Основные характеристики радиосигналов. Классификация видов модуляции, основные характеристики радиосигналов. Особенности распространения радиоволн различных диапазонов

По принципу обмена информацией различают три вида радиосвязи:

    симплексная радиосвязь;

    дуплексная радиосвязь;

    полудуплексная радиосвязь.

По типу аппаратуры, используемой в радиоканале связи, различают следующие виды радиосвязи:

    телефонная;

    телеграфная;

    передачи данных;

    факсимильная;

    телевизионная;

    радиовещания.

По типу используемых радиоканалов связи различают следующие виды радиосвязи:

    поверхностной волной;

    тропосферная;

    ионосферная;

    метеорная;

    космическая;

    радиорелейная.

Виды документированной радиосвязи:

    телеграфная связь;

    передача данных;

    факсимильная связь.

Телеграфная связь – для передачи сообщений в виде буквенно-цифрового текста.

Передача данных для обмена формализованной информацией между человеком и ЭВМ или между ЭВМ.

Факсимильная связь для передачи электрическими сигналами неподвижных изображений.

1 – Телекс – для обмена письменной корреспонденцией между организациями и учреждениями с использованием пишущих машинок с электронной памятью;

2 – Теле (видео) текст – для получения информации из ЭВМ на мониторы;

3 – Теле (бюро) факс – для получения используются факсимильные аппараты (либо у пользователей, либо на предприятиях).

В радиосетях широко используются следующие виды сигналов радиосвязи:

А1 - AT с манипуляцией незатухающими колебаниями;

А2 - манипуляция тонально-модулируемыми колебаниями

АЗН - А1 (В1) - ОМ с 50 % несущей

АЗА - А1 (В1) - ОМ с 10 % несущей

АЗУ1 - А1 (Bl) - ОМ без несущей

3. Особенности распространения радиоволн различных диапазонов.

Распространение радиоволн мириаметрового, километрового и гектометрового диапазонов.

Для оценки характера распространения радиоволн того или иного диапазона необходимо знать электрические свойства материальных сред, в которых распространяется радиоволна, т.е. знать и ε А земли и атмосферы.

Закон полного тока в дифференциальной форме гласит, что

т.е. изменение во времени потока магнитной индукции обуславливает появление тока проводимости и тока смещения.

Запишем это уравнение с учетом свойств материальной среды:

λ < 4 м - диэлектрик

4 м < λ < 400 м – полупроводник

λ > 400 м – проводник

Морская вода:

λ < 3 м - диэлектрик

3 cм < λ < 3 м – полупроводник

λ > 3 м – проводник

Для волны мириаметрового (CВД):

λ = 10 ÷ 100 км f = 3 ÷ 30 кГц

и километрового (ДВ):

λ = 10 ÷ 1 км f = 30 ÷ 300 кГц

диапазонов поверхность земли по своим электрическим параметрам приближается к идеальному проводнику, а ионосфера имеет наибольшую проводимость и наименьшую диэлектрическую проницаемость, т.е. близка к проводнику.

RV диапазонов CДВ и ДВ практически не проникают в землю и ионос­феру, отражаясь от их поверхности и могут распространяться по естест­венным радиотрассам на значительные расстояния без существенной потери энергии поверхностными и пространственными волнами.

Т.к. длина волныСДВ диапазона соизмерима с расстоянием до нижней границы ионосферы, то понятие простой и поверхностной волны теряет смысл.

Процесс распространения RVрассматривается как происходящий в сферическом волноводе:

Внутренняя сторона - земля

Внешняя сторона (ночью - слой Е, днем - слой Д)

Волноводный процесс характеризуется незначительными потерями энергии.

Оптимальные RV – 25 ÷ 30 км

Критические RV (сильное затухание) - 100 км и более.

Присущи явления: - замирания, радиоэха.

Замирания (фединги) в результате интерференции RV, прошедших раз­ные пути и имеющие разные фазы в точке приема.

Если в противофазе в точке приема поверхностная и пространственная волна, то это фединг.

Если в противофазе в точке приема пространственные волны, то это дальний фединг.

Радиоэхо - это повторение сигнала в результате последовательного приема волн, отразившихся от ионосферы разное число раз (ближнее ради­оэхо) или пришедших в точку приема без и после огибания земного шара (дальнее радиоэхо).

Земная поверхность имеет устойчивые свойства , а места измерения условий ионизации ионосферы мало влияют на распространениеRV СДВ диапазона, то величина энергии радиосигнала мало изменяется в течение суток, года и вэкстремальных условиях.

В диапазоне км волн хорошо выражены и поверхностная и пространствен­ная волны (и днем, и ночью), особенно на волнах λ> 3 км.

Поверхностные волны при излучении имеют угол возвышения не более 3-4 градусов, а пространственные волны излучаются под большими углами к земной поверхности.

