Обучение машины — забавная штука: современное распознавание лиц с глубинным обучением. На лице написано: как работает компьютерное распознавание лиц

Более трех тысяч видеокамер городской сети видеонаблюдения подключили к системе распознавания лиц. Видеоизображение автоматически анализируется в режиме реального времени: система может установить личность человека на видео, его пол и возраст.

Московскую систему видеонаблюдения научили распознавать лица. Благодаря алгоритму, основанному на использовании нейросетей, видеозаписи с городских камер проходят анализ в режиме реального времени. Лица на записях сканируются, чтобы их при необходимости можно было сравнить с информацией в различных базах данных — например, в фотобазах правоохранительных органов, когда речь идет о поиске правонарушителя. Кроме того, такая аналитическая система может помочь правоохранительным органам при поимке преступника выстроить маршрут его передвижения по городу. Система сама подберет нужные видеозаписи с разных камер наблюдения, идентифицировав подозреваемого на видео. Столичная сеть состоит из 160 тысяч видеокамер и охватывает 95 процентов подъездов жилых домов. До конца года горожане смогут самостоятельно устанавливать на своих домах камеры и подключать их к единой системе видеонаблюдения.

«Внедрение видеоаналитики является мощным драйвером повышения эффективности как частных, так и городских систем видеонаблюдения. У жителей города появился дополнительный уровень защиты, — рассказал руководитель Департамента информационных технологий Москвы Артем Ермолаев. — Разумеется, все эти возможности должны внедряться очень ответственно. Наш приоритет — баланс между конфиденциальностью и безопасностью, и мы придерживаемся строгой внутренней политики контроля, гарантирующей соблюдение прав граждан».

Сейчас к системе городского наблюдения подключены порядка 16 тысяч пользователей — это сотрудники правоохранительных органов, государственных и муниципальных организаций. Для каждого установлен свой уровень доступа, что позволяет соблюдать конфиденциальность информации. Правоохранители могут получить необходимые данные по запросу в рамках действующего законодательства, а сотрудники госучреждений получают доступ к видеокамерам только с тех территорий и маршрутов, за которые они несут ответственность. Каждое обращение к системе слежения фиксируется.

Функция распознавания лиц работает в режиме онлайн, процесс идентификации личности занимает несколько секунд. В случае если алгоритм обнаружит человека, чье лицо загружено в базу данных, он отправит оповещение в правоохранительные органы.

В Департаменте также отметили, что внедрение функции распознавания лиц уже повысило эффективность расследования правонарушений и поиска преступников. Во время пилотных испытаний с ее помощью было обнаружено и задержано более 50 процентов нарушителей закона, которых разыскивали с использованием аналитических алгоритмов. До этого некоторых из них не могли найти в течение многих лет.

Москвичи смогут подключать свои камеры наблюдения к общей городской сети. Эту опцию реализуют до конца года. Видео с таких камер будет передаваться в единый центр хранения и обработки данных (ЕЦХД), а записи с них могут быть использованы в качестве юридически значимого доказательства в суде.

В этом году к единому центру хранения и обработки данных дополнительно подключили более 3,5 тысячи камер. К единой системе подключены подъездные видеокамеры, камеры, установленные на территории и в зданиях школ и детских садов, на станциях МЦК, стадионах, остановках общественного транспорта и автовокзалах, а также в парках. Кроме того, до июня 2018 года в 25 подземных пешеходных переходах столицы появятся камеры видеонаблюдения. Записывающие устройства установят в подземных переходах, не связанных со станциями метрополитена и находящихся в ведении ГБУ «Гормост».

Взять кредит, оформить визу, да и просто запустить смартфон последней модели — сделать все это сегодня невозможно без участия алгоритмов распознавания лиц. Они помогают полицейским в расследованиях, музыкантам — на сцене, но понемногу превращаются во всевидящее око, следящее за всеми нашими действиями онлайн и офлайн.

Алгоритмы (технологии)

Определить человека по фото с точки зрения компьютера означает две очень разные задачи: во‑первых, найти лицо на снимке (если оно там есть), во‑вторых, вычленить из изображения те особенности, которые отличают этого человека от других людей из базы данных.

1. Найти

Попытки научить компьютер находить лицо на фотографиях проводились еще с начала 1970-х годов. Было испробовано множество подходов, но важнейший прорыв произошел существенно позднее — с созданием в 2001 году Полом Виолой и Майклом Джонсом метода каскадного бустинга, то есть цепочки слабых классификаторов. Хотя сейчас есть и более хитрые алгоритмы, можно поспорить, что и в вашем сотовом телефоне, и в фотоаппарате работает именно старый добрый Виола — Джонс. Все дело в замечательной быстроте и надежности: даже в далеком 2001 году средний компьютер с помощью этого метода мог обрабатывать по 15 снимков в секунду. Сегодня эффективность алгоритма удовлетворяет всем разумным требованиям. Главное, что нужно знать об этом методе, — он устроен удивительно просто. Вы даже не поверите насколько.

  1. Шаг1. Убираем цвет и превращаем изображение в матрицу яркости.
  2. Шаг 2. Накладываем на нее одну из квадратных масок — они называются признаками Хаара. Проходимся с ней по всему изображению, меняя положение и размер.
  3. Шаг 3. Складываем цифровые значения яркости из тех ячеек матрицы, которые попали под белую часть маски, и вычитаем из них те значения, что попали под черную часть. Если хотя бы в одном из случаев разность белых и черных областей оказалась выше определенного порога, берем эту область изображения в дальнейшую работу. Если нет — забываем про нее, здесь лица нет.
  4. Шаг 4. Повторяем с шага 2 уже с новой маской — но только в той области изображения, которая прошла первое испытание.

Почему это работает? Посмотрите на признак . Почти на всех фотографиях область глаз всегда немного темнее области непосредственно ниже. Посмотрите на признак : светлая область посередине соответствует переносице, расположенной между темными глазами. На первый взгляд черно-белые маски совсем не похожи на лица, но при всей своей примитивности они имеют высокую обобщающую силу.

Почему так быстро? В описанном алгоритме не отмечен один важный момент. Чтобы вычесть яркость одной части изображения из другой, понадобилось бы складывать яркость каждого пикселя, а их может быть много. Поэтому на самом деле перед наложением маски матрица переводится в интегральное представление: значения в матрице яркости заранее складываются таким образом, чтобы интегральную яркость прямоугольника можно было получить сложением всего четырех чисел.

