Технологии выдачи изображения на проекционный экран. Оптическая схема. Самодельный LCD проектор для домашнего кинотеатра. Технология проецирования — виды проекторов

Проектор – сложный механизм с целой системой электронных плат, световых элементов и линз

Вопрос о том, как устроен проектор, должен волновать каждого, кто является владельцем подобного устройства или регулярно сталкивается с ним. Зная основные принципы работы такой техники, можно успешно осуществлять уход за ними и производить грамотную их настройку. Вне зависимости от принципа работы проекционного устройства и технологий, используемых в нем, базовое устройство не меняется. Появляются лишь дополнительные линзы, отражающие поверхности, процессоры и т.д. Можно выделить две основных составляющих проектора.

Видео

Видеоролик взят из интернета по этой теме для того, чтобы вам было проще разобраться в деталях.

Первая – это непосредственно лампа. При этом устройство проектора не обуславливает тип используемого светового элемента: разрядная лампа с одним цоколем или с двумя контактами. Разница этих ламп лишь в сроке службы, который измеряется в часах непрерывной работы и способе подключения. Ну а сам проектор целиком включает в себя:

  • плату для обработки аудио и видео,
  • лампу,
  • светомодуляторную плату,
  • рассеиватель,
  • корпус.

Устройство лампы для проектора

Так выглядит стандартная лампа для проектора

В октябрьском номере S&V за 2001 г. был опубликован первый обзор по технологиям работы систем отображения информации на больших экранах. Что изменилось с тех пор? Наш специальный корреспондент Елена Новикова, посетившая выставку InfoComm"2007 (17-18 июня, Анахейм, штат Калифорния, США), а также постоянный автор Stereo&Video Валерий Самохин рассказывают о новинках проекционных технологий.

Почти все современные видеопроекторы сегодня реализуются по жидкокристаллической (ЖК) или микрозеркальной (DLP) технологии. Почти одновременно, около двух пет назад, были разработаны жидкокристаллические матрицы и микрозеркальный чип DMD (Digital Micromirror Device) DC3 с разрешением FullHD (1920x1080) соответственно компаниями Epson и Texas Instruments. Сегодня ЖК- и DLP-проекторы с таким разрешением выпускаются примерно в одинаковых пропорциях. В секторе проекторов с разрешением выше Full HD большое численное преимущество имеют DLP-аппараты. Однако нельзя утверждать, что микрозеркальная технология одержит когда-либо окончательную победу. Существенный прогресс достигнут и в ЖК-технологии благодаря созданию новых панелей с модуляцией пропускаемого (LCD) и отражаемого (D-ILA, LCOS, SXRD) светового потока, в том числе с разрешением 4К (4096x2160). Таких DMD-чипов пока нет.

Видеопроекторы с модуляцией пропускаемого светового потока
Оптическая схема LCD-проектора показана на рис. 1. Он содержит источник света 1 с охлаждаемым отражателем и дуговой лампой, металлогалогенной (МГЛ) или ксеноновой, оптические фильтры 2, не пропускающие инфракрасное (ИК) и ультрафиолетовое (УФ) излучение, конвертер поляризации 3, дихроичные зеркала 4 и 5, разделяющие световой поток на составляющие первичных цветов В, G, R, и зеркала 6 с внешними покрытиями, отражающими почти 100% попадающего на них света. Корректирующие светофильтры 7 (Trim Filters) обеспечивают точность разделения цветов. Пройдя фильтры 7, составляющие R, G и В попадают на соответствующие ЖК-панели 8, которые модулируют их по интенсивности в соответствии с отображаемыми видеосигналами и пропускают на смесительную призму 9. Здесь они собираются вместе и далее проецируются объективом 10.

Рис. 1. Оптическая система LCD-проектора
Основным недостатком ЖК-проекторов с модуляцией пропускаемого светового потока считается невозможность получения глубины черного, т.е. высокой контрастности изображения. Действительно, при использовании модуляторов классической технологии TN (Twisted Nematic) этот недостаток есть. Обусловлен он тем обстоятельством, что такие модуляторы нормально открыты (пропускают свет в обесточенном состоянии). Получается это благодаря уникальной способности прозрачных, нитевидных молекул TN ориентироваться в тонком слое вдоль профилирующих канавок контактирующих с ними поверхностей и относительно друг друга в закрученном состоянии, а также вдоль воздействующего на них электрического поля. Как показано на рис. 2, молекулы TN находятся между скрещенными поляризаторами, а их исходная ориентация задана плоскостями поляризации скрещенных поляризаторов. При воздействии возрастающего электрического поля Е, направление напряженности которого перпендикулярно поверхности модулятора, молекулы TN начинают ориентироваться вдоль него, все менее закручиваясь. При напряженности Е выше определенной величины они перестают влиять на поляризацию света, и его прохождение через пиксели прекращается. Проблемы здесь заключаются в нелинейности и неодинаковости характеристик управления прозрачностью пикселей, особенно по достижению их полного запирания. Из-за невозможности полностью перекрыть пропускание света всеми пикселями при подаче одинаковых, но небольших управляющих напряжений, черное поле, проецируемое ЖК-проекторами с такими модуляторами, в затемненном помещении часто воспринимается серым.
На первом этапе совершенствования ЖК-проекторов с указанным недостатком мирились, и основное внимание уделялось увеличению светового потока, что решалось созданием более эффективных источников света и светооптических систем проецирования в целом. Например, большие потери были из-за того, что обесточенные TN-модуляторы пропускают только 50% света (одну составляющую проходящего светового потока со случайной поляризацией), поглощая (превращая в тепло) ортогональную составляющую. Поэтому в ЖК-проекторы стали вводить конвертеры поляризации, преобразующие теряемую составляющую в полезную. Были разработаны также микролинзовые растры (MicroLens Array, MLA), устанавливаемые непосредственно перед TN-модуляторами. Каждая ячейка такого растра фокусирует свет, проходящий через соответствующий пиксель, так, чтобы он не заслонялся непрозрачной поверхностью подложки, занимаемой в пикселе управляющим полевым транзистором.
Особое внимание уделено защите ЖК-модуляторов от ИК- и УФ-излучения дуговых ламп, способного повредить пленки и другие, используемые в них компоненты. В схеме на рис. 1 используется два таких фильтра (2). Один из них отражает ИК-излучение, а другой - блокирует прохождение ультрафиолета в канал синего. Защитные фильтры 2 типа Oerlikon UV-Guard™ характеризуются высокой стабильностью и не затрагивают цвета видимой части спектра.
В борьбе за повышение контрастности было разработано несколько ЖК-модуляторов других технологий. Например, фирмами Hitachi и NEC была разработана технология In-Plane-Switch (IPS), сущность которой поясняется на рис. 3. Здесь ориентация молекул TN всегда находится в плоскости, параллельной поляризаторам, и при отсутствии управляющего напряжения IPS-пиксель не пропускает свет, т.е. является нормально закрытым (черным). Для этого профилирующие канавки, контактирующие с молекулами TN, и сборка ЖК-модулятора IPS производятся так, чтобы его поляризаторы оказались скрещенными с учетом дополнительного сдвига плоскости поляризации, создаваемого из-за естественного закручивания молекул TN. Под действием управляющего напряжения молекулы начинают ориентироваться вдоль электрического поля, поворачиваясь в той же плоскости, и при их повороте на 90° светопропускание достигает максимума (белый). Технологии IPS и ее модификация S-IPS, разработанная совместным предприятием LG-Philips, широко применяются в ЖК-дисплеях и телевизорах.
ЖК-проекторы с модуляцией пропускаемого светового потока постоянно попадают на тестирование в нашу лабораторию, завоевывая призы по результатам тестирования. К ним относится модель Mitsubishi LVP-HC5000 с разрешением 1920x1080 (см. №5"07).