Критический угол падения RV км диапазона очень мал (днем на слой Д, а ночью на слой Е). Лучи с углами возвышения, близко к 90 ° отражаются от ионосферы.

Поверхностные волны км диапазона, благодаря хорошей дифракционной способнос­ти, могут обеспечить связь на расстояние до 1000 км и более. Однако с расстоянием эти волны сильно затухают. (На 1000 км поверхностная вол­на по интенсивности меньше пространственной).

На очень большие расстояния связь осуществляется только прост­ранственной км волной. В области равной интенсивности поверхностной и пространственной волн наблюдается ближний фединг. Условия расп­ространения км волн практически не зависят от сезона, уровня солнечной активности, слабо зависят от времени суток (ночью уровень сигнала боль­ше).

Прием в км диапазоне редко ухудшается из-за сильных атмосфер­ных помех (гроза).

При переходе от КМ (ДВ) км к гектометровому диапазону уменьшается проводимость земли и ионосферы. ε земли и приближается к ε атмос­феры.

Возрастают потери в земле. Волны глубже проникают в ионосферу. На расстоянии в несколько сот км начинают преобладать пространственные волны, т.к. поверхностные поглощаются землей и затухают.

На расстоянии примерно 50-200 км поверхностные и пространственные волны равны по интенсивности и может проявляться ближний фединг.

Замирания частые и глубокие.

С уменьшением λ глубина замираний возрастает при уменьшении дли­тельности запираний.

Особенно сильные замирания на λ больше 100 м.

Средняя длительность замираний колеблется от нескольких секунд (1 сек) до нескольких десятков секунд.

Условия радиосвязи в гектометровом диапазоне (СВ) зависят от сезона и времени суток, т.к. слой Д исчезает, а слой Е – выше, причем в слое Д большое поглощение.

Дальность связи ночью больше, чем днем.

Зимой условия приема улучшаются за счет уменьшения электронной плотности ионосферы и ослабляются в атмосферных полях. В городах при­ем сильно зависит от промышленных помех.

Распространение RV - декаметрового диапазона (КВ).

При переходе от СВ к КВ потери в земле сильно увеличиваются (зем­ля является несовершенным диэлектриком), в атмосфере (ионосфе­ре)-уменьшается.

Поверхностные волны на естественных радиотрассах КВ диапазона имеют малое значение (слабая дифракция, сильное поглощение).

Министерство общего и профессионального образования Российской Федерации

УГТУ-УПИ имени С.М. Кирова

Теоретические основы радиотехники

АНАЛИЗ РАДИОСИГНАЛОВ И РАСЧЕТ ХАРАКТЕРИСТИК ОПТИМАЛЬНЫХ СОГЛАСОВАННЫХ ФИЛЬТРОВ

КУРСОВОй ПРОЕКТ

ЕКАТЕРИНБУРГ 2001 год

Введение

Расчёт акф заданного сигнала

Заключение

Перечень условных обозначений

Библиографический список

Реферат

Информация ценилась всегда, а с развитием человечества информации становится все больше и больше. Информационные потоки превратились в огромные реки.

В связи с этим возникло несколько проблем передачи информации.

Информацию всегда ценили за ее достоверность и полноту поэтому ведется борьба за передачу ее без потерь и искажения. С еще одной проблемой при выборе оптимального сигнала.

Все это переносится и на радиотехнику где разрабатываются приемные передающее и обрабатывающие эти сигналы. Скорость и сложность предаваемых сигналов постоянно усложняется оборудование.

Для получения и закрепления знаний по обработке простейших сигналов в учебном курсе есть практическое задание.

В данной курсовой работе рассматривается прямоугольная когерентная пачка, состоящая из N трапецеидальных (длительность вершины равна одной третьей длительности основания) радиоимпульсов, где:

а) несущая частота,1,11МГц

б) длительность импульса (длительность основания),15мкс

в) частота следования,11.2 кГц

г) число импульсов в пачке,9

Для заданного типа сигнала необходимо произвести (привести):

Расчёт АКФ

Расчет спектра амплитуд и энергетического спектра

Расчет импульсной характеристики, согласованного фильтра

Спектральная плотность - есть коэффициент пропорциональности между длиной малого интервала частот D f и отвечающей ему комплексной амплитудой гармонического сигнала D A с частотой f 0.

Спектральное представление сигналов открывает прямой путь к анализу прохождению сигналов через широкий класс радиотехнических цепей, устройств и систем.

Энергетический спектр полезен для получения различных инженерных оценок, устанавливающих реальную ширину спектра того или иного сигнала. Для количественного определения степени отличия сигнала U (t) и его смещенной во времени копии U (t- t) принято вводить АКФ.

