока в ноль. Нужно также сказать что типичное значение размера блока в NOR-устройствах составляет 64 или 128 Кб (8-32 Кб у NAND), что в сочетании с и так невысокими скоростями работы флэш приводит к тому, что операции записи со стиранием могут занимать до нескольких секунд. Это и является сдерживающим фактором применения NOR-флэша в качестве носителя данных. А применение его для хранения исполнимого кода возможно в том случае, если он устраивает в плане производительности - требования не должны быть высокими. Время стирания памяти NAND измеряется в миллисекундах и имеет первый порядок. А малый размер блока в случае неблагоприятных внешних условий гарантирует потерю минимального объема данных. Итак, подводя итог по этому абзацу: операции чтения NOR несколько быстрее NAND; операции же записи, наоборот, быстрее у NAND, причем значительно; благодаря малому размеру блока NAND в единицу времени нуждается в меньшем числе стираний (что, как мы увидим ниже, еще и способно продлить срок ее функционирования в устройстве), которые она проводит приблизительно на три порядка быстрее, чем NOR.

NOR-флэш является устройством памяти с произвольным доступом. Микросхемы NOR имеют интерфейс, позволяющий произвести адресацию и получить легкий доступ к каждому отдельному байту. Интерфейс ввода-вывода устройства памяти NAND значительно сложнее и меняется от устройства к устройству и от разработчика к разработчику. Одни и те же выводы (зачастую их 8) используются для передачи управляющих сигналов, адреса и данных. Кроме того, в NAND-флэше доступ осуществляют блоками обычно в 512 байт, т.е. за одно обращение считывается или записывается 512 байт. Доступ к каждому блоку произвольный, но, так как нет возможности обратиться к отдельному байту, память типа NAND не является в известном смысле памятью произвольного доступа. Выдача каждого байта из 512-байтного блока осуществляется на шину памяти последовательно, поэтому уместно говорить о последовательном доступе. Что и делают. Или о памяти со страничной организацией. Теперь становится понятней, почему NOR больше подходит для хранения и выполнения программ, а NAND - для хранения данных.
Схемотехнически ячейка памяти NAND организуется проще: она имеет меньший размер по сравнению с NOR, и это соответственно приводит к повышению плотности записи, уменьшению энергопотребления и стоимости производства.

Но у любой технологии не могут быть только положительные стороны. В этом смысле NAND тоже не исключение. Как и при эксплуатации любых накопителей, возможны случайные ошибки чтения и порча накопителя в целом. Для устройств памяти флэш-типа актуально говорить о безошибочном чтении, обработке плохих блоков и числе циклов чтения/записи. Явление ошибочного вычитывания битов (называется bit-flipping) больше характерно для NAND-памяти, чем для NOR. Вред от одного ошибочного бита определяется типом данных, к которым он принадлежит. Так, для мультимедийных данных это окажется несущественным, но подобная ошибка в программном коде или критически важных данных может привести к весьма трагическим результатам. Как я уже сказал, для NOR-памяти это явление менее характерно, а память на технологиях NAND нуждается в использовании какого-то дополнительного механизма обнаружения и коррекции ошибок.

Технологии производства NAND-памяти пока несовершенны, и изначально память содержит какое-то число неработающих элементов. Так как в NAND группа запоминающих ячеек объединяется в блок, то испорченная ячейка в блоке приводит к неработоспособности блока в целом, т.е. получается плохой блок. Поэтому появляется необходимость отслеживать состояние блоков и использовать только рабочие, что осуществить намного проще, чем произвести память, абсолютно не содержащую плохих страниц: такое производство оказывается очень дорогим (похожая ситуация была в свое время с LCD-панелями). По очевидным причинам этот вид дефектов не характерен для NOR.