Видеопроекторы с модуляцией отражаемого светового потока

Видеопроекторы технологии D-ILA (Digital-Image Light Amplifier). Оптическая схема одного канала D-ILA показана на рис. 4. Одним из его компонентов является специальное зеркало, расположенное по диагонали узла поляризатора-анализатора. Это зеркало является поляризационным фильтром PBS (Polarized Beam Splitter), выполняющим функции входного и выходного поляризаторов просветных ЖК-панелей. При падении света под углом 45° его составляющая с поляризацией вдоль поверхности зеркала пропускается, а составляющая с ортогональной поляризацией отражается и направляется на ЖК-панель (модулятор) перпендикулярно ее поверхности. Модулятор возвращает свет с внесением сдвигов поляризации в соответствии с управляющими напряжениями на пикселях. Теперь зеркало PBS выполняет функцию анализатора и пропускает модулированную составляющую светового потока в объектив, а исходную в источник света.
Так как при отсутствии управляющих напряжений световой поток на выход указанного оптического канала не поступает, он является нормально закрытым. Это определило особую структуру (Vertical Alignment) расположения пикселей у таких модуляторов, условно показанную на рис. 5 вместе с управляющей характеристикой. На рис. 5 видно, что в обесточенном состоянии молекулы ЖК ориентированы перпендикулярно плоскости модулятора и не влияют на поляризацию отражаемого им светового потока. При увеличении управляющего напряжения (Driving Voltage) выше порогового значения молекулы ЖК начинают поворачивать плоскость поляризации падающего на модулятор светового потока, и в отраженном световом потоке (Light Output) появляется модулированная ортогональная составляющая Р, пропускаемая зеркалом-поляризатором проектора на экран. При дальнейшем увеличении управляющего напряжения эта составляющая светового потока достигает максимума.
У отражающих ЖК-модуляторов, кроме меньших тепловых потерь, есть и другие преимущества. Здесь матрица управляющих полевых транзисторов не занимает пространства в жидкокристаллическом слое, а расположена за ним на подложке с электроникой. За счет этого достигается увеличение разрешения и поверхности зеркальных электродов. В результате удается одновременно увеличить и яркость изображения. Вместе с тем, их управляющая характеристика нелинейная, что должно компенсироваться коррекцией амплитудной характеристики канала изображения проектора.
Пока высшим достижением технологии D-ILA является проектор JVC DLA-QX1 с разрешением 2048x1536. Будем надеяться, что скоро появится новинка JVC QHDTV с разрешением 4К, параметры которой были анонсированы на выставке lnfoComm"2006 и повторены на lnfoComm"2007.

Видеопроекторы технологии LCOS (Liquid Crystal on Silicon). Оптическая схема этих проекторов аналогична D-ILA и приведена на рис. 6. Здесь световой поток источника света 1, пройдя защитный ИК-фильтр 2 и конвертер поляризации 3, сначала разделяется цветоделительным узлом 4 на R+G (желтую) и В (синюю) составляющие.

Рис. 6. Оптическая схема проектора LCOS
Далее эти составляющие, отражаясь от соответствующих зеркал 5 и пройдя корректирующие светофильтры 7, попадают на PBS-блоки 8. При этом составляющая R+G предварительно разделяется дихроичным зеркалом 6 на красную (R) и зеленую (G) компоненты. Фильтрованные компоненты R, G и В поступают на соответствующие модуляторы 9 и, отражаясь от них, снова в блоки 8 и затем в смесительную призму 10. Здесь они суммируются и, отражаясь от зеркала 5, попадают в объектив 10.
К высшим достижениям жидкокристаллической технологии относятся проекторы Sony SRXR105 и SRXR110 технологии SXRD (Silicon X-tal Reflective Display) с разрешением 4К (4096x2160), временем отклика менее 5 мс и световыми потоками 5000 и 10000 лм соответственно. Они оснащены ксеноновыми лампами и отражающими модуляторами формата 1,85:1 с размерами пикселей и расстояний между ними 8,5 мкм и 0,35 мкм соответственно.
Кстати о времени отклика (Time Response). Часто, сравнивая LCD с кинескопными (CRT) телевизорами, говорят о низком быстродействии LCD как об основном их недостатке. При этом забывают о том, что быстродействие CRT-телевизоров не лучше, а хуже чем у современных LCD. Хорошо известно, что яркость изображения и отсутствие заметного мерцания на экране CRT-телевизоров обеспечивается благодаря послесвечению люминофоров его покрытия, которое принципиально должно быть около 20 мс.
ЖК-проекторы с модуляцией отражаемого светового потока также тестировались в лаборатории S&V. В частности, модели Sony VPL-VW100 (награда EISA 2006-2007 "Лучший видеопроектор класса High End", см. № 9"06) и JVC DLA-HD1 продемонстрировали явное преимущество в контрастности изображения по сравнению с видеопроекторами других технологий. Причем DLA-HD1 выиграл соревнование у проектора Sony VPL-VW50 технологии SXRD (см. №6"07).