Как собрать каскад? Хотя каждый этап наложения маски дает очень большую ошибку (реальная точность ненамного превышает 50%), сила алгоритма — в каскадной организации процесса. Это позволяет быстро выкидывать из анализа области, где лица точно нет, и тратить усилия только на те области, которые могут дать результат. Такой принцип сборки слабых классификаторов в последовательности называется бустингом (подробнее о нем можно прочитать в октябрьском номере «ПМ» или ). Общий принцип такой: даже большие ошибки, будучи перемножены друг на друга, станут невелики.

2. Упростить

Найти особенности лица, которые позволили бы идентифицировать его владельца, означает свести реальность к формуле. Речь идет об упрощении, причем весьма радикальном. Например, различных комбинаций пикселей даже на миниатюрном фото 64 x 64 пикселя может быть огромное количество — (2 8) 64 x 64 = 2 32768 штук. При этом для того, чтобы пронумеровать каждого из 7,6 млрд людей на Земле, хватило бы всего 33 бита. Переходя от одной цифры к другой, нужно выкинуть весь посторонний шум, но сохранить важнейшие индивидуальные особенности. Специалисты по статистике, хорошо знакомые с такими задачами, разработали множество инструментов упрощения данных. Например, метод главных компонент, который и заложил основу идентификации лиц. Впрочем, в последнее время сверточные нейросети оставили старые методы далеко позади. Их строение довольно своеобразно, но, по сути, это тоже метод упрощения: его задача — свести конкретное изображение к набору особенностей.


Накладываем на изображение маску фиксированного размера (правильно она называется ядром свертки), перемножаем яркость каждого пикселя изображения на значения яркости в маске. Находим среднее значение для всех пикселей в «окошке» и записываем его в одну ячейку следующего уровня.


Сдвигаем маску на фиксированный шаг, снова перемножаем и снова записываем среднее в карту признаков.


Пройдясь по всему изображению с одной маской, повторяем с другой — получаем новую карту признаков.


Уменьшаем размер наших карт: берем несколько соседних пикселей (например, квадрат 2x2 или 3x3) и переносим на следующий уровень только одно максимальное значение. То же самое проводим для карт, полученных со всеми другими масками.


В целях математической гигиены заменяем все отрицательные значения нулями. Повторяем с шага 2 столько раз, сколько мы хотим получить слоев в нейросети.


Из последней карты признаков собираем не сверточную, а полносвязную нейросеть: превращаем все ячейки последнего уровня в нейроны, которые с определенным весом влияют на нейроны следующего слоя. Последний шаг. В сетях, обученных классифицировать объекты (отличать на фото кошек от собак и пр.), здесь находится выходной слой, то есть список вероятностей обнаружения того или иного ответа. В случае с лицами вместо конкретного ответа мы получаем короткий набор самых важных особенностей лица. Например, в Google FaceNet это 128 абстрактных числовых параметров.

3. Опознать

Самый последний этап, собственно идентификация, — самый простой и даже тривиальный шаг. Он сводится к тому, чтобы оценить похожесть полученного списка признаков на те, что уже есть в базе данных. На математическом жаргоне это означает найти в пространстве признаков расстояние от данного вектора до ближайшей области известных лиц. Точно так же можно решить и другую задачу — найти похожих друг на друга людей.

Почему это работает? Сверточная нейросеть «заточена» на то, чтобы вытаскивать из изображения самые характерные черты, причем делать это автоматически и на разных уровнях абстракции. Если первые уровни обычно реагируют на простые паттерны вроде штриховки, градиента, четких границ и т. д. , то с каждым новым уровнем сложность признаков возрастает. Маски, которые нейросеть примеряет на высоких уровнях, часто действительно напоминают человеческие лица или их фрагменты. Кроме того, в отличие от метода главных компонент, нейросети комбинируют признаки нелинейным (и неожиданным) образом.

Откуда берутся маски? В отличие от тех масок, что используются в алгоритме Виолы — Джонса, нейросети обходятся без помощи человека и находят маски в процессе обучения. Для этого нужно иметь большую обучающую выборку, в которой имелись бы снимки самых разных лиц на самом разном фоне. Что касается того результирующего набора особенностей, которые выдает нейросеть, то он формируется по методу троек. Тройки — это наборы изображений, в которых первые два представляют собой фотографию одного и того же человека, а третье — снимок другого. Нейросеть учится находить такие признаки, которые максимально сближают первые изображения между собой и при этом исключают третье.

Чья нейросеть лучше? Идентификация лиц давно уже вышла из академии в большой бизнес. И здесь, как и в любом бизнесе, производители стремятся доказать, что именно их алгоритмы лучше, хотя не всегда приводят данные открытого тестирования. Например, по информации конкурса MegaFace, в настоящее время лучшую точность показывает российский алгоритм deepVo V3 компании «Вокорд» с результатом в 92%. Гугловский FaceNet v8 в этом же конкурсе показывает всего 70%, а DeepFace от Facebook с заявленной точностью в 97% в конкурсе вовсе не участвовал. Интерпретировать такие цифры нужно с осторожностью, но уже сейчас понятно, что лучшие алгоритмы почти достигли человеческой точности распознавания лиц.

Живой грим (искусство)

Зимой 2016 года на 58-й ежегодной церемонии вручения наград «Грэмми» Леди Гага исполнила трибьют умершему незадолго до того Дэвиду Боуи. Во время выступления по ее лицу растеклась живая лава, оставив на лбу и щеке узнаваемый всеми поклонниками Боуи знак — оранжевую молнию. Эффект движущегося грима создавала видеопроекция: компьютер отслеживал движения певицы в режиме реального времени и проецировал на лицо картины, учитывая его форму и положение. В Сети легко найти видеоролик, на котором заметно, что проекция еще несовершенна и при резких движениях слегка запаздывает.


Технологию видеомаппинга лиц Omote Нобумичи Асаи развивает с 2014 года и уже с 2015-го активно демонстрирует по всему миру, собрав приличный список наград. Основанная им компания WOW Inc. стала партнером Intel и получила хороший стимул для развития, а сотрудничество с Ишикавой Ватанабе из Токийского университета позволило ускорить проекцию. Впрочем, основное происходит в компьютере, и похожие решения используют многие разработчики приложений, позволяющих накладывать на лицо маски, будь то шлем солдата Империи или грим «под Дэвида Боуи».