Рабочий ресурс микросхем флэш выражается в минимально и максимально возможном числе циклов стирания каждого отдельного блока (а мы уже знаем, что каждая запись блока обязательно сопровождается его предварительным стиранием). Для памяти на технологиях NOR оно составляет 10.000 и 100.000 циклов соответственно, для NAND - 100.000 и 1.000.000 циклов. Все предельно просто, и комментировать нечего.
Использование NOR-памяти отличается сравнительной простотой. Она не нуждается в каких-либо дополнительных драйверах, а может быть просто установлена и использована. C NAND сложнее, так как разные производители используют разные интерфейсы, и для нее скорее всего понадобится драйвер. Впрочем, несмотря на то, что у NAND-памяти много преимуществ, вы не должны думать, что NOR - это вчерашний день. NOR-память сегодня находит применение в многочисленных устройствах, не нуждающихся в больших объемах и некритичных к производительности. NAND находит применение в тех областях, где бОльшая сложность по применению оправдывается большИми доступными объемами и производительностью.

По материалам компаний - производителей флэш
M-Systems, Samsung и др.

В основу зарождения NAND-памяти легла появившаяся намного раньше флеш-память, используемая в твердотельных накопителях с явно меньшей скоростью работы, долговечностью и большей площадью чипа, чем у NAND-памяти. Флеш-память изобрел Fujio Masuoka в 1984 году, работая в компании Toshiba. После представления разработки Fujio Masuoka на IEEE 1984 (International Electron Devices Meeting) в Сан-Франциско (Калифорния) компания Intel в 1988 году выпустила первый коммерческий флеш-чип типа NOR. Появление NAND-типа флеш-памяти было анонсировано Toshiba в 1989 году на Международной конференции, посвященной твердотельным дискам (International Solid-State Circuits Conference).

Flash-память, типы NAND-памяти

Принципиальным отличием флеш-памяти является хранение ею одного бита информации в массиве транзисторов с плавающим затвором, называемых ячейками. Существует два типа NAND-памяти, используемой в SSD дисках – SLC и MLC. Чем же отличаются SLC и MLC типы памяти? SLC-устройства имеют одноуровневые ячейки, которые хранят в каждом транзисторе только один бит, а многоуровневые MLC могут хранить в каждой ячейке несколько бит информации. Это следствие использования разных уровней электрического заряда на плавающем затворе транзистора. Принцип кодирования (логического 0 или 1) информации во всех случаях одинаков, он будет описан нами ниже. Различается лишь строение ячейки. Глубина уровней MLC может доходить до 4-х, то есть хранить до 4-х бит информации, в то время как SLC является более простой единицей и хранит 1 бит.

Технология MLC позволяет за счет наращивания уровней существенно увеличить объем диска, оставив его физические размеры неизменными, что уменьшает себестоимость каждого гигабайта. На этом положительные качества данной технологии заканчиваются. С каждым дополнительным уровнем усложняется задача распознавания уровня сигнала, не говоря уже об уменьшении ресурса работы SSD-диска, увеличивается время поиска адреса ячейки, повышается вероятность ошибок. Контроль за ошибками осуществляется аппаратно, что в случае технологии MLC ведет к удорожанию управляющей электроники и соответственно увеличивает конечную стоимость SSD. Диски SSD, массово продающиеся на мировом рынке, используют MLC-технологию с четырехуровневой записью. При этом данные кодируются как (11), (10), (01), (00). Для SLC одноуровневая ячейка может принимать лишь значения 0 или 1.

Решения с ячейками SLC при тех же размерах и цене явно проигрывают MLC в объеме хранимой на них информации, но при этом являются более быстрыми и долговечными. Поэтому производителям приходится использовать большее количество микросхем при меньшем суммарном объеме диска, что в конечном итогу повышает цену диска SLC более чем в два раза по сравнению с такого же объема диском MLC.

Механизмы записи и чтения элементарной ячейки NAND-память

Постараемся более подробно описать работу транзистора для NAND-памяти, которым является полевой транзистор с изолированным затвором или MOSFET.