Микрозеркальные проекторы (Digital Light Processing, DLP)
Технология DLP разработана фирмой Texas Instruments (TI), и серийные модели этих проекторов появились 10 лет назад. Самые яркие из них содержат три DMD-чипа и выполнялись по оптической схеме, показанной на рис. 7.
Здесь световой поток, создаваемый источником света, пройдя систему с конденсором, тепловым фильтром, зеркалами и призмой полного внутреннего отражения, поступает на комбинированную цветоделительную призму, выделяющую из него составляющие первичных цветов и направляющую их на поверхности DMD соответствующих каналов. Эти составляющие модулируются чипами, отражаются и объединяются комбинированной призмой в общий световой поток, поступающий в проекционный объектив.
Чип DMD представляет собой световой модулятор, состоящий из матрицы поворотных алюминиевых зеркал размером 16x16 мкм, количество которых соответствует оптическому разрешению проектора. Зеркала крепятся на подложке с помощью механических подпружиненных подвесов, позволяющих им поворачиваться в пределах ±10 градусов (±12° у современных моделей), как показано на рис. 8. В зависимости от управляющих напряжений каждое зеркало может занимать крайние положения "включено" или "выключено". В первом случае отраженный зеркалом свет попадает в оптическую систему объектива, а во втором поглощается. Время переключения состояний зеркал не превышает 2 мкс, и их положение управляется широтно-импульсной модуляцией с частотой полей. Уровень цветовых составляющих светового потока определяется относительным временем нахождения зеркал во включенном положении на интервале каждого телевизионного поля, длительность которого подвергается 10-разрядной дискретизации. Воспринимаемая подсознанием цветность определяется способностью зрения усреднять мгновенные яркости и цветовые оттенки всех пикселей экранного изображения. Для того, чтобы это получалось лучше, применяется увеличение частоты коммутации пикселей путем преобразования длинных импульсов в совокупность более коротких той же продолжительности.
Трехчиповые DLP-проекторы доминируют на рынке оборудования для цифровых кинотеатров. Почти все они имеют разрешение 2К, а световой поток самых ярких из них составляет 30000 лм. Три года назад появился трехчиповый проектор InFocus ScreenPlay 777 (2000 лм, 1280x720), предназначенный для домашнего кинотеатра. Заметного распространения на мировом рынке такие проекторы не получили, поскольку ЖК- и одночиповые DLP-проекторы с разрешением 1920x1080 оказались гораздо дешевле.

Микрозеркальные проекторы с одним DMD. Нагрузка на зрение возрастает при просмотре изображений от DLP-проекторов с одним DMD-чипом. Здесь глазам приходится делать, кроме высокочастотного усреднения яркости, низкочастотное усреднение цветности, так как изображение на всем экране появляется последовательно в первичных цветах. Почти все одночиповые DLP-проекторы оснащаются вращающимся светофильтром (ColorWheel), который в первых моделях содержал 3 цветных сектора и вращался с частотой 60 Гц, т.е. 3600 об./мин Модели с такими светофильтрами называются DLP-проекторами с однократной скоростью фильтра. При этом частота мелькания цветов составляет 180 Гц, что оказалось недостаточным для исключения зрительных артефактов и усталости зрения, возникающей при длительных просмотрах мелькающих изображений.
Хорошо известный зрительный артефакт одночиповых DLP-проекторов получил название эффекта "радуги". Этот эффект проявляется в том, что зритель с хорошей быстротой зрения иногда видит вместо однотонно окрашенных фрагментов изображения чередующиеся вспышки основных цветов на них. Обычно такие вспышки становятся заметными в процессе перевода зрения на фрагменты изображения, расположенные на большом расстоянии друг от друга. В современных DLP-проекторах с одним DMD частота вращения фильтра увеличена, и его стали выполнять с шестицветными секторами, что уменьшило Заметность мельканий и эффекта "радуги". Недавно фирмой TI разработан ColorWheel с шестью секторами, чередующимися в основных и дополнительных цветах, и технология BrilliantColor, обеспечивающая формирование высококачественных видеосигналов для DLP-проекторов с такими светофильтрами.
Оптическая схема DLP-проектора с трехсекторным ColorWheel показана на рис. 9а. Ее особенностью является фирменный светотехнический узел Oerlikon LightTunnel™, обеспечивающий при малых габаритах высокую пылезащищенность и минимальные потери света за счет применения высокоэффективных внутренних покрытий Silflex™ и Deflex™.
Несколько другая оптическая схема, показанная на рис. 9б, применяется в проекционных дисплеях и телевизорах (RPTV) с просветными экранами. Такая продукция благодаря меньшей цене и простоте обслуживания тем успешнее конкурирует с большеэкранными LCD- и PDP-дисплеями, чем меньше толщина конструкции. Поэтому у них используются короткофокусные объективы, специальные просветные экраны и другие ухищрения, уменьшающие габариты оптической системы по толщине, например, призма полного внутреннего отражения Oerlikon LightGate™ 7б (рис. 9б).
Первой 60-дюймовый тонкий DLP-дисплей (толщина 26 см, разрешение 1024x768) стала выпускать японская корпорация Mitsibishi четыре года назад (модель DDP60). За ней последовала американская фирма InFocus, которой удалось уменьшить толщину широкоформатных RPTV с разрешением 1280x720 до 17,4 см! Фирмы JVC и Sony недавно начали выпускать 70-дюймовые жидкокристаллические RPTV с разрешением 1920x1080 технологий D-ILA и SXRD соответственно.

Рис. 10. Схема проектора ProjectionDesign Action! Model Three 1080
Разновидностями DLP-проекторов с одним DMD-модулятором являются модели со светофильтром ColorWheel, содержащим дополнительный, прозрачный сектор. Очевидно, применение фильтра ColorWheel с прозрачным сектором увеличивает световой поток проектора, но за счет уменьшения цветовой насыщенности изображения. Заметим, что работы по совершенствованию конструкции продолжаются. В частности, предлагаются новые разновидности светофильтра ColorWheel и все более совершенные оптические системы в целом. Например, новинкой, реализованной в проекторе Action! Model Three 1080 норвежской фирмы ProjectionDesign, является показанная на рис. 10 схема с двумя дуговыми лампами, светофильтрами ColorWheel и сдвоенным LightTunnel.
Одночиповые DLP-проекторы в целом не менее успешно показывают себя на тестированиях, чем жидкокристаллические. Приз симпатий редакции получили лучший видеопроектор EISA 2006-2007 InFocus IN76 и модель BenQ РЕ7700 (см. №9"06 и №11 "06). Кроме того, на равных с ЖК-проекторами HDTV выступила модель SIM2 НТ3000 (см. № 12"06).

Видеопроекторы с полупроводниковыми источниками света
Какие бы технологии модуляции светового потока ни изобретались, очевидно, главную роль в проекционной аппаратуре играет источник света. Так как сегодня почти исчерпаны ресурсы повышения эффективности дуговых ламп, все больше внимания уделяется альтернативным источникам света. К ним относятся мощные светодиоды (Light Emitting Diode, LED) и лазеры, которые превосходят дуговые лампы по ресурсу и спектральной стабильности светового потока.