Александр Ханин, основатель и генеральный директор VisionLabs

«Подобной системе не нужен мощный компьютер, наложение масок может производиться даже на мобильных устройствах. Система способна работать прямо на смартфоне, без отправки данных в облако или на сервер».

«Эта задача называется трекингом точек на лице. Есть много подобных решений и в открытом доступе, но профессиональные проекты отличаются скоростью и фотореалистичностью, — рассказал нам глава компании VisionLabs Александр Ханин. — Самое сложное при этом состоит в определении положения точек с учетом мимики и индивидуальной формы лица или в экстремальных условиях: при сильных поворотах головы, недостаточной освещенности и большой засветке». Чтобы научить систему находить точки, нейронную сеть обучают — сначала вручную, скрупулезно размечая фотографию за фотографией. «На входе это картинка, а на выходе — размеченный набор точек, — поясняет Александр. — Дальше уже запускается детектор, определяется лицо, строится его трехмерная модель, на которую накладывается маска. Нанесение маркеров осуществляется на каждый кадр потока в режиме реального времени».


Примерно так и работает изобретение Нобумичи Асаи. Предварительно японский инженер сканирует головы своих моделей, получая точные трехмерные прототипы и готовя видеоряд с учетом формы лица. Задачу облегчают и небольшие маркеры-отражатели, которые клеят на исполнителя перед выходом на сцену. Пять инфракрасных камер следят за их движениями, передавая данные трекинга на компьютер. Дальше все происходит так, как нам рассказали в VisionLabs: лицо детектируется, строится трехмерная модель, и в дело вступает проектор Ишикавы Ватанабе.

Устройство DynaFlash было представлено им в 2015 году: это высокоскоростной проектор, способный отслеживать и компенсировать движения плоскости, на которой отображается картинка. Экран можно наклонить, но изображение не исказится и будет транслироваться с частотой до тысячи 8-битных кадров в секунду: запаздывание не превышает незаметных глазу трех миллисекунд. Для Асаи такой проектор оказался находкой, живой грим стал работать действительно в режиме реального времени. На ролике, записанном в 2017 году для популярного в Японии дуэта Inori, отставания уже совсем не видно. Лица танцовщиц превращаются то в живые черепа, то в плачущие маски. Это смотрится свежо и привлекает внимание — но технология уже быстро входит в моду. Скоро бабочка, севшая на щеку ведущей прогноза погоды, или исполнители, каждый раз на сцене меняющие внешность, наверняка станут самым обычным делом.


Фейс-хакинг (активизм)

Механика учит, что каждое действие создает противодействие, и быстрое развитие систем наблюдения и идентификации личности не исключение. Сегодня нейросети позволяют сопоставить случайную смазанную фотографию с улицы со снимками, загруженными в аккаунты социальных сетей и за секунды выяснить личность прохожего. В то же время художники, активисты и специалисты по машинному зрению создают средства, способные вернуть людям приватность, личное пространство, которое сокращается с такой головокружительной скоростью.

Помешать идентификации можно на разных этапах работы алгоритмов. Как правило, атакам подвергаются первые шаги процесса распознавания — обнаружение фигур и лиц на изображении. Как военный камуфляж обманывает наше зрение, скрывая объект, нарушая его геометрические пропорции и силуэт, так и машинное зрение стараются запутать цветными контрастными пятнами, которые искажают важные для него параметры: овал лица, расположение глаз, рта и т. д. По счастью, компьютерное зрение пока не столь совершенно, как наше, что оставляет большую свободу в выборе расцветок и форм такого «камуфляжа».


Розовые и фиолетовые, желтые и синие тона доминируют в линейке одежды HyperFace, первые образцы которой дизайнер Адам Харви и стартап Hyphen Labs представили в январе 2017 года. Пиксельные паттерны предоставляют машинному зрению идеальную — с ее точки зрения — картинку человеческого лица, на которую компьютер ловится, как на ложную цель. Несколько месяцев спустя московский программист Григорий Бакунов и его коллеги даже разработали специальное приложение, которое генерирует варианты макияжа, мешающего работе систем идентификации. И хотя авторы, подумав, решили не выкладывать программу в открытый доступ, тот же Адам Харви предлагает несколько готовых вариантов.


Человек в маске или со странным гримом на лице, может, и будет незаметен для компьютерных систем, но другие люди наверняка обратят на него внимание. Однако появляются способы сделать и наоборот. Ведь с точки зрения нейросети изображение не содержит образов в обычном для нас понимании; для нее картинка — это набор чисел и коэффициентов. Поэтому совершенно различные предметы могут выглядеть для нее чем-то вполне сходным. Зная эти нюансы работы ИИ, можно вести более тонкую атаку и подправлять изображение лишь слегка — так, что человеку перемены будут почти незаметны, зато машинное зрение обманется полностью. В ноябре 2017 года исследователи показали, как небольшие изменения в окраске черепахи или бейсбольного мяча заставляют систему Google InceptionV3 уверенно видеть вместо них ружье или чашку эспрессо. А Махмуд Шариф и его коллеги из Университета Карнеги — Меллон спроектировали пятнистый узор для оправы очков: на восприятие лица окружающими он почти не влияет, а вот компьютерная идентификация средствами Face++ уверенно путает его с лицом человека, «под которого» спроектирован паттерн на оправе.

С завидной регулярностью на Хабре появляются статьи, рассказывающие о тех или иных методах распознавания лиц. Мы решили не просто поддержать эту замечательную тему, но выложить наш внутренний документ, который освещает пусть и не все, но многие подходы к распознаванию лиц, их сильные и слабые места. Он был составлен Андреем Гусаком, нашим инженером, для молодых сотрудников отдела машинного зрения, в образовательных, так сказать, целях. Сегодня предлагаем его все желающим. В конце статьи – впечатляющих размеров список литературы для самых любознательных.

Итак, начнем.
Несмотря на большое разнообразие представленных алгоритмов, можно выделить общую структуру процесса распознавания лиц:

Общий процесс обработки изображения лица при распознавании

На первом этапе производится детектирование и локализация лица на изображении. На этапе распознавания производится выравнивание изображения лица (геометрическое и яркостное), вычисление признаков и непосредственно распознавание – сравнение вычисленных признаков с заложенными в базу данных эталонами. Основным отличием всех представленных алгоритмов будет вычисление признаков и сравнение их совокупностей между собой.

1. Метод гибкого сравнения на графах (Elastic graph matching) .