Зафиксируем произвольный момент времени и постараемся так выбрать функцию , чтобы величина достигала максимально возможного значения. Если такая функция действительно существует, то отвечающий ей линейный фильтр называют согласованным фильтром.

Введение

Курсовая работа по заключительной части предмета "Теория радиотехнических сигналов и цепей" охватывает разделы курса, посвященного основам теории сигналов и их оптимальной линейной фильтрации.

Целями работы являются:

изучение временных и спектральных характеристик импульсных радиосигналов, применяемых в радиолокации, радионавигации, радио телеметрии и смежных областях;

приобретение навыков по расчету и анализу корреляционных и спектральных характеристик детерминированных сигналов (автокорреляционных функций, спектров амплитуд и энергетических спектров).

В курсовой работе для заданного типа сигнала необходимо произвести:

Расчет АКФ.

Расчет спектра амплитуд и энергетического спектра.

Импульсной характеристики согласованного фильтра.

В данной курсовой работе рассматривается прямоугольная когерентная пачка трапецеидальных радиоимпульсов.

Параметры сигнала:

несущая частота (частота радиозаполнения),1,11 МГц

длительность импульсов, (длительность основания) 15 мкс

частота следования,11,2 кГц

число импульсов в пачке,9

Автокорреляционная функция (АКФ) сигнала U (t) служит для количественного определения степени отличия сигнала U (t) и его смещённой во времени копии (0.1) и при t = 0 АКФ становится равной энергии сигнала. АКФ обладает простейшими свойствами:

свойство чётности:

Т.е. K U (t ) =K U (- t ).

при любом значении временного сдвига t модуль АКФ не превосходитэнергии сигнала: ½K U (t ) ½£K U (0 ), что вытекает из неравенства Коши - Буняковского.

Итак, АКФ представляется симметричной кривой с центральным максимумом, который всегда положителен, а в нашем случае АКФ имеет ещё и колебательный характер. Необходимо отметить, что АКФ имеет связь с энергетическим спектром сигнала: ; (0.2) где ½G (w ) ½ квадрат модуля спектральной плотности. Поэтому можно оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Чем шире полоса частот сигнала, тем уже основной лепесток автокорреляционной функции и тем совершеннее сигнал с точки зрения возможности точного измерения момента его начала.

Часто удобнее вначале получить автокорреляционую функцию, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Энергетический спектр - представляет собой зависимость ½G (w ) ½ от частоты.

Согласованные же с сигналом фильтры обладают следующими свойствами:

Сигнал на выходе согласованного фильтра и функция корреляции выходного шума имеют вид автокорреляционной функции полезного входного сигнала.

Среди всех линейных фильтров согласованный фильтр даёт на выходе максимальное отношение пикового значения сигнала к среднеквадратичному значению шума.

Расчёт акф заданного сигнала

Рис.1. Прямоугольная когерентная пачка трапецеидальных радиоимпульсов

В нашем случае сигнал представляет собой прямоугольную пачку трапецеидальных (длительность вершины равна одной третьей длительности основания) радиоимпульсов (см. рис 1) в которой число импульсов N=9, а длительность импульса T i =15 мкс.

Рис.2. Сдвиг копии огибающей сигнала

S3(t)
S2(t)
S1(t)
Период следования импульсов в пачке T ip » 89,286 мкс., поэтому скважность q = T ip /T i = 5,952. Для расчёта АКФ воспользуемся формулой (0.1) и графическим представлением смещённой по времени копии сигнала на примере одного трапецеидального импульса (огибающей). Для этого обратимся к рисунку 2. Для расчёта главного лепестка АКФ огибающей сигнала (трапеции) рассмотрим три промежутка:

Для величины сдвига T принадлежащего промежутку от нуля до одной третьей длительности импульса необходимо решить интеграл:

Решая этот интеграл, получаем выражение для главного лепестка АКФ данного сдвига копии огибающей сигнала:

Для T принадлежащего промежутку от одной третьей до двух третьих длительности импульса получаем следующий интеграл:

Решая его, получаем:

Для Т, принадлежащего промежутку от двух третьих длительности импульса до длительности импульса интеграл, имеет вид:

Поэтому в результате решения имеем:

С учётом свойства симметрии (чётности) АКФ (смотрите введение) и соотношения, связывающего АКФ радиосигнала и АКФ его комплексной огибающей: имеем функции для главного лепестка АКФ огибающей ko (T) радиоимпульса и АКФ радиоимпульса Ks (T):

в которых, входящие функции, имеют вид:

Таким образом, на рисунке 3 изображён главный лепесток АКФ радиоимпульса и его огибающей, т.е. когда в результате сдвига копии сигнала, когда участвуют все 9 импульсов пачки, т.е. N = 9.