Отличие полупроводникового лазера от светодиода

Принципиальным отличием полупроводникового лазера от светодиода является наличие в p-n-структуре лазера оптического резонатора, зазор между образующими зеркалами которого равен длине волны излучения X, причем выходное зеркало резонатора полупрозрачно. В светодиодах носители заряда p и n рекомбинируют самопроизвольно (спонтанно), и возникающее при этом излучение занимает довольно широкую полосу частот. Лазерное излучение имеет вынужденный характер и возникает при очень большой плотности тока накачки (смещения p-n-структуры в проводящем направлении), исключающей спонтанную рекомбинацию носителей. При этом квант света, пролетая от одного зеркала к другому и обратно, вынуждает излучение таких же вторичных квантов, т.е. происходит усиление света. Кванты спонтанного излучения испускаются в случайных направлениях, а квант вынужденного излучения испускается в том же направлении, что и квант, вызвавший это излучение, то есть оба кванта тождественны. В идеале лазер должен создавать монохроматическое излучение, но на практике этого добиться довольно трудно.


Светодиодная проекция. Светодиоды особо интересны для разработчиков DLP-проекторов, так как позволяют создавать модели с одним DMD без светофильтра ColorWheel. Первый светодиодный DLP-проектор появился в 2005 г.
Рис. 11. Проектор Mitsubishi РК20
Это была модель Mitsubishi РК10, открывшая категорию Pocket самых маленьких проекторов, способных обслуживать экран диагональю до 60 дюймов. Источниками света у РК10 служили три мощных светодиода серии LumiLEDS® с ресурсом 10000 часов и последовательным чередованием цветов. В дальнейшем появились аналогичные проекторы других производителей, например, Box-light, Samsung и Toshiba. На выставке CES"2007 фирмой Mitsubishi был продемонстрирован модифицированный PocketProjector РК20 (рис. 11, световой поток 25 лм, разрешение 800x600, размеры 123x97x48 мм, масса 500 г). В качестве источников света у РК20 использована сборка из 8 светодиодов. Панель разъемов проектора допускает подключение любых источников информации, в том числе карты памяти SD. Предусмотрена комплектация проектора внешним аккумулятором, способным поддерживать работу проектора в течение 2 часов. Потребляемая светодиодами мощность составляет 23 Вт, а проектором в целом - 37 Вт.
Оптическая схема светодиодного DLP-проектора приведена на рис. 12. Здесь роль источников света выполняют светодиоды 1 с рефлекторами 2, последовательно излучающие световые потоки первичных цветов R, G и В. Совмещение оптических осей излучений светодиодов обеспечивается юстировкой двух дихроичных зеркал 3. Далее, отражаясь от зеркала 4, эти потоки через оптический конденсор 5 последовательно попадают на DMD-модулятор 6, после чего объективом 7 проецируются на экран. Принципиально эта схема выглядит более эффективной, чем у DLP-проекторов (рис. 9). Действительно, здесь нет фильтра ColorWheel и меньше других оптических компонентов с неизбежными световыми потерями. Кроме того, ColorWheel с любым секторным делением в светодиодных проекторах можно легко реализовать введением программного чередования цветов и даже сделать такие программы выбираемыми пользователем по критерию минимальной утомляемости при просмотре.
Рис. 13. ЖК-проектор Sony
В прошлом году компания Sony продемонстрировала самый миниатюрный на тот момент светодиодный ЖК-проектор (рис. 13). Его световой поток 50 лм создается блоком излучателей, содержащим 14 светодиодов (4 красных, 4 синих и 6 зеленых) мощностью 20 Вт при общем энергопотреблении проектора 30 Вт. Получается, что реальная световая отдача светодиодного проектора примерно 2,5 лм/Вт, что как минимум на порядок меньше световой отдачи светодиодов и существенно меньше, чем у лучших проекторов с дуговыми лампами (порядка 10 лм/Вт). Впрочем, Pocket-проекторы находятся на начальной стадии их развития. Можно ожидать, что этот показатель скоро будет улучшен совершенствованием оптики блока излучателей, которая должна собирать и направлять в оптическую систему проектора по возможности весь световой поток, создаваемый светодиодами.

Лазерная проекция. Использование полупроводниковых лазеров для проекции изображений в настоящее время считается одним из самых перспективных. В их пользу говорит более широкая гамма отображаемых цветов и длительный (десятки тысяч часов) срок службы с неизменной световой отдачей. Кроме того, изучаемый лазерами свет имеет круговую поляризацию, которая просто и с высоким КПД может быть преобразована в линейную, что позволяет исключить из ЖК-проекторов конвертеры поляризации и упростить конструкцию в целом.
Оптическая схема лазерного DLP-RPTV и дисплея приведена на рис. 14. Здесь в качестве источников света 1 используются полупроводниковые лазеры типа Oerlikon OLM™ 3000 красного (615,25 нм), зеленого (532,5 нм) и синего (465 нм) цветов с излучаемой мощностью по 3 Вт. Эти излучения поступают на дифракционные формирователи 2 (Diffractive Beam Shapers, DBS), обеспечивающие равномерность излучений по их сечениям. Далее они отражаются и совмещаются дихроичными зеркалами 3 и, отражаясь от зеркала 4, преобразуются оптическим компонентом 5 в широкий пучок лучей, соответствующий апертуре DMD-модулятора 6, а модулированный им свет отражается и проецируется объективом 7 на просветный экран дисплея.
Известно, что глаз человека обладает максимальной спектральной чувствительностью для зеленого света, и что 1 Вт мощности однородного энергетического потока с длиной волны зеленого излучения 555 нм в Международной системе единиц СИ эквивалентен световому потоку 683 лм. Расчеты показывают, что равно-энергетическое излучение белого света мощностью 1 Вт с учетом спектральной чувствительности зрения к основным цветам RGB, принятым Международной комиссией по освещению (МКО), соответствует световому потоку 250 лм. Следовательно, световой поток, излучаемый диодами 1 (рис. 14) мощностью по 3 Вт, соответствует 750 лм, что достаточно для получения яркости 250 кд/м2 40-дюймового просветного экрана, но без учета потерь энергии на оптических компонентах 2-7 схемы и самом экране (данные по их КПД не публикуются).
Американская компания Novalux разработала технологию производства мощных лазерных источников света оптического диапазона NECSEL (Novalux Extended Cavity Surface Emitting Laser), построенных на принципе удвоения на нелинейных кристаллах частоты излучения мощного инфракрасного лазера. Утверждается, что ресурс работы излучателей превышает 50 тыс. часов без снижения выходной мощности и изменения длины волны излучения в видимом диапазоне, а прогнозируемая цена трехцветного лазерного излучателя при производстве 1 млн штук в год - менее 100 долларов. Красный, зеленый и синий цвета могут быть реализованы в едином блоке излучателей (рис. 16).

