Как определить переменный ток. Отличие постоянного тока от переменного и их особенности

В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток - это движение электронов в проводнике, напряжение - это то, что приводит их (электроны) в движение.

Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.

Отличие постоянного тока от переменного

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, "течет" в все время одну сторону. Например, по металлическим проводам от плюсового зажима источника напряжения к минусовому (в электролитах его создают положительные и отрицательные ионы). Сами же электроны движутся от минуса к плюсу, но ещё до открытия электрона договорились считать, что ток течет от плюса к минусу и до сих пор при расчетах придерживаются этого правила.

Чем же от постоянного отличается переменный ток (напряжение)? Из самого названия следует, что он меняется. Но - как именно? Переменный ток меняет за период как свою величину, так и направление движения электронов. В наших бытовых розетках - это ток с синусоидальными (гармоническими) колебаниями частотой 50 герц (50 колебаний в секунду).

Если рассмотреть замкнутую цепь на примере лампочки, то мы получим следующее:

  • при постоянном токе электроны будут течь через лампочку всегда в одном направлении от (-) минуса к (+) плюсу
  • при переменном направление движения электронов будет меняться в зависимости от частоты генератора. т. е. если в нашей сети частота переменного тока 50 герц (Hz), то направление движения электронов за 1 секунду поменяется 100 раз. Таким образом + и - в нашей розетке меняются местами сто раз в секунду относительно ноля . Именно поэтому мы можем воткнуть электрическую вилку в розетку "вверх ногами" и все будет работать.

Переменное напряжение в нашей бытовой розетке изменяется по синусоидальному закону. Что это значит? Напряжение от нуля увеличивается до положительного амплитудного значения (положительный максимум), потом уменьшается до нуля и продолжает уменьшаться дальше - до отрицательного амплитудного значения (отрицательный максимум), затем снова увеличивается, переходя через ноль и возвращается к положительному амплитудному значению.

Говоря другими словами, при переменном токе постоянно меняется его заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Получается, что за секунду электроны 100 раз меняют направление своего движения и свою полярность, с положительной на отрицательную (помните, что их частота составляет 50 герц - 50 периодов или колебаний в секунду?).



Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них - сложность конструкции самого генератора. А генератор переменного тока обладает более простой конструкцией, а потому прост и дешев в эксплуатации.

Дело в том, что одинаковую мощность можно передать высоким напряжением и маленьким током или наоборот: низким напряжением и большим током. Чем больше ток, тем больше нужно сечение провода, т.е. провод должен быть толще. Для напряжения толщина провода не важна, были бы изоляторы хорошие. Переменный ток (в отличие от постоянного) просто легче преобразовывать.

И это - удобно. Так по проводу относительно небольшого сечения электростанция может отправить пятьсот тысяч (а иногда и до полутора миллионов) вольт энергии при токе в 100 ампер практически без потерь. Потом, например, трансформатор городской подстанции "заберет" 500 000 вольт при токе в 10 ампер и "отдаст" в городскую сеть 10 000 вольт при 500 амперах. А районные подстанции уже преобразуют это напряжение в 220/380 вольт при токе порядка 10 000 ампер, для нужд жилых и промышленных кварталов города.

Разумеется схема упрощена и имеется в виду вся совокупность районных подстанций в городе, а не какая-то конкретно.

Персональный компьютер (ПК) работает по схожему принципу, но - в обратную сторону. Он преобразует переменный ток в постоянный а затем, при помощи , понижает его напряжение до значений, необходимых для работы всех компонентов внутри .

В конце 19-го века всемирная электрификация вполне могла пойти и другим путем. Томас Эдисон (считается, что именно он изобрел одну из первых коммерчески успешных ламп накаливания) активно продвигал свою идею постоянного тока. И если бы не исследования другого выдающегося человека, доказавшего эффективность тока переменного, то все могло бы быть по другому.

Гениальный серб Никола Тесла (некоторое время работавший у Эдисона), первым спроектировал и построил генератор многофазного переменного тока, доказав его эффективность и преимущество по сравнению с аналогичными разработками, работавшими с постоянным источником энергии.

Сейчас давайте рассмотрим "места обитания" постоянного и переменного тока. Постоянный, например, находится в нашем телефонном аккумуляторе или батарейках. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в местах его хранения (аккумуляторах).