Видно, что АКФ радиоимпульса имеет колебательный характер, но в центре обязательно максимум. При дальнейшем сдвиге число пересекающихся импульсов сигнала и его копии будет уменьшаться на единицу, а, следовательно, и амплитуда через каждый период следования T ip = 89,286 мкс.

Поэтому, окончательно АКФ будут иметь вид как на рисунке 4 ( 16 лепестков, отличающихся от главного только амплитудами) с учётом того, что на этом рисунке Т=T ip .:

Рис. 3. АКФ главного лепестка радиоимпульса и его огибающей

Рис. 4. АКФ Прямоугольной когерентной пачки трапецеидальных радиоимпульсов

Рис. 5. Огибающая пачки радиоимпульсов.

Расчёт спектральной плотности и энергетического спектра

Для расчёта спектральной плотности воспользуемся, как и при расчётах АКФ, функциями огибающей радиосигнала (смотрите рис.2), которые имеют вид:

и преобразованием Фурье для получения спектральных функций, которые с учётом пределов интегрирования для n-го импульса будут рассчитываться по формулам:

для огибающей радиоимпульса и:

для радиоимпульса соответственно.

График этой функции представлен на (рис.5).

на рисунке для наглядности рассмотрен разный частотный диапазон

Рис. 6. Спектральная плотность огибающей радиосигнала.

Как и ожидалось, главный максимум расположен в центре, т.е. при частоте w =0.

Энергетический же спектр равен квадрату спектральной плотности и поэтому график спектра имеет вид как на (рис 6) т.е. очень похож на график спектральной плотности:

Рис. 7. Энергетический спектр огибающей радиосигнала.

Вид спектральной плотности для радиосигнала будет иной, поскольку вместо одного максимума при w = 0 будет наблюдаться два максимума при w = ±wо, т.е. спектр видеоимпульса (огибающей радиосигнала) переносится в область высоких частот с уменьшением вдвое абсолютного значения максимумов (см. рис.7). Вид энергетического же спектра радиосигнала будет так же очень похож на вид спектральной плотности радиосигнала, т.е. тоже будет осуществлён перенос спектра в область высоких частот и так же будет наблюдаться два максимума (см. рис.8).

Рис. 8. Спектральная плотность пачки радиоимпульсов.

Расчёт импульсной реакции и рекомендации к построению согласованного фильтра

Как известно, наряду с полезным сигналом, зачастую присутствуют шумы и поэтому при слабом полезном сигнале иногда трудно определить есть полезный сигнал или нет.

Для приёма сигнала сдвинутого во времени на фоне белого гауссовского шума (белый гауссовский шум "БГС" имеет равномерную плотность распределения) n (t) т.е. y (t) = + n (t), отношение правдоподобия при приёме сигнала известной формы имеет вид:

где No - спектральная плотность шума.

Поэтому приходим к выводу, что оптимальная обработка принимаемых данных - суть корреляционный интеграл

Полученная функция представляет собой ту существенную операцию, которую следует выполнить над наблюдаемым сигналом с тем, чтобы оптимальным (с позиции критерия минимума среднего риска) образом принять решение о наличии или отсутствии полезного сигнала.

Не вызывает сомнений тот факт, что данная операция может быть реализована линейным фильтром.

Действительно, сигнал на выходе фильтра с импульсной характеристикой g (t) имеет вид:

Как видно, при выполнении условия g (r-x) = K ×S (r- t) эти выражения эквивалентны и тогда после замены t = r-x получаем:

где К - постоянная, а to - фиксированное время, при котором наблюдается выходной сигнал.

Фильтр с такой импульсной характеристикой g (t) ( смотрите выше) называется согласованным.

Для того чтобы определить импульсную характеристику необходимо сигнал S (t) сместить на влево, т.е. получим функцию S (tо + t), а функцию S (tо - t) получить путём зеркального отображения сигнала относительно оси координат, т.е. импульсная характеристика согласованного фильтра будет равна входному сигналу, и при этом получаем на выходе согласованного фильтра максимальное отношение "сигнал-шум".



При нашем входном сигнале для построения такого фильтра необходимо сначала создать звено формирования одного трапецеидального импульса схема, которого изображена на (рис.9).

Рис. 10. Звено формирования радиоимпульса с заданной огибающей.

На вход звена формирования радиоимпульса с заданной огибающей (см. рис.9), подаётся сигнал огибающей радиосигнала (в нашем случае трапеция).

В колебательном звене формируется гармонический сигнал с несущей частотой wо (в нашем случае 1,11МГц), поэтому на выходе этого звена имеем гармонический сигнал с частотой wо.

С выхода колебательного звена сигнал подаётся на сумматор и на звено линии задержки сигнала на Ti (в нашем случае Ti =15 мкс), а с выхода звена задержки сигнал подаётся на фазовращатель (он нужен для того чтобы после окончания импульса отсутствовал радиосигнал на выходе сумматора).