Рис. 15. Лазер OLM 3000
Первый образец лазерного телевизора был изготовлен австралийской фирмой Arasor, занимающейся оптоэлектроникой, путем доработки 52-дюймового RPTV Mitsubishi, содержащего одночиповый DLP-проектор. Доработка свелась к введению в проектор лазерного источника света Novalux и использованию в телевизоре оптических компонентов Arasor. В октябре прошлого года модифицированный телевизор был продемонстрирован вместе с PDP-аналогом, показав явные преимущества по яркости изображения и чистоте цветов. Первый лазерный DLP-телевизор без светофильтра СоlorWheel на излучателях NECSEL продемонстрировала компания Mitsubishi Electric на выставке CES"2007. По утверждению фирмы, этот 52-дюймовый RPTV обеспечивает яркость 500 кд/м2, контрастность 4000:1 и имеет лучший показатель цена/качество, чем плазменные дисплеи. На той же выставке Sony продемонстрировала прототип лазерного HD-телевизора (55", 1920x1080, толщина 27 см). На выставке lnfoComm"2007 Mitsubishi анонсировала 62-дюймовый HD-телевизор с толщиной, сравнимой с толщиной плазменных дисплеев, и прогнозируемой ценой $3000. Словом, процесс пошел...
Отметим также, что идея применения микропроекторов на лазерах уже поддержана производителями аппаратуры PDA (Personal Digital Assistant) и сотовых телефонов. Уже появились лазерные пикопроекционные DLP-модули для встраивания в такую продукцию, например, фирм Texas Instruments и Motorola.
Началась эта революция с появления на выставке CES"2007 интересной разработки израильской фирмы ExPlay под названием Nano-Projector. Его особенностью является использование гибридного источника света, содержащего лазерные и светодиоды. Далее световой поток через дифракционные формирователи DBS, обеспечивающие равномерность излучения, поступает на корректирующий оптический компонент Despeckling Devise, устраняющий Заметность так называемых "спеклов" - гранулированной структуры изображения, создаваемого интерферирующими когерентными пучками лазерных излучений.
Рис. 16. Схема DLP-проектора по версии Novalux
Сформированный таким образом равномерный световой поток белого света проходит цветной, просветный ЖК-модулятор ASML (Advanced Spatial Light Modulator) с максимальным светопропусканием 60% и проецируется объективом (Lens). Дистанция наводки на резкость фиксирована и равна гиперфокальному расстоянию этого объектива, что без дополнительной фокусировки обеспечивает резкость проецируемого изображения, размеры которого по диагонали могут быть от 7 до 30 дюймов (зависит от проекционного расстояния). Совместимость нанопроектора с различными системами представления отображаемой информации обеспечивается специализированным микропроцессором Mixed Signal ASIC (Application Specific Integrated Circuit) с 40-контактным интерфейсом. Еще одним достоинством разработки ExPlay является применение жидкокристаллического модулятора, формирующего абсолютно безвредное для зрения изображение при модуляции источника света, спектр которого близок к солнечному. В данном случае это не совсем так из-за наличия в спектре лазерной составляющей (и совсем не так у лазерных DLP-проекторов, особенно с одним DMD).

Проблемы и перспективы.
Лазерные дисплеи почти по всем показателям превосходят аналогичную продукцию с источниками света других типов. Это следует из уже достигнутых результатов и из таблицы (

Магия большого экрана. Приглушенный свет, широкий угол обзора, эффект полного погружения в происходящее действо. Нет, полностью заменить кино телевидением вряд ли получится и едва ли это целесообразно - разные у них задачи. "Никогда ТВ не заменит газет - попробуйте вздремнуть, прикрыв лицо телевизором". Но противопоставлять одно другому и не стоит: видеопроекторы - вот выход для решивших устроить "свое кино". И сделать это совсем не сложно - сегодня на рынке огромное множество видеопроекторов. Разброс цен от сотен долларов до сотен тысяч за аппарат дает понять, что видеопроекторы, мягко говоря, бывают разные. Различны технологии, а значит - характеристики и сферы применения.

Рассмотрим основные технологии, используемые на рынке современных проекторов, чуть более подробно, чем это позволяет сделать пара-тройка строчек пресс-релизов.

CRT (Cathode Ray Tube или ЭЛТ - проекторы на основе электронно-лучевых трубок)

Это самая первая технология проецирования видеоизображения на внешний экран. Зародилась она еще в 50-е годы прошлого века. Решение вполне логичное для того времени: раз лучевые трубки так успешно используются в телевизорах, стоит попытаться сделать проектор на основе таких же трубок.

Общий принцип заключается в следующем: три специальные электронно-лучевые трубки повышенной яркости формируют общее изображение. Каждая трубка, обычно "черно-белая", диагональю дюймов в девять, передает один из базовых цветов (красный, зеленый и синий - окрашиваемых светофильтрами) и через свой объектив проецирует на внешний экран. Путем очень точной настройки три изображения совмещаются на проекционном экране в единое целое. Этакий гипертрофированный цветной телевизор, где в качестве электронных пушек используются электронно-лучевые трубки с объективами, а роль цветного люминофора выполняют светофильтры.

Смотреть проецируемое CRT-проектором изображение желательно в полностью затемненном помещении - яркость у них не самая высокая. Проекторы тяжелы в установке: как физически не самые легкие, так и ввиду необходимости прецизионной юстировки – приходится раздельно настраивать резкость и геометрию по всем трем цветовым каналам.

Широко распространено мнение, что эти проекторы дают самое качественное видеоизображение. Дело тут, скорее всего, вот в чем: проекторы на ЭЛТ не имеют цифровых артефактов интерполяции - принцип формирования кадра у них самый что ни на есть аналоговый. Строчная и кадровая развертки формируют кадр строго в соответствии с форматом - будь то 720х576 для PAL или 640х480 для NTSC. Даже более того, если количество строк определяется форматом и жестко фиксировано, то о количестве точек в строке в аналоговой системе говорить даже как-то странно. Более корректно - горизонтальная четкость, которая зависит от верхней граничной частоты пропускания видеоусилителя. Аналоговое вещательное качество (студийное) - это 800-900 вертикальных линий. Для примера: бытовые видеомагнитофоны формата VHS - 240 линий, S-VHS и Video Hi8 - 400 линий, цифровой формат DV - 500 линий (на компонентных выходах).

LCD (Liquid Crystal Display или ЖКИ - проекторы на основе жидкокристаллических индикаторов)

Если в мониторах на смену ЭЛТ пришли ЖК, то стоило этого ожидать и в технологиях видеопроекторов.. Остановимся подробнее только на отличиях.