Главной особенность полевого транзистора, которая позволила его использование для хранения информации, стала возможность удерживать электрический заряд на «плавающем» затворе до 10 лет. Сам «плавающий» затвор выполнен из поликристаллического кремния и полностью окружен слоем диэлектрика, что обеспечивает ему полное отсутствие электрического контакта с элементами транзистора. Он расположен между управляющим затвором и подложкой из p-n переходов. Управляющий электрод полевого транзистора называется затвором. В данном случае проводимость p-n перехода, обусловленная электрическим сопротивлением, управляется разностью потенциалов, которая создает электрическое поле, воздействующее на состояние p-n переходов.

Немаловажными элементами транзистора являются также сток и исток. Для изменения бита записываемой информации в ячейку, напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Это позволяет некоторым электронам перейти через слой диэлектрика на плавающий затвор, обеспечив его зарядом, а значит и наполнение элементарной ячейки битом информации.

Накопленный заряд на плавающем затворе влияет на проводимость канала сток-исток, что используется при чтении.

Такая разность механизма записи и чтения явно сказывается на различном энергопотреблении этих режимов. NAND-память потребляет достаточно большой ток при записи, а при чтении затраты энергии наоборот малы. Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят на исток. Именно из таких элементарных ячеек объединенных в страницы, блоки и массивы и состоит современный твердотельный накопитель.

Срок жизни NAND-памяти

Главной особенностью NAND-памяти, позволяющей ее использование в SSD-дисках, стало ее умение хранить данные без внешнего источника энергии. Однако такая технология накладывает ограничения на число изменений логического состояния ячейки, что приводит к конечному числу циклов перезаписи этой ячейки. Это связанно с постепенным разрушением диэлектрического слоя. Данный эффект наступает намного быстрее у ячеек MLC ввиду их малого резерва изменения заряда плавающего затвора из-за конструктивных особенностей. Чтение ячейки тоже влияет на срок ее жизни, но это воздействие намного менее значительно, чем при записи/стирании, что позволяет считать циклы чтения не ограниченными, а срок жизни SSD-диска измеряется количеством возможных циклов перезаписи.

На всех SSD-дисках присутствует недоступная для стандартных операций записи/чтения часть. Она необходима как резерв в случае износа ячеек, по аналогии с магнитными накопителями HDD, который имеет резерв для замены bad-блоков. Дополнительный резерв ячеек используется динамически, и по мере физического изнашивания основных ячеек предоставляется резервная ячейка на замену.

Приведем приблизительную сравнительную таблицу основных характеристик, отличающих работу SSD-дисков с технологией SLC и дисков с ячейками MLC.

Таблица явно говорит обо всех преимуществах и недостатках этих технологий. В ней видно превосходство SLC решений над MLC, но не указан главный критерий популярности SSD-дисков – их цена. Указывать ее и нет смысла ввиду быстрого удешевления таких решений. Скажем лишь, что MLC диски хоть и уступают во всем SLC, но они более чем в два раза выигрывают в цене и могут быть компактнее при тех же объемах хранимых данных.

Структура SSD-диска: размер ячейки, страницы, блока NAND-памяти

Для более эффективного использования элементарных ячеек памяти они были объединены в массивы с несколько уровневой структурой. Одна ячейка хранящая один (для SLC) или, как правило, два (для нынешнего поколения MLC) бита данных, объединена в группу названную страницей и вмещающую 4 КБ данных.

Специальные алгоритмы для работы с SSD-дисками

Ввиду ограниченности циклов записи/стирания ячеек флеш-памяти разработчикам пришлось составить правильный алгоритм работы SSD-диска, позволяющий равномерно «изнашивать» всё его запоминающее пространство. Как уже было нами отмечено, весь объем диска делится на блоки размером 512 КБ, а они в свою очередь на страницы емкостью 4 КБ, на которые осуществляются операции чтения и записи. Но как только вы записали информацию на страницу, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 КБ, а стереть данные можно минимум блоками по 512 КБ. Для этого контроллер группирует и переносит данные (этот алгоритм мы опишем ниже) для освобождения целого блока. Эта операция приводит к увеличению времени отклика и сокращению ресурс SSD, но чем-то приходится жертвовать.