Суть метода сводится к эластичному сопоставлению графов, описывающих изображения лиц. Лица представлены в виде графов со взвешенными вершинами и ребрами. На этапе распознавания один из графов – эталонный – остается неизменным, в то время как другой деформируется с целью наилучшей подгонки к первому. В подобных системах распознавания графы могут представлять собой как прямоугольную решетку, так и структуру, образованную характерными (антропометрическими) точками лица.

А)

Б)

Пример структуры графа для распознавания лиц: а) регулярная решетка б) граф на основе антропометрических точек лица.

В вершинах графа вычисляются значения признаков, чаще всего используют комплексные значения фильтров Габора или их упорядоченных наборов – Габоровских вейвлет (строи Габора), которые вычисляются в некоторой локальной области вершины графа локально путем свертки значений яркости пикселей с фильтрами Габора.


Набор (банк, jet) фильтров Габора


Пример свертки изображения лица с двумя фильтрами Габора

Ребра графа взвешиваются расстояниями между смежными вершинами. Различие (расстояние, дискриминационная характеристика) между двумя графами вычисляется при помощи некоторой ценовой функции деформации, учитывающей как различие между значениями признаков, вычисленными в вершинах, так и степень деформации ребер графа.
Деформация графа происходит путем смещения каждой из его вершин на некоторое расстояние в определённых направлениях относительно ее исходного местоположения и выбора такой ее позиции, при которой разница между значениями признаков (откликов фильтров Габора) в вершине деформируемого графа и соответствующей ей вершине эталонного графа будет минимальной. Данная операция выполняется поочередно для всех вершин графа до тех пор, пока не будет достигнуто наименьшее суммарное различие между признаками деформируемого и эталонного графов. Значение ценовой функции деформации при таком положении деформируемого графа и будет являться мерой различия между входным изображением лица и эталонным графом. Данная «релаксационная» процедура деформации должна выполняться для всех эталонных лиц, заложенных в базу данных системы. Результат распознавания системы – эталон с наилучшим значением ценовой функции деформации.


Пример деформации графа в виде регулярной решетки

В отдельных публикациях указывается 95-97%-ая эффективность распознавания даже при наличии различных эмоциональных выражениях и изменении ракурса лица до 15 градусов. Однако разработчики систем эластичного сравнения на графах ссылаются на высокую вычислительную стоимость данного подхода. Например, для сравнения входного изображения лица с 87 эталонными тратилось приблизительно 25 секунд при работе на параллельной ЭВМ с 23 транспьютерами (Примечание: публикация датирована 1993 годом). В других публикациях по данной тематике время либо не указывается, либо говорится, что оно велико.

Недостатки: высокая вычислительная сложность процедуры распознавания. Низкая технологичность при запоминании новых эталонов. Линейная зависимость времени работы от размера базы данных лиц.

2. Нейронные сети

В настоящее время существует около десятка разновидности нейронных сетей (НС). Одним из самых широко используемых вариантов являться сеть, построенная на многослойном перцептроне, которая позволяет классифицировать поданное на вход изображение/сигнал в соответствии с предварительной настройкой/обучением сети.
Обучаются нейронные сети на наборе обучающих примеров. Суть обучения сводится к настройке весов межнейронных связей в процессе решения оптимизационной задачи методом градиентного спуска. В процессе обучения НС происходит автоматическое извлечение ключевых признаков, определение их важности и построение взаимосвязей между ними. Предполагается, что обученная НС сможет применить опыт, полученный в процессе обучения, на неизвестные образы за счет обобщающих способностей.
Наилучшие результаты в области распознавания лиц (по результатам анализа публикаций) показала Convolutional Neural Network или сверточная нейронная сеть (далее – СНС) , которая является логическим развитием идей таких архитектур НС как когнитрона и неокогнитрона. Успех обусловлен возможностью учета двумерной топологии изображения, в отличие от многослойного перцептрона.
Отличительными особенностями СНС являются локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными сэмплингом (spatial subsampling). Благодаря этим нововведениям СНС обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, смене ракурса и прочим искажениям.


Схематичное изображение архитектуры сверточной нейронной сети

Тестирование СНС на базе данных ORL, содержащей изображения лиц с небольшими изменениями освещения, масштаба, пространственных поворотов, положения и различными эмоциями, показало 96% точность распознавания.
Свое развитие СНС получили в разработке DeepFace , которую приобрел
Facebook для распознавания лиц пользователей своей соцсети. Все особенности архитектуры носят закрытый характер.


Принцип работы DeepFace

Недостатки нейронных сетей: добавление нового эталонного лица в базу данных требует полного переобучения сети на всем имеющемся наборе (достаточно длительная процедура, в зависимости от размера выборки от 1 часа до нескольких дней). Проблемы математического характера, связанные с обучением: попадание в локальный оптимум, выбор оптимального шага оптимизации, переобучение и т. д. Трудно формализуемый этап выбора архитектуры сети (количество нейронов, слоев, характер связей). Обобщая все вышесказанное, можно заключить, что НС – «черный ящик» с трудно интерпретируемыми результатами работы.

3. Скрытые Марковские модели (СММ, HMM)

Одним из статистических методов распознавания лиц являются скрытые Марковские модели (СММ) с дискретным временем . СММ используют статистические свойства сигналов и учитывают непосредственно их пространственные характеристики. Элементами модели являются: множество скрытых состояний, множество наблюдаемых состояний, матрица переходных вероятностей, начальная вероятность состояний. Каждому соответствует своя Марковская модель. При распознавании объекта проверяются сгенерированные для заданной базы объектов Марковские модели и ищется максимальная из наблюдаемых вероятность того, что последовательность наблюдений для данного объекта сгенерирована соответствующей моделью.
На сегодняшний день не удалось найти примера коммерческого применения СММ для распознавания лиц.

Недостатки:
- необходимо подбирать параметры модели для каждой базы данных;
- СММ не обладает различающей способностью, то есть алгоритм обучения только максимизирует отклик каждого изображения на свою модель, но не минимизирует отклик на другие модели.

4. Метод главных компонент или principal component analysis (PCA)

Одним из наиболее известных и проработанных является метод главных компонент (principal component analysis, PCA), основанный на преобразовании Карунена-Лоева.
Первоначально метод главных компонент начал применяться в статистике для снижения пространства признаков без существенной потери информации. В задаче распознавания лиц его применяют главным образом для представления изображения лица вектором малой размерности (главных компонент), который сравнивается затем с эталонными векторами, заложенными в базу данных.
Главной целью метода главных компонент является значительное уменьшение размерности пространства признаков таким образом, чтобы оно как можно лучше описывало «типичные» образы, принадлежащие множеству лиц. Используя этот метод можно выявить различные изменчивости в обучающей выборке изображений лиц и описать эту изменчивость в базисе нескольких ортогональных векторов, которые называются собственными (eigenface).