Цветное изображение формируется небольшой ЖК матрицей (диагональю в дюйм-два) и мощной лампой подсветки проецируется через объектив на экран. Матрица работает на просвет, в отличие от D-ILA технологии, о которой чуть позже.

Похоже, это самая доступная на сегодня технология - проекторы стартуют долларов от 800 за бюджетные модели. Хорошо отработанные схемные решения, отсутствие механически подвижных частей (кроме, возможно, моторизированных приводов объективов), надежность цифровых технологий - вот основные причины популярности проекторов на базе LCD. В такой "бочке меда", конечно, не обойтись без проблем. Главная - видимая пикселизация изображения, вызванная технологическими причинами. Незаметные на глаз границы между пикселями (субпикселями) на ЖК мониторах при значительных увеличениях становятся различимыми на больших экранах. Проблему стараются решать с разной степенью успешности. Кто-то уменьшает до предела границы между отдельными ячейками ЖК матрицы, кто-то предлагает три матрицы - по одной для каждого базового цвета - с небольшим смещением, чтобы перекрыть черную сеточку, проецируемую на экран. Второе, что приходится решать производителям - это повышение контраста. Просветить насквозь LCD-матрицу из пары пластин, слоя жидких кристаллов, поляризатора и светофильтров - значит снизить яркость белого. Просто повысить яркость лампы подсветки - потерять глубину черного. Впрочем, в лучших образцах LCD-проекторов производители решают эти проблемы, что не может не приводить к их значительному удорожанию.

DLP (Digital Light Processing - цифровая обработка света)

В двух словах - это как пускать зеркальцем солнечные зайчики. Основой проектора является специальный DMD-чип (Digital Micromirror Device - цифровое микрозеркальное устройство). Поверхность чипа состоит из большого множества крошечных зеркал, которые могут отклоняться при подаче на них напряжения. Отраженный от такого зеркальца луч не попадает в объектив (а значит и на экран) - так формируется черная точка. Если же зеркальце не отклонено от плоскости чипа, точка на экране будет белой. Промежуточные значения яркости формируются, когда зеркальце направляет отраженный луч в объектив. Каждое зеркальце отвечает за свою точку создаваемой на экране картинки.

Придать изображению цвет в такой системе можно двумя способами. Первый - "одночиповый". Как видно из названия - в системе используется один DMD-чип (устройство, стоит заметить, недешевое). На нем последовательно образуется светотеневая картинка для каждого базового цвета (красного, зеленого, синего). Окрашивание происходит с помощью вращающегося диска-светофильтра с секторами соответствующих цветов. Второй способ - "трехчиповый". Тут дорогостоящих чипов не пожалели - для каждого из базовых цветов используется свой чип и картинка формируется сразу.

Просвечивать насквозь тут ничего не нужно, поэтому яркость изображения у таких проекторов очень высокая. Черное - полное отсутствие света, так как "зайчик" от повернувшегося зеркальца совсем не попадает в объектив, а значит значение контраста также максимально возможное. Зазоры между зеркальцами тут тоже минимальны, а потому нет присущей LCD-проекторам "сеточки" на большом экране. В первых моделях был сильно заметен "эффект радуги" - цветные ореолы вокруг контрастных или быстро движущихся объектов. Вызвано это тем, что изображение формируется последовательно тремя базовыми цветами и при движении контрастных объектов на экране получалось что-то вроде цветных бегущих огней. Борются с этим явлением по-разному: от повышения частоты последовательного проецирования картинок базовых цветов, для чего диск светофильтров содержит до семи секторов (по два на базовые красный-синий-зеленый плюс изумрудный), до использования трех чипов для одновременного проецирования.

D-ILA (Direct Drive Image Light Amplifier - усилитель света изображения с прямым управлением)

Это технология, которая совмещает в себе преимущества LCD и DLP. Возникла на пересечении их подходов в формировании изображения - надежности жидких кристаллов с эффективностью отражения света.

Световой поток модулируется в ЖК матрице, как и в LCD-проекторах, но свет не проходит матрицу насквозь, а отражается от электродов пикселей как от микрозеркалец в DLP. Свет проходит только через стекло, прозрачные электроды и слой жидких кристаллов. Вся же электронная разводка (переключатели и компоненты, обеспечивающие адресацию к ячейкам матрицы) остается под слоем отражающих электродов и не препятствует прохождению света как в "чистом" LCD-проекторе. Отражает практически вся поверхность матрицы, за исключением изоляции между электродами.

Главным преимуществом D-ILA технологии над LCD и DLP является высокое отношение апертуры. Если для LCD технологии площадь, пропускающая свет сквозь себя, составляет до 60% от общей площади пикселя, для DLP площадь отражения микрозеркальцем - около 80%, то для технологии D-ILA эта площадь может достигать 95%. Это делает пикселизацию изображения практически незаметной. Кроме того, уменьшаются потери фототеплового преобразования, так как почти весь световой поток отражается, что позволяет увеличить мощность лампы подсветки. Другой стороной медали (высокого отношения апертуры) является то, что матрицу HD разрешения можно сделать не крупнее чем диагональю в один дюйм, а значит получить довольно компактный проектор.

LDT (Laser Display Technology - технология лазерного дисплея)

Новейшая технология проецирования видео на большой экран. Первые серийные образцы появились только в 2000 году, несмотря на то, что сами лазеры появились относительно давно. Мешало то низкое КПД и высокое энергопотребление газоразрядных лазеров, то слишком малая мощность и "недостаток цветности" лазеров полупроводниковых. Но вот технологические ограничения были преодолены, и на рынок выходят проекционные телевизоры и видеопроекторы на полупроводниковых лазерах.

Три лазера излучают свет в красном, зеленом и синем спектре видимого диапазона. Яркость излучения каждого лазера изменяется электрооптическими модуляторами в соответствии с видеосигналом на входе. Три модулированных цветных луча собираются зеркалами и призмами в единый пучок, который подается на вращающиеся зеркала строчной развертки и качающееся зеркало кадровой - подобно растру ЭЛТ.

Основным отличием LDT проектора является то, что ему не нужен объектив. Лазер дает параллельный пучок света, с одинаково резким пятном на большом диапазоне расстояний. Это как избавляет вас от необходимости наводить на резкость при установке проектора на разных расстояниях от экрана, так и дает совершенно новое качество: возможность проецирования на самые различные, в том числе и неровные, поверхности. Даже если проецировать изображение на цилиндрические поверхности или на плоские, но под большим углом - изображение будет резким по всей площади. Чистота и постоянство базовых цветов, определяемых характеристиками используемых лазеров, дают яркую, сочную и контрастную картинку, недоступную при использовании прочих технологий.