После фазовращателя сигнал тоже подаётся на сумматор. На выходе сумматора, наконец, имеем трапецеидальные радиоимпульсы с частотой радиозаполнения wо т.е. сигнал g (t).



Поскольку нам необходимо получить когерентную пачку из 9 трапецеидальных видеоимпульсов то необходимо сигнал g (t) подать на звено формирования такой пачки схема, которой имеет вид как на (рис 10):

Рис. 11. Звено формирования когерентной пачки.

На вход звена формирования когерентной пачки подаётся сигнал g (t), который представляет собой трапецеидальный радиоимпульс (или последовательность трапецеидальных радиоимпульсов).

Далее сигнал идёт на сумматор и на блок задержки, в котором реализуется задержка входного сигнала на период следования импульсов в пачке Tip умноженный на номер импульса минус единица, т.е. (N-1), а с выходабока задержки снова на сумматор.

Таким образом, на выходе звена формирования когерентной пачки (т.е. на выходе сумматора) имеем прямоугольную когерентную пачку трапецеидальных радиоимпульсов, что и требовалось реализовать.

Заключение

В ходе работы были проведены соответствующие расчеты и построены графики по ним можно судить о сложности обработки сигналов. Для упрощения математический расчет проводился пакетах MathCAD 7.0 и MathCAD 8.0. Данная работа является необходимой частью учебного курса, чтобы студенты имели представления об особенностях применении различных импульсных радиосигналов в радиолокации, радионавигации и радио телеметрии, а также могли спроектировать оптимальный фильтр тем самым, внеся свой скромный вклад в “борьбе" за информацию.

Перечень условных обозначений

- частота радиозаполнения;

w - частота

Т, ( t) - временной сдвиг;

Тi - длительность радиоимпульса;

Tip - период следования радиоимпульсов в пачке;

N - число радиоимпульсов в пачке;

t - время;

Библиографический список

1. Баскаков С.И. "Радиотехнические цепи и сигналы: Учебник для вузов по спец. "Радиотехника"". - 2-е изд., перераб. и доп. - М.: Высш. шк., 1988 - 448 с.: ил.

2. "АНАЛИЗ РАДИОСИГНАЛОВ И РАСЧЁТ ХАРАКТЕРИСТИК ОПТИМАЛЬНЫХ СОГЛАСОВАННЫХ ФИЛЬТРОВ: Методические указания к курсовой работе по курсу "Теория радиотехнических сигналов и цепей""/ Киберниченко В.Г., Дороинский Л.Г., Свердловск: УПИ 1992.40 с.

3. "Усилительные устройства": Учеб: пособие для вузов. - М.: Радио и связь, 1989. - 400 с.: ил.

4. Букингем М. "Шумы в электронных приборах и системах"/ Пер. с англ. - М.: Мир, 1986


1 Классификация видов модуляции, основные характеристики радиосигналов.

Для осуществления радиосвязи необходимо каким-то образом изменять один из параметров радиочастотного колебания, называемого несущим, в соответствии с передаваемым низкочастотным сигналом. Это достигается с помощью модуляции радиочастотного колебания.

Известно, что гармоническое колебание

характеризуется тремя, независимыми параметрами: амплитудой, частотой и фазой.

Соответственно различают три основных вида модуляции:

Амплитудная,

Частотная,

Фазовая.

Амплитудной модуляцией (АМ) называют такой вид воздействия на несущее колебание, в результате которого его амплитуда изменяется по закону передаваемого (модулирующего) сигнала.

Считаем, что модулирующий сигнал имеет вид гармонического колебания с частотой W

много меньшей частоты несущего колебания w.

В результате модуляции амплитуда напряжения несущего колебания должна изменяться пропорционально напряжению модулирующего сигнала uW (рис. 1):

UAM = U + kUWcosWt = U + DUcosWt, (1)

где U - амплитуда напряжения несущего радиочастотного колебания;

DU=kUW - приращение амплитуды.

Уравнение амплитудно-модулированных колебаний, в этом случае, принимает вид

UAM = UAM coswt = (U + DUcosWt) coswt = U (1+cosWt) coswt. (2)

По такому же закону будет изменяться и ток iAM при модуляции.

Величина, характеризующая отношение величины изменения амплитуды колебаний DU к их амплитуде в отсутствии модуляции U, называется коэффициентом (глубиной) модуляции

Из этого следует, что максимальная амплитуда колебаний Umax = U + DU = U (1+m) и минимальная амплитуда Umin= U (1-m).

Как нетрудно видеть из уравнения (2), в простейшем случае модулированные колебания представляют собой сумму трех колебаний

UAM = U(1+ mcosWt)coswt = Ucoswt U/2+ cos(w - W)t U/2+ cos(w + W)t . (4)

Первое слагаемое – колебания передатчика в отсутствии модуляции (режим молчания). Вторые – колебания боковых частот.