Поговорим об алгоритме записи/удаления.

После запроса на запись от операционной системы, контроллер носителя определяет размер и структуру информации. При наличии достаточного числа пустых блоков выделяется новый блок, на который и копируются переданные ОС для записи данные. Однако по мере заполнения диска и уменьшению достаточного числа пустых блоков данная операция существенно усложняется. Контроллер все чаще ищет максимально подходящий (по количеству свободных страниц), частично занятый блок и переписывает его в пустой блок, совмещая его с данными, пришедшими от ОС для записи, что полностью заполняет его. Старый блок затем очищается. При таком алгоритме мы получаем один полностью заполненный блок и один пустой, который зачисляется в группу пустых блоков, доступных для записи. При запросе на запись, контроллер использует только блоки из этой группы.

В своем оснащении контроллер обычно имеет 10 каналов, в частности таким количеством каналов обладает контроллеры SSD-дисков от Intel. Весь пул микросхем равномерно закреплен за каждым каналом обмена данных. На данном этапе развития технологий работы SSD-дисков, микросхемы памяти, взаимодействующие с первым каналом, не могут пересекаться на операциях со вторым, третьим и последующими каналами, но данная проблема вполне может разрешиться в недалеком будущем. Вполне логично бы было использовать «плавающие» связи для всей памяти, размещенной на диске. Часто возникает необходимость записи очереди из мелких данных, тогда контроллер автоматически распределяет весь блок по всем каналам, но связь между ячейками сохраняется, т.к. этот кусок данных является одной логической единицей.

Операция удаления данных тоже напрямую зависит от объема и размещения удаляемых данных. Если вся информация, записана в одном блоке или в группе блоков, полностью занимая их, то блок/блоки попросту очищаются и помечаются как пустые и готовые для последующей записи с максимально возможной скоростью. Но данный идеальный случай встречается не всегда.

Если необходимо удалить не весь блок, а несколько страниц, находящихся в нем, то контроллер удаляет данные логически, не стирая их, а просто помечая данные страницы как удаленные. В дальнейшем оставшаяся информация будет скомпонована с новой, пришедшей для записи, и записана в пустой блок, а исходный блок, как уже было описано в алгоритме записи, будет полностью удален и помечен как пустой.

Зачем нужен Тримминг?

Это еще одна немаловажная технология, обеспечивающая более равномерный износ SSD-диска и более быструю работу с данными за счет команды TRIM. Она позволяет выстроить цепочку и определить приоритет освобождаемых блоков. Раньше данная операция была возложена на ОС, но современные SSD-контроллеры уже поддерживают данную функцию аппаратно в прошивках накопителей. Время выполнение операции по «зачистке» блоков связано по экспоненте со свободным объемом на диске. Чем меньше информации и больше свободного места, тем быстрее происходит «тримминг» на SSD. По мере заполнения диска до 75% функция очистки все еще не сильно выражена относительно простоя. Но, как только остаётся менее 15% свободного места, «триммирование» становится затруднительным. Естественно, часть зависимости полностью обуславливается типом информации (статичная, т.е. редко перемещаемая и в основном только читаемая, или динамическая). Согласно исследованию IBM идеальные условия работы SSD, когда он заполнен менее, чем на 75% и соотношения статической и динамической части информации 3 к 1.

TRIM является неотъемлемой частью современных твердотельных накопителей. Он обеспечивает прирост производительности при заполнении данными дисков более чем на 2/3, за счет правильной сортировки блоков и подготовке их к записи. Это позволяет сократить разницу в скорости работы нового и уже заполнено на 75% диска до 2-3%.