Выбор проектора для дома или домашнего кинотеатра довольно сложная процедура, понадобится учитывать ряд определенных факторов. Большое количество моделей с различными функциями часто могут запутать покупателей. В статье будут рассмотрены характеристики, которые помогут упростить покупку подобной техники.

Сегодня эти устройства используются во многих сферах . Домашние проекторы позволяют насладиться просмотром фильма на большом экране в домашних условиях или показать презентацию в школе, на работе. При этом диагональ экрана может значительно превышать показатель 100 дюймов. Размер проектора небольшой, так что его можно без проблем поместить в любой гостиной. Устройство для домашнего кинотеатра работает при выключенном свете.

Как выбрать проектор

При выборе подобной техники понадобится учитывать ряд нюансов, которые будут напрямую влиять на качество работы и функциональность. Яркость, качество цветопередачи и контрастность являются ключевыми характеристиками при покупке. На дополнительные свойства также стоит обращать внимание, так как зачастую они позволяют улучшить впечатление от его использования.

Яркость

Яркость видеопроектора для дома характеризуется мощностью испускаемого им луча света. Так утверждают, потому что яркость от источника света будет варьироваться в зависимости от размера экрана. Этот показатель измеряется в люменах и может колебаться от 2700 до 20000 Лм. Стоит учитывать, что при настройке передачи цветов яркость и контрастность будут уменьшаться.

Также яркость может меняться в зависимости от выбранного режима . Большинство моделей имеют яркий, презентационный и точный режимы. Последний режим будет иметь максимальную точность и при этом минимальную яркость.

Если проектор будет использоваться при дополнительном освещении, яркость должна перебивать этот фоновый свет. При большой освещенности качество картинки будет уходить на второй план, куда важнее будет сила яркости. От этого показателя будет напрямую зависеть и стоимость . Если проектор будет использоваться в специальной затемненной комнате, показателя в 700 люменов будет вполне достаточно. Для простых гостиных или других комнат лучше выбирать модели с яркость порядка 2000 Лм.

Контрастность

Под характеристикой контрастности подразумевается соотношение черного и белого цвета. Этот показатель влияет на качество картинки и уровень ее восприятия человеком. Уровень контрастности можно определить по качеству изображения неподвижных предметов или вещей в движении.

При низком показателе этого свойства темные предметы могут слиться с черным цветом, и их трудно будет увидеть на изображении. Чтобы избежать этого понадобится правильно настроить гамму для разных режимов просмотра.

Для оценки уровня контрастности специалисты рекомендуют учитывать следующие факторы :

  • На эту характеристику влияет уровень освещения в помещении.
  • Контрастность не сильно влияет на разборчивость отображения надписей при дополнительном свете.
  • Нюансы цветопередачи не зависят от контрастности.
  • Яркость способна в определенных условиях нивелировать недостаток контраста.
  • Заявленный уровень этой характеристики соответствует только при использовании устройства в освещаемой комнате, особенно для дешевых.

Технология проецирования — виды проекторов

Существует большое количество технологий, каждая из которых имеет свои преимущества и недостатки .
Наиболее распространенными являются следующие варианты матриц:

  • Электронно-лучевые трубки . К этой технологии относятся самые первые проекторы, которые были созданы еще в 70-х годах. Такие устройства отличаются большим разрешением, но при этом не имеют высокой яркости. Их вес и стоимость крайне большие, так что в домашних условиях они практически не используются.
  • Жидкокристаллические . Для этих устройств используется совершенно другая технология. Производством таких проекторов занимается бренд Epson. При их создании используется три дисплея с полисиликоновым основанием, это позволяет гарантировать приемлемую цветопередачу и продолжительный срок эксплуатации.
  • Микрозеркала . Эта технология позволяет добиться более насыщенной картинки в сравнении с жидкокристаллическими экранами. Это достигается благодаря меньшему интервалу между зеркалами, их работе на отражение, а также минимальной потере света. Принцип работы этой технологии заключается в последовательном выводе цветов на экран.
  • Трехматричные . В устройствах, изготовленных по этой технологии, свет отфильтровывается при прохождении через зеркала. К минусам такой разработки можно отнести недостаток черного цвета, возможное выгорание матрицы и эффект решетки.
  • Отражающие Lcos . Эта технология предусматривает пропуск потока света путем открытия или закрытия отражающего кристалла. Большая часть подобных устройств имеет матрицу с разрешением 1365х1024. К недостаткам можно отнести высокую стоимость.

Цветопередача

Этот параметр характеризует плавность перехода от черного цвета к любому базовому оттенку. Также от него будет зависеть возможность регулирования цветопередачи. Качественные проекторы позволяют настроить насыщенность белого тона к любому базовому цвету. Существует возможность регулирования по нарастанию или смещению.

Объектив

Зачастую большинство проекторов выводят изображение под прямым углом к объективу или с незначительным вертикальным сдвигом. Такое смещение называют офсетом, но он не всегда указывается в характеристиках. Проекторы средней ценовой категории имеют дополнительное горизонтальное смещение, которое можно регулировать. В дорогостоящих моделях такие настройки можно выполнять с помощью пульта и сохранять в памяти устройства. Эта функция поможет приспособить проектор к гостиной или другой комнате любого размера.

Режим 3D

Существенным минусом просмотра видео с наличием 3D является потеря мощности светового потока устройства. Так что для такого режима лучше выбирать гаджет с дополнительной яркостью.

Также при просмотре возможно двоение и мерцание изображения. В проекторах для реализации 3D может использоваться активный и пассивный способ.

Разрешение

Данный параметр характеризует количество пикселей по ширине и высоте, которые формируют изображение. Чем выше этот показатель, тем более четкой будет картинка при одинаковом размере экрана. Бюджетные модели имеют разрешение 800х600, качество картинки при этом будет низким. А вот разрешение Full HD (1920х1080), позволит насладиться просмотром фильма в полной мере.

Проекционное отношение

Проектор для дома лучше всего выбирать с функцией горизонтального и вертикального сдвига линз, которая переместит объектив и поможет в построении правильного изображения на экране даже при установке устройства в углу помещения. При этом разрешение и четкость изображения не будут урезаны.

Разъемы и интерфейсы

Этот нюанс также является достаточно важным. Большое количество разъемов позволят подключить дополнительную аппаратуру или акустическую систему. Для подключения каких-либо приставок обязательно нужно подобрать подходящий видео интерфейс. Чаще всего используются DVI, VGA и HDMI разъемы. Также имеется возможность приобретения переходников, в случае если интерфейс не подойдет.

Экраны для проекторов

Проекционный экран поможет передать изображение на экран без потери качества . Существуют решения с электрическим или ручным управлением, портативные и стационарные. Для домашнего использования оптимальным выбором станет стационарный экран с электрическим управлением.