Источники постоянного напряжения это:

  1. обычные батарейки применяемые в различных приборах (фонарики, плееры, часы, тестеры и т.д.)
  2. различные аккумуляторы (щелочные, кислотные и т. п.)
  3. генераторы постоянного тока
  4. другие специальные устройства, например: выпрямители, преобразователи
  5. аварийные источники энергии (освещение)

Например, городской электротранспорт работает на постоянном токе напряжением в 600 Вольт (трамваи, троллейбусы). Для метрополитена оно выше - 750-825 Вольт.

Источники переменного напряжения:

  1. генераторы
  2. различные преобразователи (трансформаторы)
  3. бытовые электросети (домашние розетки)

О том, как и чем измерять постоянное и переменное напряжение мы с Вами говорили вот , а напоследок (всем тем кто дочитал статью до конца) хочу рассказать небольшую историю. Озвучил ее мне мой шеф, а я перескажу с его слов. Уж больно она к нашей сегодняшней теме подходит!

Поехал он как-то в служебную командировку с нашими директорами в соседний город. Налаживать дружественные отношения с тамошними IT-шниками:) А сразу возле трассы там такое замечательное местечко есть: родник с чистой водой. Возле все обязательно останавливаются и воду набирают. Это, своего рода, уже традиция.

Местные власти, решив облагородить данное место, сделали все по последнему слову техники: вырыли сразу под родничком большую прямоугольную яму, обложили ее ярким кафелем, перелив сделали, подсветку светодиодную, бассейн получился. Дальше - больше! Сам родник "упаковали" в крапленую гранитную крошку, придали ему благородную форму, иконку над жерлом под стекло вмуровали - святое место, значится!

И последний штрих - поставили систему подачи воды на фотоэлементе. Получается, что бассейн всегда наполнен и в нем "булькает", а чтобы набрать воду непосредственно из родничка, нужно поднести руки с сосудом к фотоэлементу и оттуда - "проистекает" :)

Надо сказать, что по дороге к источнику наш шеф рассказывал одному из директоров, как это круто: новые технологии, вайфай, фотоэлементы, сканирование по сетчатке глаза и т.д. Директор был классическим технофобом, поэтому придерживался противоположного мнения. И вот, подъезжают они к родничку, подносят руки куда следует, а вода не течет!

Они и так, и сяк, а результата - ноль! Оказалось, что тупо не было напряжения в электрической сети, которая питала эту шайтан-систему:) Директор был "на коне"! Отпустил несколько "контрольных" фраз по поводу всех этих п...х технологий, таких же п...х элементов, всех машин вообще и данной конкретной в частности. Зачерпнул канистрой прямо из бассейна и пошел в машину!

Вот и получается, мы можем настроить все что угодно, "поднять" навороченный сервер, предоставить лучший и востребованный сервис, но, все равно, самый главный человек - это дядя Вася-электрик в ватнике, который одним движением руки может организовать полный skipped всей этой технической мощи и изяществу:)

Так что помните: главное - качественное электропитание. Хороший (источник бесперебойного питания) и стабильное напряжение в розетках, а все остальное - приложится:)

На сегодня у нас - все и до следующих статей. Берегите себя! Ниже - небольшое видео по теме статьи.

Постоянный электрический ток — это движение частиц с зарядом в определенном направлении. То есть его напряжение или сила (характеризующие величины) имеют одно и то же значение и направление. Это то, чем постоянный ток отличается от переменного. Но рассмотрим все по порядку.

История появления и «войны токов»

Постоянный ток раньше называли гальваническим из-за того, что его открыли в результате гальванической реакции. пробовал передавать его по линиям электрических передач. В то время велись нешуточные споры между учеными по этому вопросу. Они даже получили название «войны токов». Решался вопрос о выборе в качестве основного, переменного или постоянного. «Борьба» была выиграна переменным видом, так как постоянный несет существенные потери, передаваясь на расстоянии. Зато трансформировать переменный вид не составляет никакого труда, это то, чем постоянный ток отличается от переменного. Поэтому последний легко передавать даже на огромные расстояния.

Источники постоянного электрического тока

В качестве источников могут служить аккумуляторы или другие приборы, где он возникает посредством химической реакции.