Не стоит забывать, что по умолчанию операционная система настроена на работу с обычным HDD диском, а значит пользователю обязательно необходимо, отключить «старые» механизмы увеличения скорости работы магнитного диска, а так же алгоритмы дефрагментации. Кроме того, важно побеспокоиться о неполном использовании всего пространства своего SSD-диска.

Для чего используется кэш-буфер на SSD-дисках?

Кэш-буфер на SSD-дисках не применяется для ускорения процедуры записи/чтения как это принято для HDD-накопителей. Его объем даже не указывается в технических спецификациях SSD основной массой производителей. Он и не может считаться обычной кэш-памятью, как мы это привыкли понимать. Кэш-память на SSD дисках используется динамически, для хранения таблиц размещения и занятости ячеек диска. Параллельно в ней может храниться временная информация со стираемых ячеек, при нехватке пустого места на диске. Таблицы представляют собой трехмерную матрицу, и являются основным помощником для контроллера SSD. Основываясь на этих данных, диск принимает решения о стирании дополнительных ячеек. В нем так же хранится информация о частоте и интенсивности использования каждого доступного блока на диске. Кроме того, здесь записаны адреса «мест», где невозможно осуществить запись, ввиду физического износа.

Контроллер SSD-диска

Очень важным и постоянно усовершенствуемым элементом SSD-накопителя является его контроллер. Главной задачей контроллера является обеспечение операций чтения и записи, но в виду массы физических особенностей SSD-накопителя, контроллер также отвечает за управление структурой размещения данных. Основываясь на матрице размещения блоков, в какие ячейки уже проводилась запись, а в какие еще нет, контроллер оптимизирует скорость записи и обеспечивает максимально длительный срок службы вашего SSD-диска. Вследствие особенностей построения NAND-памяти, работать с ее каждой ячейкой отдельно нельзя. Как мы уже говорили выше, они объединены в страницы объемом по 4 Кбайта, и записать информацию можно только полностью заняв страницу. Стирать данные можно по блокам, которые равны 512 Кбайт. Все эти ограничения накладывают определенные обязанности на правильный интеллектуальный алгоритм работы контроллера. Поэтому правильно настроенный и оптимизированный контролер может существенно изменить как скоростные показатели, так и долговечность работы SSD-диска.

Итоги

На данный момент пока еще рано говорить о полной победе SSD-накопителей над магнитными дисками. Если учитывать объем и скорость работы SSD-накопителя, сравнивая их с аналогичными параметрами для традиционных HDD, то главным сдерживающим фактором перехода на твердотельные диски все еще останется их цена. Анализ нескольких последних лет показал нежелание производителей снижать цену на NAND-память. Только последние полгода можно наблюдать небольшую тенденцию по снижению цены на SSD, и то это, скорее всего, обусловлено спадом потребительского спроса, что вызвано мировым кризисом. Твердотельные накопители уже несколько лет представлены в широком ассортименте на мировом рынке, но даже такой значительный для цифровых технологий срок не смог повлиять на их конкурентоспособность по критерию «цена за ГБ хранимой информации» по отношению к магнитным дискам. Плотность записи на один магнитный диск постоянно увеличивается, что способствует выпуску все более емких моделей (на данный момент широко доступны HDD емкостью 2 ТБ). Такое распределение рынка может заставить покупателя отдать предпочтение SSD накопителю только в случае острой необходимости в скорости чтения или стойкости к вибрации/удару, но основной объем информации все равно будет храниться на классических жестких дисках.

Достоинства и недостатки SSD по сравнению с магнитными дисками HDD:

Достоинства:

  • намного большая скорость чтения;
  • полное отсутствие шума;
  • надежность ввиду отсутствия движущихся частей;
  • малое энергопотребление;
  • высокая устойчивость к вибрационным нагрузкам.

Недостатки:

  • высокая стоимость за каждый ГБ сохраняемой информации;
  • ограниченное количество циклов записи и удаления данных.

Статья прочитана 10888 раз(а)

Подписаться на наши каналы