Полученный один раз на обучающей выборке изображений лиц набор собственных векторов используется для кодирования всех остальных изображений лиц, которые представляются взвешенной комбинацией этих собственных векторов. Используя ограниченное количество собственных векторов можно получить сжатую аппроксимацию входному изображению лица, которую затем можно хранить в базе данных в виде вектора коэффициентов, служащего одновременно ключом поиска в базе данных лиц.

Суть метода главных компонент сводится к следующему. Вначале весь обучающий набор лиц преобразуется в одну общую матрицу данных, где каждая строка представляет собой один экземпляр изображения лица, разложенного в строку. Все лица обучающего набора должны быть приведены к одному размеру и с нормированными гистограммами.


Преобразования обучающего набора лиц в одну общую матрицу X

Затем производится нормировка данных и приведение строк к 0-му среднему и 1-й дисперсии, вычисляется матрица ковариации. Для полученной матрицы ковариации решается задача определения собственных значений и соответствующих им собственных векторов (собственные лица). Далее производится сортировка собственных векторов в порядке убывания собственных значений и оставляют только первые k векторов по правилу:




Алгоритм РСА


Пример первых десяти собственных векторов (собственных лиц), полученных на обучаемом наборе лиц

= 0.956*-1.842*+0.046

Пример построения (синтеза) человеческого лица с помощью комбинации собственных лиц и главных компонент


Принцип выбора базиса из первых лучших собственных векторов


Пример отображения лица в трехмерное метрическое пространство, полученном по трем собственным лицам и дальнейшее распознавание

Метод главных компонент хорошо зарекомендовал себя в практических приложениях. Однако, в тех случаях, когда на изображении лица присутствуют значительные изменения в освещенности или выражении лица, эффективность метода значительно падает. Все дело в том, что PCA выбирает подпространство с такой целью, чтобы максимально аппроксимировать входной набор данных, а не выполнить дискриминацию между классами лиц.

В было предложено решение этой проблемы с использование линейного дискриминанта Фишера (в литературе встречается название “Eigen-Fisher”, “Fisherface”, LDA). LDA выбирает линейное подпространство, которое максимизирует отношение:

Где

Матрица межклассового разброса, и

Матрица внутриклассового разброса; m – число классов в базе данных.

LDA ищет проекцию данных, при которой классы являются максимально линейно сепарабельны (см. рисунок ниже). Для сравнения PCA ищет такую проекцию данных, при которой будет максимизирован разброс по всей базе данных лиц (без учета классов). По результатам экспериментов в условиях сильного бакового и нижнего затенения изображений лиц Fisherface показал 95% эффективность по сравнению с 53% Eigenface.


Принципиальное отличие формирования проекций PCA и LDA

Отличие PCA от LDA

5. Active Appearance Models (AAM) и Active Shape Models (ASM) ()
Active Appearance Models (AAM)
Активные модели внешнего вида (Active Appearance Models, AAM) - это статистические модели изображений, которые путем разного рода деформаций могут быть подогнаны под реальное изображение. Данный тип моделей в двумерном варианте был предложен Тимом Кутсом и Крисом Тейлором в 1998 году . Первоначально активные модели внешнего вида применялись для оценки параметров изображений лиц.
Активная модель внешнего вида содержит два типа параметров: параметры, связанные с формой (параметры формы), и параметры, связанные со статистической моделью пикселей изображения или текстурой (параметры внешнего вида). Перед использованием модель должна быть обучена на множестве заранее размеченных изображений. Разметка изображений производится вручную. Каждая метка имеет свой номер и определяет характерную точку, которую должна будет находить модель во время адаптации к новому изображению.


Пример разметки изображения лица из 68 точек, образующих форму AAM.

Процедура обучения AAM начинается с нормализации форм на размеченных изображениях с целью компенсации различий в масштабе, наклоне и смещении. Для этого используется так называемый обобщенный Прокрустов анализ.


Координаты точек формы лица до и после нормализации

Из всего множества нормированных точек затем выделяются главные компоненты с использованием метода PCA.


Модель формы AAM состоит из триангуляционной решетки s0 и линейной комбинации смещений si относительно s0

Далее из пикселей внутри треугольников, образуемых точками формы, формируется матрица, такая что, каждый ее столбец содержит значения пикселей соответствующей текстуры. Стоит отметить, что используемые для обучения текстуры могут быть как одноканальными (градации серого), так и многоканальными (например, пространство цветов RGB или другое). В случае многоканальных текстур векторы пикселов формируются отдельно по каждому из каналов, а потом выполняется их конкатенация. После нахождения главных компонент матрицы текстур модель AAM считается обученной.

Модель внешнего вида AAM состоит из базового вида A0, определенного пикселями внутри базовой решетки s0 и линейной комбинации смещений Ai относительно A0

Пример конкретизации AAM. Вектор параметров формы
p=(p_1,p_2,〖…,p〗_m)^T=(-54,10,-9.1,…)^T используется для синтеза модели формы s, а вектор параметров λ=(λ_1,λ_2,〖…,λ〗_m)^T=(3559,351,-256,…)^Tдля синтеза внешнего вида модели. Итоговая модель лица 〖M(W(x;p))〗^ получается как комбинация двух моделей – формы и внешнего вида.

Подгонка модели под конкретное изображение лица выполняется в процессе решения оптимизационной задачи, суть которой сводится к минимизации функционала

Методом градиентного спуска. Найденные при этом параметры модели и будут отражать положение модели на конкретном изображении.




Пример подгонки модели на конкретное изображение за 20 итераций процедуры градиентного спуска.

С помощью AAM можно моделировать изображения объектов, подверженных как жесткой, так и нежесткой деформации. ААМ состоит из набора параметров, часть которых представляют форму лица, остальные задают его текстуру. Под деформации обычно понимают геометрическое преобразование в виде композиции переноса, поворота и масштабирования. При решении задачи локализации лица на изображении выполняется поиск параметров (расположение, форма, текстура) ААМ, которые представляют синтезируемое изображение, наиболее близкое к наблюдаемому. По степени близости AAM подгоняемому изображению принимается решение – есть лицо или нет.