Сколько стоит проектор

По стоимости можно выделить следующие категории:

  • Бюджетные . Их цена находится в пределах 1000 долларов. К минусам такого выбора можно отнести недостаток яркости и контрастности, а также невысокое разрешение.
  • Средний класс . Устройства стоимостью до 3000 долларов не имеют существенных недостатков. В сравнении с бюджетными вариантами отличаются дополнительными функциями, оптимальными показателями яркости и контраста.
  • Флагманы . Устройства стоимостью свыше 3000 долларов имеют современные технологии проецирования с ультравысоким разрешением и отличным изображением.

Проектор для домашнего использования будет иметь среднюю стоимость в 2000 долларов. Такое устройство будет иметь оптимальное соотношение цены и качества.

Как работает проектор

Устройство подключается к компьютеру, камере или другому девайсу с подходящим разъемом и транслирует изображение или видео на специальный экран. Проецирование картинки осуществляется по одной из рассмотренных ранее технологий.
Принцип работы следующий:

  1. Лазер или специальная лампа создает 3 цветовых компонента, которые в дальнейшем комбинируются.
  2. После чего сложная технология фокусировки и развертки проецирует изображение . При этом используется система зеркал.
  3. Появляется возможность вывести картинку на любую поверхность, в том числе и неровную.

Для получения изображения объекта нам необходим как минимум сам объект и линза (или объектив, состоящий из нескольких линз, но работающий, как одна). Чтобы понять работу проектора, сначала вспомним курс физики. Основное свойство линзы заключается в следующем: все лучи, попадающие в линзу параллельно ее оптической оси, пройдя через линзу, сходятся в одну точку на оптической оси. Эта точка называется фокусом, а расстояние от центра линзы до этой точки -- фокусным расстоянием. Верно и обратное: любой луч, проходящий через фокус линзы и попадающий в линзу, покидает ее параллельно оптической оси. Кроме того, любой луч, проходящий через центр линзы, сохраняет свое направление.

Смотрим на схему:

Имеем объект O , находящийся за фокусом линзы (F ). Чтобы понять ход лучей, нам достаточно рассмотреть две крайние точки объекта (все остальные точки будут подчиняться той же схеме). Кроме того, при геометрическом построении достаточно рассмотреть всего по два луча для каждой точки (пунктирные линии): один проходящий через центр линзы, другой -- параллельно оптической оси. Каждая пара лучей, проходящие от объекта через линзу, пересекаются с другой стороны на расстоянии, большем удвоенного фокусного расстояния линзы. При этом все остальные лучи (сплошные линии), исходящие от объекта, пересекутся там же. В месте пересечения лучей и будет сформировано изображение объекта O" , причем изображение будет перевернуто и увеличено. Для того, чтобы его увидеть, нужно в эту точку поместить экран.

Для нашего проектора схема с учетом пропорций компонентов будет иметь примерно следующий вид (пунктирные линии -- не реальные лучи, а используются только для геометрического построения) :

Для того, чтобы получить яркое изображение, объект должен излучать свет. В нашем случае объект излучать свет не может, зато в наших силах его подсветить, установив за объектом лампу. В обычных кинопроекторах лампа освещает кинопленку, в нашем случае проецируемым объектом является матрица (панель) от LCD монитора. Подробнее о матрице см. соответствующий раздел .

Если просто установить за объектом лампу, получим следующую картину:

Выходит, что в объектив попадает только часть лучей от лампы, проходящих сквозь панель. В итоге на экране мы получим лишь часть изображения. Чтобы этого избежать, используется вторая линза. Размер этой линзы должен быть не меньше размера панели.

Изготовить стеклянную выпуклую линзу такого размера практически нереально, а ее вес исчислялся бы десятками килограмм. Поэтому в проекторе используется плоская линза Френеля. В форуме и на этом сайте используется уменьшительно-ласкательно-жаргонное наименование "френель" (женского рода). Подробнее о линзе Френеля см. следующий раздел . Сейчас нам достаточно знать, что френель плоская, тонкая, но ведет себя, как обычная выпуклая линза. Установив френель между лампой и панелью, получаем вот что:

На этой схеме ход лучей несколько упрощен, подробнее см. в разделе оптика .

Если рассматривать в качестве источника света лампу (любой конструкции), приходится принимать во внимание, что свет излучается ей во все стороны практически равномерно. Наша задача -- собрать максимум светового потока на френели. Для этого используются два дополнительных элемента -- сферический отражатель и конденсорная линза.

Сферический отражатель устанавливается за лампой и отражает все лучи от лампы обратно. Строго говоря, он формирует зеркальное изображение лампы на самой лампе. Лампа при этом располагается в центре кривизны зеркала, т.е. на расстоянии от поверхности, равном радиусу кривизны сферы. Это расстояние, в свою очередь, равно удвоенному фокусному расстоянию сферического зеркала. При использовании галогенной лампы, где свет излучается непрозрачной нитью, это зеркальное отражение нити частично затеняется самой нитью. При использовании металлогалогенной лампы, в которой свет излучается электрической дугой, эффективность отражателя наиболее высока -- лучи проходят от отражателя сквозь дугу, фактически удваивая эффективный световой поток.

В правильности термина "конденсораная линза" я в данном случае не уверен. Кроме этого названия мне еще встречалось "менисковая линза". Если точно знаешь, как правильно, сообщи, исправлю.

Конденсорная линза -- это выпукло-вогнутая линза, устанавливаемая между лампой и френелью. Ее форма позволяет захватить более широкий пучок света от лампы (другими словами, увеличить телесный угол светового пучка), увеличивая таким образом яркость. Длина системы при этом также уменьшается. Конденсорные линзы ставятся во многих оверхед-проекторах. Отдельно достать конденсорную линзу довольно сложно.

Все рассматриваемые выше схемы являются, так сказать, линейными, т.е. все компоненты лежат на одной оси. Это наиболее простой, но наименее компактный вариант. Чтобы создать более компактный аппарат, можно использовать зеркала. Причем необходимы зеркала с внешним отражающим слоем, чтобы изображение не двоилось. Вот некоторые варианты использования зеркал:

Вопрос на сообразительность: что напоминает левая схема? Правильно, оверхед-проектор.

Итак, при строительстве проектора главная задача -- реализовать одну из вышеуказанных схем. А это значит, что необходимо изготовить корпус, раздобыть объектив, френель, матрицу, лампу, отражатель, конденсорную линзу (если получится), зеркала (если нужно), установить это все в корпус и обеспечить вентиляцию. Ну или не изготавливать корпус, если речь идет об использовании оверхед-проектора.