Это и генераторы, где он получается в результате а после этого выпрямляется за счет коллектора.

Применение

В различных устройствах постоянный ток применяется довольно часто. С ним работают, например, многие бытовые приборы, зарядные устройства и генераторы автомобиля. Любой портативный аппарат запитывается от источника, вырабатавающего постоянный вид.

В промышленных масштабах его применяют в двигателях и аккумуляторах. А в некоторых странах им оснащают высоковольтные линии электропередач.

В медицине с помощью постоянного электрического тока проводят оздоровительные процедуры.

На железной дороге (для транспорта) используют и переменный, и постоянный виды.

Переменный ток

Чаще всего, впрочем, применяют именно его. Здесь среднее значение силы и напряжения за определенный период равны нулю. По величине и направлению он постоянно изменяется, причем с равными промежутками времени.

Чтобы вызвать переменный ток, используют генераторы, в которых во время электромагнитной индукции возникает Это осуществляется при помощи магнита, вращаемого в цилиндре (роторе), и статора, выполненного в виде неподвижного сердечника с обмоткой.

Переменный ток используют в радио, телевидении, телефонии и многих других системах ввиду того, что его напряжение и силу возможно преобразовывать, почти не теряя энергию.

Широко применяют его и в промышленности, а также в целях освещения.

Он может быть однофазным и многофазным.

Который изменяется согласно синусоидальному закону, является однофазным. Он изменяется в течение определенного промежутка времени (периода) по величине и направлению. Частота переменного тока является числом периодов за секунду.

Во втором случае самое большое распространение получил трехфазный вариант. Это система из трех электроцепей, которые имеют одинаковую частоту и ЭДС, сдвинуты по фазе на 120 градусов. Ее используют для питания электрических двигателей, печей, осветительных приборов.

Многими разработками в сфере электричества и практическим их применением, а также воздействием на переменный ток высокой частоты человечество обязано великому ученому Николе Тесла. До сих пор не все его труды, оставшиеся потомкам, являются познанными.

Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?

Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени. Параметры, на которые при этом обращают внимание, это частота и напряжение. В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц. Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду. Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.

Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.

Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в которые находятся вблизи домов, предприятий и остальных конструкций.

В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.

Преобразование

Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:

  • подключение моста с четырьмя диодами, имеющих необходимую мощность;
  • подключение фильтра или конденсатора на выход с моста;
  • подключение стабилизаторов напряжения для уменьшения пульсаций.

Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.

Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего .

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .

Стороны же в и г рамки - нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя , можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, - значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки - противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.


Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока - самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота - параметры переменного тока

Переменный ток характеризуется двумя параметрами - периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.



Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um - общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u - общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени - T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока - период, амплитуду и частоту , - которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается связана с частотой f соотношением 2пиf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f.

Итак, мы пришли к выводу, что 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2пи радиан, где пи=3,14. Таким образом, окончательно получим 2пиf. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на посто янное число 6,28.

Переменный ток – или AC (Alternating Current ). Обозначение (~).

Электрический ток называется переменным , если он в течение времени меняет свое направление и непрерывно изменяется по величине.

Переменный ток , который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:

i = I m sin(2πft)

График переменного тока

  • i – мгновенное значение тока
  • Im – амплитудное или наибольшее значение тока
  • f – значение частоты переменного тока
  • t – время

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.


Период переменного тока

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц (Гц):

1гц = 10 3 кгц = 10 6 мгц

Τ – период – время одного полного изменения переменной величины.

Если в 1 секунду происходит 1 период Τ , то частота f = 1 Гц (Герц).

1c = 10 3 мс = 10 6 мкс = 10 12 нс

В Российской Федерации период Τ переменного тока принят равным 0,02 секунды,следовательно по формуле f = 1/Τ можно определить частоту переменного тока:

f = 1/0,02 = 50 Гц

ω – угловая скорость

Помимо частоты f при изучении цепей переменного тока вводится понятие угловой скорости ω . Угловая скорость ω связана с частотой f следующим соотношением:

При частоте 50 Гц угловая скорость равна 314 рад/с (2 × 3,14 × 50 = 314).