Active Shape Models (ASM)

Суть метода ASM заключается в учете статистических связей между расположением антропометрических точек. На имеющейся выборке изображений лиц, снятых в анфас. На изображении эксперт размечает расположение антропометрических точек. На каждом изображении точки пронумерованы в одинаковом порядке.




Пример представления формы лица с использованием 68 точек

Для того чтобы привести координаты на всех изображениях к единой системе обычно выполняется т.н. обобщенный прокрустов анализ, в результате которого все точки приводятся к одному масштабу и центрируются. Далее для всего набора образов вычисляется средняя форма и матрица ковариации. На основе матрицы ковариации вычисляются собственные вектора, которые затем сортируются в порядке убывания соответствующих им собственных значений. Модель ASM определяется матрицей Φ и вектором средней формы s ̅.
Тогда любая форма может быть описана с помощью модели и параметров:

Локализации ASM модели на новом, не входящем в обучающую выборку изображении осуществляется в процессе решения оптимизационной задачи.


а) б) в) г)
Иллюстрация процесса локализации модели ASM на конкретном изображении: а) начальное положение б) после 5 итераций в) после 10 итераций г) модель сошлась

Однако все же главной целью AAM и ASM является не распознавание лиц, а точная локализация лица и антропометрических точек на изображении для дальнейшей обработки.

Практически во всех алгоритмах обязательным этапом, предваряющим классификацию, является выравнивание, под которым понимается выравнивание изображения лица во фронтальное положение относительно камеры или приведение совокупности лиц (например, в обучающей выборке для обучения классификатора) к единой системе координат. Для реализации этого этапа необходима локализация на изображении характерных для всех лиц антропометрических точек – чаще всего это центры зрачков или уголки глаз. Разные исследователи выделяют разные группы таких точек. В целях сокращения вычислительных затрат для систем реального времени разработчики выделяют не более 10 таких точек .

Модели AAM и ASM как раз и предназначены для того чтобы точно локализовать эти антропометрические точки на изображении лица.

6. Основные проблемы, связанные с разработкой систем распознавания лиц

Проблема освещенности

Проблема положения головы (лицо – это, все же, 3D объект).

С целью оценки эффективности предложенных алгоритмов распознавания лиц агентство DARPA и исследовательская лаборатория армии США разработали программу FERET (face recognition technology).

В масштабных тестах программы FERET принимали участие алгоритмы, основанные на гибком сравнении на графах и всевозможные модификации метода главных компонент (PCA). Эффективность всех алгоритмов была примерно одинаковой. В этой связи трудно или даже невозможно провести четкие различия между ними (особенно если согласовать даты тестирования). Для фронтальных изображений, сделанных в один и тот же день, приемлемая точность распознавания, как правило, составляет 95%. Для изображений, сделанных разными аппаратами и при разном освещении, точность, как правило, падает до 80%. Для изображений, сделанных с разницей в год, точность распознавания составило примерно 50%. При этом стоит заметить, что даже 50 процентов - это более чем приемлемая точность работы системы подобного рода.

Ежегодно FERET публикует отчет о сравнительном испытании современных систем распознавания лиц на базе лиц более одного миллиона. К большому сожалению в последних отчетах не раскрываются принципы построения систем распознавания, а публикуются только результаты работы коммерческих систем. На сегодняшний день лидирующей является система NeoFace разработанная компанией NEC.

Список литературы (гуглится по первой ссылке)
1. Image-based Face Recognition - Issues and Methods
2. Face Detection A Survey.pdf
3. Face Recognition A Literature Survey
4. A survey of face recognition techniques
5. A survey of face detection, extraction and recognition
6. Обзор методов идентификации людей на основе изображений лиц
7. Методы распознавания человека по изображению лица
8. Сравнительный анализ алгоритмов распознавания лиц
9. Face Recognition Techniques
10. Об одном подходе к локализации антропометрических точек.
11. Распознавание лиц на групповых фотографиях с использованием алгоритмов сегментации
12. Отчет о НИР 2-й этап по распознаванию лиц
13. Face Recognition by Elastic Bunch Graph Matching
14. Алгоритмы идентификации человека по фотопортрету на основе геометриче-ских преобразований. Диссертация.
15. Distortion Invariant Object Recognition in the Dynamic Link Architecture
16. Facial Recognition Using Active Shape Models, Local Patches and Support Vector Machines
17. Face Recognition Using Active Appearance Models
18. Active Appearance Models for Face Recognition
19. Face Alignment Using Active Shape Model And Support Vector Machine
20. Active Shape Models - Their Training and Application
21. Fisher Vector Faces in the Wild
22. Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection
23. Eigenfaces and fisherfaces
24. Dimensionality Reduction
25. ICCV 2011 Tutorial on Parts Based Deformable Registration
26. Constrained Local Model for Face Alignment, a Tutorial
27. Who are you – Learning person specific classifiers from video
28. Распознавание человека по изображению лица нейросетевыми методами
29. Face Recognition A Convolutional Neural Network Approach
30. Face Recognition using Convolutional Neural Network and Simple Logistic Classifier
31. Face Image Analysis With Convolutional Neural Networks
32. Методы распознавания лиц на основе скрытых марковских процессов. Авторе-ферат
33. Применение скрытых марковских моделей для распознавания лиц
34. Face Detection and Recognition Using Hidden Markovs Models
35. Face Recognition with GNU Octave-MATLAB
36. Face Recognition with Python
37. Anthropometric 3D Face Recognition
38. 3D Face Recognition
39. Face Recognition Based on Fitting a 3D Morphable Model
40. Face Recognition
41. Robust Face Recognition via Sparse Representation
42. The FERET Evaluation Methodology For Face-Recognition Algorithms
43. Поиск лиц в электронных коллекциях исторических фотографий
44. Design, Implementation and Evaluation of Hardware Vision Systems dedicated to Real-Time Face Recognition
45. An Introduction to the Good, the Bad, & the Ugly Face Recognition Challenge Prob-lem
46. Исследование и разработка методов обнаружения человеческого лица на циф-ровых изображениях. Диплом
47. DeepFace Closing the Gap to Human-Level Performance in Face Verification
48. Taking the bite out of automated naming of characters in TV video
49. Towards a Practical Face Recognition System Robust Alignment and Illumination by Sparse Representation
50. Алгоритмы обнаружения лица человека для решения прикладных задач анализа и обработки изображений
51. Обнаружение и локализация лица на изображении
52. Модифицированный мотод Виолы-Джонса
53. Разработка и анализ алгоритмов детектирования и классификации объектов на основе методов машинного обучения
54. Overview of the Face Recognition Grand Challenge
55. Face Recognition Vendor Test (FRVT)
56. Об эффективности применения алгоритма SURF в задаче идентификации лиц

Современных интегрированных систем безопасности способны решать задачи любой сложности на всевозможных объектах промышленного, социального и бытового назначения. Очень важными инструментами охранных комплексов являются системы видеонаблюдения, и требования, предъявляемые к функциональным возможностям сегмента, неуклонно растут.