Если модуляция осуществляется сложным низкочастотным сигналом со спектром от Fmin до Fmax , то спектр полученного АМ сигнала имеет вид, изображенный на рис. Занимаемая АМ - сигналом полоса частот Δfс не зависит от m и равна

Δfс = 2Fmax . (5)

Возникновение колебаний боковых частот при модуляции приводит к необходимости расширения полосы пропускания контуров передатчика (и, соответственно, приемника). Она должна быть

где Q - добротность контуров,

Df - абсолютная расстройка,

Dfк - полоса пропускания контура.

На рис. спектральные составляющие, соответствующие нижним модулирующим частотам (Fmin) имеют меньшие ординаты.

Это объясняется следующим обстоятельством. У большинства видов сигналов (например, речевых), поступающих на вход передатчика, амплитуды высокочастотных составляющих спектра малы по сравнению с составляющими низких и средних частот. Что касается шумов на входе детектора в приемнике, то их спектральная плотность постоянна в пределах полосы пропускания

приемника. В результате коэффициент модуляции и отношение сигнал-шум на входе детектора приемника для высоких частот модулирующего сигнала оказываются малыми. Для увеличения отношения сигнал-шум высокочастотные составляющие модулирующего сигнала при передаче подчеркиваются путем усиления высокочастотных составляющих в большее число раз по сравнению с составляющими низких и средних частот, а при приеме до или после детектора во столько же раз ослабляются. Ослабление высокочастотных составляющих до детектора происходит практически всегда в высокочастотных резонансных цепях приемника. Необходимо отметить, что искусственное подчеркивание верхних модулирующих частот допустимо, пока оно не приводит к перемодуляции (m > 1).

Сигнал - физический процесс, отображающий сообщение. В технических системах чаще всего используются электрические сигналы. Сигналы, как правило, являются функциями времени.

1. Классификация сигналов

Сигналы можно классифицировать по различным признакам:

1. Непрерывные ( аналоговые) - сигналы, которые описываются непрерывными функциями времени, т.е. принимают непрерывное множество значений на интервале определения. Дискретные - описываются дискретными функциями времени т.е. принимают конечное множество значений на интервале определения.

Детерминированные - сигналы, которые описываются детерминированными функциями времени, т.е. значения которых определены в любой момент времени. Случайные - описываются случайными функциями времени, т.е. значения которых в любой момент времени является случайной величиной. Случайные процессы (СП) можно классифицировать на стационарные, нестационарные, эргодические и неэргодические, а так же, гауссовы, марковские и т.д.

3. Периодические - сигналы, значения которых повторяются через интервал, равный периоду

х (t) = х (t+nT), где n = 1,2,...,¥; T - период.

4. Kаузальные - сигналы, имеющие начало во времени.

5. Финитные - сигналы конечной длительности и равные нулю вне интервала определения.

6. Когерентные - сигналы, совпадающие во всех точках определения.

7. Ортогональные - сигналы противоположные когерентным.

2. Характеристики сигналов

1. Длительность сигнала ( время передачи) Т с - интервал времени, в течении которого существует сигнал.

2. Ширина спектра F c - диапазон частот, в пределах которых сосредоточена основная мощность сигнала.

3. База сигнала - произведение ширины спектра сигнала на его длительность.

4. Динамический диапазон D c - логарифм отношения максимальной мощности сигнала - P max к минимальной - P min (минимально-различи-мая на уровне помех):

D c = log (P max /P min).

В выражениях, где может быть использованы логарифмы с любым основанием, основание логарифма не указывается.

Как правило, основание логарифма определяет единицу измерения (например: десятичный - [Бел], натуральный - [Непер]).

5. Объем сигнала определяется соотношениемV c = T c F c D c .

6. Энергетические характеристики: мгновенная мощность - P (t); средняя мощность - P ср и энергия - E. Эти характеристики определяются соотношениями:

P (t) = x 2 (t); ; (1)

где T = t max - t min .

3. Математические модели случайных сигнлов

Детерминированное, т.е. заранее известное сообщение, не содержит информации, т.к получателю заранее известно, каким будет переда-ваемый сигнал. Поэтому сигналы носят статистический характер .

Случайный (стохастический, вероятностный) процесс - процесс, который описывается случайными функциями времени.

Случайный процесс Х (t) может быть представлен ансамблем неслучайных функций времени x i (t), называемых реализациями или выборками (см. рис.1).


Рис.1. Реализации случайного процесса X (t)

Полной статистической характеристикой случайного процесса является n - мерная функция распределения: F n (x 1 , x 2 ,..., x n ; t 1 , t 2 ,..., t n), или плотность вероятности f n (x 1 , x 2 ,..., x n ; t 1 , t 2 ,..., t n).