Мгновенное значение (i,u,e,p) – значение величины в данный момент, мгновенное.

Максимальное или амплитудное значение (Im,Um,Em,Pm).

Эффективное значение тока – это величина переменного тока, равная такому току, который на сопротивлении R , создаёт тепловыделение равное данному переменному току, за тоже время t (I,U,E,P).

I =
U =

Получение синусоидальной кривой

В системе декартовых прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью 0х и радиусом-вектором r . Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси 0х. От окружности (точка а) по оси 0х отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.


Синусоида переменного тока

Аналогичное построение проведем, увеличивая угол β , пока радиус-вектор повернется на угол β = 360° , и получим точки аналогично точке с. Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока .

Понятие о фазе

Если две переменные величины одновременно проходят свои нулевые и максимальные значения, то они совпадают по фазе.

Если две переменные величины не одновременно проходят свои нулевые и максимальные значения, то они не совпадают по фазе.

В радиотехнике используются понятия:

1. Активное сопротивление (R a)

2. Индуктивное сопротивление (X L – реактивное сопротивление)

3. Ёмкостное сопротивление (X C – реактивное сопротивление)

Понятие об активном сопротивлении

Если по проводнику протекает ток, то вследствие явления самоиндукции, электроны распространяются не равномерно по сечению проводника, вследствие чего растёт сопротивление проводника.

Явление неравномерного распространения зарядов по сечению проводника называется – поверхностный эффект. Чем больше частота, тем больше сопротивление.

ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Переменный электрический ток – это электрический ток, изменяющийся во времени. К переменному току относят различные виды импульсных, пульсирующих периодических и квазипериодических токов. В технике под переменным током обычно подразумевают периодические токи переменного направления. Чаще всего применяется переменный ток, сила которого меняется во времени по гармоническому закону (гармонический , или синусоидальный переменный ток).

Рассмотрим процессы, происходящие в цепях, по которым протекает переменный гармонический ток. Предположим, что режим прохождения тока установился, т.е. собственные колебания в цепи затухли, и физические процессы в цепи представляют собой вынужденные колебания. Такие предположения позволяют избежать математических трудностей, связанных с решением дифференциальных уравнений, и существенно упростить анализ процессов происходящих в цепях переменного тока.

Рассмотрим частные случаи, когда переменное напряжение U (t ) = U 0 ·coswt подается или на сопротивление R , или на емкость C , или на индуктивность L .

Сопротивление R

Если в качестве нагрузки выступает активное сопротивление R , то ток в цепи определяется соотношением:

Емкость С

Если цепь состоит только из емкости C , то изменение тока со временем определяется скоростью изменения заряда конденсатора I = dq /dt . Так как q = C ·U (t ), то

, (15)

где I 0 = w·C ·U 0.

То есть ток в цепи, состоящей только из емкости, изменяется со временем, так же как и напряжение, по синусоиде, но опережает по фазе напряжение на . Временнáя зависимость напряжения и силы тока в такой цепи представлена на рис. 15.

Кроме того, видно, что если ввести понятие емкостного сопротивления , то амплитудные значения напряжения U 0 и тока I 0 связаны законом Ома

. (16)

Сдвиг по фазе можно объяснить следующим образом. Возьмем заряженный конденсатор, который начинает разряжаться. Это значит, что напряжение начинает убывать, а ток - увеличиваться по абсолютной величине. Когда напряжение на обкладках конденсатора окажется равным нулю, ток достигнет максимума. Далее происходит изменение знака напряжения, что соответствует перезарядке конденсатора. После чего напряжение по абсолютной величине начинает увеличиваться, а сила тока уменьшаться. Описанные процессы иллюстрируют возникновение сдвига по фазе между напряжением и силой тока на .

Индуктивность L

Пусть через катушку (соленоид), характеризующуюся постоянной самоиндукции (или индуктивностью ) L , проходит переменный ток I (t ) = I 0 ·coswt .

По закону электромагнитной индукции (Фарадея - Ленца) в любом замкнутом контуре при изменении магнитного потока через поверхность (площадь), ограниченную этим контуром, возникает ЭДС индукции E, пропорциональная скорости изменения магнитного потока

,

где Φ – магнитный поток, k – коэффициент (в системе СИ k = 1). Знак «минус» означает, что направление индукционного тока таково, что создаваемое им магнитное поле препятствует изменению первичного магнитного потока.