Комплексные системы безопасности

Единая платформа включает в себя модули охранно-пожарного оборудования, контроля и управления доступом, видеонаблюдения или охранного телевидения (СОТ). Функции последнего до недавнего времени ограничивались видеомониторингом и регистрацией ситуации на объекте и прилегающей территории, архивацией и хранением данных. Классические видеосистемы обладают целым рядом существенных недостатков:

  • Человеческий фактор. Неэффективная работа оператора при трансляции большого объема информации.
  • Невозможность оперативного вмешательства, несвоевременный анализ.
  • Значительные временные затраты для поиска и идентификации события.

Развитие цифровых технологий привели к созданию "умных" автоматизированных систем.

Сила в интеллекте

Базовым принципом интеллектуальной является видеоаналитика - технология, базирующаяся на методах и алгоритмах распознавания образов и автоматизированного сбора данных в результате анализа видеопотока. Такое оборудование без участия человека способно обнаружить и отследить в реальном времени заданные цели (автомобиль, группа людей), потенциально опасные ситуации (задымление, возгорание, несанкционированное вмешательство в работу видеокамер), запрограммированные события и своевременно выдать тревожный сигнал. За счет фильтрации не представляющих интереса видеоданных значительно снижается нагрузка на коммуникационные каналы и архивную базу.

Наиболее востребованное средство видеоаналитики - система распознавания лиц. В зависимости от выполняемых функций и поставленных задач к оборудованию предъявляются определенные требования.

Программно-аппаратные средства

Для эффективной работы системы используют несколько типов IP-видеокамер с различными эксплуатационными характеристиками. Обнаружение объекта на подконтрольной территории фиксируют камеры панорамного обзора с разрешением от 1 Мп и фокусным расстоянием от 1 мм и наводят на него сканирующие устройства. Это более совершенные камеры (от 2Мп, от 2 мм), производящие распознавание по простым методикам (3-4 параметра). Для идентификации объекта используют камеры с хорошим качеством изображения, достаточным для применения сложных алгоритмов (от 5 Мп, 8-12 мм).

Наиболее популярные программные продукты для распознавания лиц "Face Интеллект" (разработчик - компания House Control), Face director (компания "Синезис) и VOCORD FaceControl (VOCORD) демонстрируют:

  • Высокую вероятность идентификации объекта (до 99 %).
  • Поддержку широкого диапазона углов поворота видеокамер.
  • Возможность выделения лиц даже в плотной пешеходной массе.
  • Вариативность составления аналитических отчетов.

Основы распознавания образов

Любые биометрические системы распознавания базируются на выявлении соответствия считываемых физиологических характеристик личности определенному заданному шаблону.

Сканирование происходит в режиме реального времени. IP-камера транслирует видеопоток на терминал, и система распознавания лиц определяет соответствие изображения хранящимся в базе данных фотографиям. Существует два основных метода. Первый основан на статических принципах: по результатам обработки биометрических параметров создается электронный образец в форме уникального числа, соответствующего конкретной личности. Второй метод моделирует "человеческий" подход и характеризуется самообучаемостью и робастностью. Идентификация личности по видеоизображению происходит с учетом возрастных изменений и других факторов (наличие головного убора, бороды или усов, очков). Такая технология позволяет работать даже со старыми фотографиями и, в случае необходимости, с рентгеновскими снимками.

Алгоритм поиска лиц

Самая распространенная методика детектирования лиц - с использованием каскадов Хаара (наборов масок).

Маска представляет собой прямоугольное окно с различной комбинацией белых и черных сегментов.

Механизм работы программы следующий: видеокадр покрывается набором масок, и по результатам свертки (подсчет пикселей, попавших в белые и черные секторы) подсчитывается разность, сравниваемая с некой пороговой величиной.

Для улучшения работы классификатора создаются положительные (кадры, где присутствуют лица людей) и отрицательные (без таковых) обучающие выборки. В первом случае результат свертки выше порогового значения, во втором - ниже. Детектор лиц с допустимой погрешностью определяет сумму сверток всех каскадов и при превышении порога сигнализирует о присутствии лиц в кадре.

Технологии распознавания

После детектирования и локализации на предварительном этапе происходит яркостное и геометрическое выравнивание изображения. Дальнейшие действия - вычисление признаков и идентификация - могут осуществляться различными методами.

При сканировании лица анфас в помещении с отличной освещенностью хорошие результаты демонстрируют алгоритмы, работающие с двухмерными изображениями. Анализируя уникальные точки и расстояния между ними, система распознавания лиц определяет факт идентификации по коэффициентам различия между "живым" снимком и зарегистрированным шаблоном.

Трехмерные технологии устойчивы к изменению светового потока, допустимое отклонение от фронтального ракурса - до 45 градусов. Здесь анализу подвергаются не только точки и линии, но и свойства поверхностей (кривизна, профиль), метрика расстояний между ними. Для работы таких алгоритмов необходимо максимальное качество видеозаписи с частотой до 200 кадров/с. Основу системы составляют стереовидеокамеры с матрицей от 5 мегапикселей, высоким оптическим разрешением и сведенной до минимума погрешностью синхронизации. Дополнительно они соединяются специальным тактирующим кабелем для передачи синхроимпульсов.

Состояние современного рынка систем

Первые ввиду их высокой стоимости, разрабатывались только для государственных военных объектов и лишь в середине 90-х годов стали доступны коммерческим организациям. Стремительное развитие технологий и позволило увеличить точность систем и расширить сферу их применения. На рынке нашей страны ведущие позиции принадлежат американским и западноевропейским производителям охранных систем. Лидером продаж является оборудование корпораций ZN Vision Technologies и Visionics. Наиболее перспективными среди отечественных разработчиков выглядят исследования и продукты компаний "Вокорд", NTechLab, "Солинг", ООО "ВижнЛабс" и группы "ЦРТ", которые, кроме прочего, занимаются еще и адаптацией зарубежных комплексов к российским условиям.