Использование многомерных законов связанно с определенными трудностями,

поэтому часто ограничиваются использованием одномерных законов f 1 (x, t), характеризующих статистические характеристики случайного процесса в отдельные моменты времени, называемые сечениями случайного процесса или двумерных f 2 (x 1 , x 2 ; t 1 , t 2), характеризующих не только статистические характеристики отдельных сечений, но и их статистическую взаимосвязь.

Законы распределения являются исчерпывающими характеристиками случайного процесса, но случайные процессы могут быть достаточно полно охарактеризованы и с помощью, так называемых, числовых характеристик (начальных, центральных и смешанных моментов). При этом наиболее часто используются следующие характеристики: математическое ожидание (начальный момент первого порядка)

; (2)

средний квадрат (начальный момент второго порядка)

; (3)

дисперсия (центральный момент второго порядка)

; (4)

корреляционная функция, которая равна корреляционному моменту соответствующих сечений случайного процесса

. (5)

При этом справедливо следующее соотношение:

(6)

Стационарные процессы - процессы, в которых числовые характеристики не зависят от времени.

Эргодические процессы - процесс, в которых результаты усреднения и по множеству совпадают.

Гауссовы процессы - процессы с нормальным законом распределения:

(7)

Этот закон играет исключительно важную роль в теории передачи сигналов, т.к большинство помех являются нормальными.

В соответствии с центральной предельной теоремой большинство случайных процессов являются гауссовыми.

Марковский процесс - случайный процесс, у которых вероятность каждого последующего значения определяется только одним предыдущим значением.

4. Формы аналитического описания сигналов

Сигналы могут быть представлены во временной, операторной или частотной области, связь между которыми определяется с помощью преобразований Фурье и Лапласа (см. рис.2).

Преобразование Лапласа:

L -1: (8)

Преобразования Фурье:

F -1: (9)

Рис.2 Области представления сигналов

При этом могут быть использованы различные формы представления сигналов с виде функций, векторов, матриц, геометрическое и т.д.

При описании случайных процессов во временной области используется, так называемая, корреляционная теория случайных процессов, а при описании в частотной области - спектральная теория случайных процессов.

С учетом четности функций

и и в соответствии с формулами Эйлера: (10)

можно записать выражения для корреляционной функции R x (t) и энергетического спектра (спектральной плотности) случайного процесса S x (w), которые связанны преобразованием Фурье или формулами Винера - Хинчина

; (11) . (12)

5. Геометрическое представление сигналов и их характеристик

Любые n - чисел можно представить в виде точки (вектора) в n -мерном пространстве, удаленной от начала координат на расстоянии D ,

где . ( 13)

Сигнал длительностью T с и шириной спектра F с , в соответствии с теоремой Котельникова определяется N отсчетами, где N = 2F c T c .

Этот сигнал может быть представлен точкой в n - мерном пространстве или вектором, соединяющим эту точку с началом координат .

Длина этого вектора (норма) равна:

; (14)

где x i =x (n Dt) - значение сигнала в момент времени t = n. Dt.

Допустим: X - передаваемое сообщение, а Y - принимаемое. При этом они могут быть представлены векторами (рис.3).

X1 , Y1

0 a 1 a 2 x1 y1

Рис.3. Геометрическое представление сигналов

Определим связи между геометрическим и физическим представлением сигналов. Для угла между векторами X и Y можно записать

cos g = cos (a 1 - a 2) = cos a 1 cos a 2 + sin a 1 sin a 2 =

Радиосигналами называют электромагнитные волны или электрические высокочастотные колебания, которые заключают в себе передаваемое сообщение. Для образования сигнала параметры высокочастотных колебаний изменяются (модулируются) с помощью управляющих сигналов, которые представляют собой напряжение, изменяющееся по заданному закону. В качестве модулируемых обычно используются гармонические высокочастотные колебания:

где w 0 =2πf 0 – высокая несущая частота;

U 0 – амплитуда высокочастотных колебаний.

К наиболее простым и часто используемым управляющим сигналам относятся гармоническое колебание

где Ω – низкая частота, много меньшая w 0 ; ψ – начальная фаза; U m – амплитуда, а также прямоугольные импульсные сигналы, которые характеризуются тем, что значение напряжения U упр (t )=U в течение интервалов времени τ и, называемых длительностью импульсов, и равно нулю в течение интервала между импульсами (рис.1.13). Величина T и называется периодом повторения импульсов; F и =1/T и – частота их повторения. Отношение периода повторения импульсов T и к длительности τ и называется скважностью Q импульсного процесса: Q =T и /τ и.