Компьютерный фейсконтроль

Самая обширная область применения бесконтактной идентификации - борьба с терроризмом и криминалом. Изображение лица преступника хранится в базе данных. В местах массового скопления народа (аэропорты, вокзалы, ТРЦ, спортивные учреждения) ведется съемка людского потока в режиме реального времени на предмет выявления лиц, находящихся в розыске.

Следующая сфера - системы контроля управления доступом: образец фотоизображения на электронном пропуске сравнивается с моделью, полученной в результате обработки данных с видеокамер. Процедура происходит мгновенно, не требуя от проходящих каких-либо дополнительных действий (в отличие от сканирования сетчатки глаза или дактилоскопии).

Еще одна стремительно развивающаяся отрасль - маркетинг. Интерактивный рекламный щит, просканировав лицо человека, определяет его пол и возраст, визуализирует только ту рекламу, которая будет потенциально интересна клиенту.

Тенденции и перспективы развития

Очень востребованы системы распознавания лиц в банковском секторе.

По итогам прошлого года, руководству "Почта Банка", после установки в своих офисах 50000 интеллектуальных видеокамер, удалось сэкономить миллионы рублей за счет профилактики мошенничества в сегментах кредитования и платежей. Специалисты утверждают, что к 2021 году будет создана необходимая инфраструктурная сеть и любые операции в банкоматах станут возможными только после биометрической идентификации лица клиента.

В ближайшее десятилетие высокие технологии позволят открыть сеть магазинов полного самообслуживания: покупатель проходит перед витринами, выбирает понравившийся товар и уходит. Система распознавания лиц и образов определит личность покупателя, покупки и спишет с его счета необходимую сумму.

Ведутся работы по созданию систем распознаванию психоэмоционального состояния. Анализ человеческих эмоций будет востребован в мультимедийных сферах: анимации, кинематографе, индустрии создания компьютерных игр.

Открыл новую эпоху. Технология распознавания лиц - основная его «фишка». И никто не сомневается в том, что такой способ разблокировки будет внедряться и во многие другие смартфоны.

Ещё в 1960-ых годах проводились специальные опыты, в ходе которых компьютер должен был научиться распознавать лицо человека. Тогда это ни к чему не привело, так как любая эмоция приводила к сбою. Также изобретенная система боялась изменения условий освещения.

Лишь в самом конце XX века появились системы, которые научились определять лица людей по фотографиям, запоминая их. При этом они перестали сбоить при появлении усов, бороды, очков и прочих «помех». Активнее всего подобные системы начали внедряться в цифровые фотоаппараты. Также они нашли себе место в охранном секторе.

У систем распознавания лиц долгое время был один существенный недостаток. Они сильно зависели от освещения и ракурса. Впрочем, в охранных сканерах эта проблема не была заметна. К ним лицо прикладывалось почти вплотную, освещаясь затем лампами. Избавиться же от вышеупомянутого недостатка помогло внедрение стереосъемки. Две камеры понимают глубину сцены, в связи с чем точность показаний вырастает в несколько раз.

Как работает технология распознавания лиц?

Постепенно новая функция начала появляться в смартфонах. Здесь биометрическая идентификация пользователя внедряется для того, чтобы разблокировать устройство не мог посторонний человек. В идеале получить доступ к персональной информации может только близнец. Переживать по этому поводу не стоит. Вряд ли кто-то будет всерьез скрывать что-то от родного брата или сестры. Да и никто не мешает установить для чтения каких-то особо секретных данных дополнительный пароль.

Работу системы распознавания лиц в смартфонах можно условно разделить на четыре этапа:

  1. Сканирование лица. Оно осуществляется при помощи фронтальной камеры или, как в случае с iPhone X, специального сенсора. Сканирование является трехмерным, поэтому фокус с показом фотографии срабатывать не будет.
  2. Извлечение уникальных данных. Система ориентируется на набор особенностей сканируемого лица. Чаще всего это контуры глазниц, форма скул и ширина носа. В продвинутых системах также могут «замечаться» шрамы.
  3. Извлечение из памяти шаблона с ранее полученными данными.
  4. Поиск соответствий. Финальный этап, на котором система решает, разблокировать ли дисплей. Мощности современных процессоров позволяют тратить на «размышление» всего доли секунды.

Функция распознавания лиц может быть реализована даже при помощи фронтальной камеры - лишь бы она имела два объектива. Однако в таком случае работа данной функции окажется нестабильной. Дело в том, что лишь специальные датчики обеспечат сканирование лица даже в темноте, тогда как «фронталке» требуется яркое освещение. Также особые датчики виртуально выводят на лицо большее количество точек, поэтому они срабатывают даже при появлении бороды, очков и других помех. Словом, в каком-нибудь DOOGEE Mix 2 система точно будет работать заметно хуже, чем в iPhone X. Другое дело - юбилейный продукт Apple стоит гораздо дороже, чем все остальные смартфоны с функцией распознавания лица.

За технологией будущее?

Нужные для сканирования лица датчики требуют идеальной установки. Сдвиг на сотые доли миллиметра приведет к тому, что работа функции перестанет быть идеальной - поэтому при производстве смартфона может наблюдаться повышенный выход брака, а это приводит к росту его стоимости. Да и сами датчики стоят весьма дорого, неспроста их использует только компания Apple, хотя никаких патентов на них у неё нет.

Одним словом, пока функцию распознавания лиц производители «андроидов» будут реализовывать посредством фронтальной камеры. Уже сейчас её можно встретить в Samsung Galaxy S8 и Note 8. Но владельцы этих устройств подтвердят вам, что работает она не лучшим образом - легче использовать сканер отпечатков пальцев . Поэтому пока о будущем функции ничего сказать нельзя. Нужно ждать, будет ли Apple внедрять соответствующие датчики в более доступные смартфоны, а также появятся ли они в устройствах на базе Android.

Заключение

Переживать по поводу сохранения ваших идентификационных данных не стоит. Созданный при сканировании лица шаблон находится в отдельном разделе памяти - чтение этого сектора компьютером или сторонними программами невозможно. Впрочем, это касается и отпечатков пальцев. А каким видом идентификации пользоваться удобнее - это выбирать только вам.

Держали ли вы когда-нибудь в руках смартфон, умеющий распознавать лицо? И ждете ли вы массового внедрения данной функции? Поделитесь своим мнением в комментариях, мы будем этому рады!