U упр (t )
T и
τ и
U
t

Рис.1.13. Последовательность прямоугольных импульсов

В зависимости от того, какой параметр высокочастотного колебания изменяется (модулируется) с помощью управляющего сигнала, различают амплитудную, частотную и фазовую модуляцию.

При амплитудной модуляции (АМ) высокочастотных колебаний низкочастотным синусоидальным напряжением частотой Ω мод образуется сигнал, амплитуда которого изменяется во времени (рис.1.14):

Параметр m =U m /U 0 называют коэффициентом амплитудной модуляции. Его значения заключены в интервале от единицы до нуля: 1≥m≥0. Коэффициент модуляции, выраженный в процентах (т.е. m ×100%), называется глубиной амплитудной модуляции.

t
U АМ (t )

Рис. 1.14. Амплитудно-модулированный радиосигнал

При фазовой модуляции (ФМ) высокочастотного колебания синусоидальным напряжением амплитуда сигнала остается постоянной, а его фаза получает дополнительное приращение Δy под воздействием модулирующего напряжения: Δy=k ФМ U м sinW мод t , где k ФМ – коэффициент пропорциональности. Высокочастотный сигнал с фазовой модуляцией по синусоидальному закону имеет вид

При частотной модуляции (ЧМ) управляющий сигнал изменяет частоту высокочастотных колебаний. Если модулирующее напряжение изменяется по синусоидальному закону, то мгновенное значение частоты модулированных колебаний w=w 0 + k ЧМ U м sinW мод t , где k ЧМ – коэффициент пропорциональности. Наибольшее изменение частоты w по отношению к ее среднему значению w 0 , равное Δw М = k ЧМ U м, называется девиацией частоты. Частотно-модулированный сигнал может быть записан следующим образом:

Величина, равная отношению девиации частоты к частоте модуляции (Δw м /W мод = m ЧМ), называется коэффициентом частотной модуляции.

На рис.1.14 изображены высокочастотные сигналы при АМ, ФМ и ЧМ. Во всех трех случаях используется одинаковое модулирующее напряжение U мод, изменяющееся по симметричному пилообразному закону U мод (t )= k мод t , где k мод >0 на отрезке времени 0t 1 и k мод <0 на отрезке t 1 t 2 (рис.1.15,а).

При АМ частота сигнала остается постоянной (w 0), а амплитуда изменяется по закону модулирующего напряжения U АМ (t ) = U 0 k мод t (рис.1.15,б).

Частотномодулированный сигнал (рис.1.15,в) характеризуется постоянством амплитуды и плавным изменением частоты: w(t ) = w 0 +k ЧМ t . На отрезке времени от t =0 до t 1 частота колебаний увеличивается от значения w 0 до значения w 0 +k ЧМ t 1 , а на отрезке от t 1 до t 2 частота уменьшается опять до значения w 0 .

Фазомодулированный сигнал (рис.1.15,г) имеет постоянную амплитуду и скачкообразное изменение частоты. Поясним это аналитически. При ФМ под воздействием модулирующего напряжения

t
U АМ (t )
t
U ЧМ (t )
а)
б)
t
U мод (t )
t 1
t 2
w 0
t
U фМ (t )
г)
w 1
w 2
в)

Рис.1.15. Сравнительный вид модулированных колебаний при АМ, ЧМ и ФМ:
а – модулирующее напряжение; б – амплитудно-модулированный сигнал;
в – частотно-модулированный сигнал; г – фазомодулированный сигнал

фаза сигнала получает дополнительное приращение Δy=k ФМ t , следовательно высокочастотный сигнал с фазовой модуляцией по пилообразному закону имеет вид

Таким образом, на отрезке 0t 1 частота равна w 1 >w 0 , а на отрезке t 1 t 2 она равна w 2

При передаче последовательности импульсов, например, двоичного цифрового кода (рис.1.16,а), также может использоваться АМ, ЧМ и ФМ. Такой вид модуляции называется манипуляцией или телеграфией (АТ, ЧТ и ФТ).

t
U АТ (t )
t
U ЧТ (t )
а)
б)
τ и
w 0
t
U мод (t )
w 2
w 1
в)
г)
t
U ФТ (t )
w 0

Рис.1.16. Сравнительный вид манипулированных колебании при АТ, ЧТ и ФТ

При амплитудной телеграфии образуется последовательность высокочастотных радиоимпульсов, амплитуда которых постоянна в течение длительности модулирующих импульсов τ и, и равна нулю все остальное время (рис.1.16,б).

При частотной телеграфии образуется высокочастотный сигнал с постоянной амплитудой, и частотой, принимающей два возможных значения (рис.1.16,в).

При фазовой телеграфии образуется высокочастотный сигнал с постоянной амплитудой и частотой, фаза которого изменяется на 180° по закону модулирующего сигнала (рис.1.16,г).