Частным случаем проявления этого эффекта является возникновение самоиндукции при любых изменениях тока в цепи. В простейшем случае (при отсутствии ферромагнетиков) Φ = L ·I , где L – индуктивность проводника, зависящая от его размеров, формы и свойств среды. Изменения тока вызывают изменения создаваемого им магнитного потока, что в свою очередь приводит к появлению ЭДС самоиндукции E, равной

Согласно (14), (16) и (19) закон Ома справедлив для амплитудных значений напряжения и тока.

Закон Ома для мгновенных значений переменного тока можно использовать только для случая активного сопротивления R .

Величину переменного тока можно охарактеризовать амплитудными значениями тока или напряжения. Это целесообразно делать, например , при подборе изоляции каких-либо электротехнических деталей, так как «пробои» возникают именно в моменты, когда переменное напряжение достигает максимальных значений.

На практике обычно вводят понятие эффективных (действующих ) значения величин силы тока I эфф и напряжения U эфф, чтобы формула для поглощаемой (отдаваемой сопротивлению) мощности имела тот же вид, что и для цепей постоянного тока :

Легко показать, что эффективное значение переменного тока I эфф равно такому значению постоянного тока I , который выделяет на

сопротивлении R за одно и то же время t столько же тепла Q , что и данный переменный ток.

В обозначениях переменного напряжения U , и силы тока I , под U и I обычно понимают эффективные значения тока и напряжения. Напряжение сети переменного тока «220В» является именно эффективным напряжением, и именно эффективные значения тока и напряжения измеряют амперметры и вольтметры.

ПОНЯТИЕ О ВЕКТОРНЫХ ДИАГРАММАХ

Реальные электрические цепи представляют какие-либо комбинации простейших элементов R , C и L .

Чтобы определить связь между током и напряжением в цепи, включающей несколько различных элементов, необходимо уметь складывать гармонические колебания одной частоты, но с разными амплитудами и фазами . Такую задачу аналитически бывает решить сложно, но существует графический метод, позволяющий сделать это достаточно просто и наглядно, – это метод векторных диаграмм .


Данный метод основан на том, что изменяющуюся по гармоническому закону величину, например , a (t ) = A 0 ·sin(wt + j) (или a (t ) = A 0 ·cos(wt + j)), можно представить как проекцию на ось ординат (или ось абсцисс) радиус-вектора, вращающегося против часовой стрелки с угловой скоростью w (рис. 16) – a 1 = A 0 ·sinωt 1 , a 2 = A 0 ·sinωt 2 .

Длина такого вектора должна быть равна амплитуде колебаний, т.е. в данном случае равна A 0 1. Начальное его положение при t = 0 должно составлять с осью X угол j (j – начальная фаза колебаний). Совокупность нескольких векторов, изображающих гармонически изменяющиеся величины одной и той же частоты называется векторной диаграммой .

Взаимная ориентация векторов сохраняется в любой момент времени, если складываемые колебания имеют одну и ту же частоту, поэтому для построения векторных диаграмм токов и напряжений достаточно указать их фазовые углы в момент t = 0.


При построении векторных диаграмм используется математическая теорема, согласно которой проекция геометрической суммы векторов на любую ось равна алгебраической сумме их проекций на ту же ось . Поэтому задача сложения выражений типа U (t ) = U 0 ·sin(wt + j) сводится к простой графической задаче сложения векторов (рис. 17 – u 1 = U 10 ·sinφ 1 , u 2 = U 20 ·sinφ 2 , u = u 1 + u 2 = U 0 ·sinφ).

Последовательное соединение элементов

Рассмотрим последовательное соединение емкости, индуктивности и активного сопротивления, к которым приложено переменное напряжение U (t ) = U 0 ·coswt (рис. 18).

В случае последовательного соединения в каждый момент времени сила тока во всех участках цепи одна и та же, а сумма мгновенных падений напряжения на элементах равна значению приложенного к цепи напряжения в тот же момент времени:

U R совпадает по фазе с током, значит, вектор U 0R направлен так же как вектор I 0 , U C отстает от тока на p/2, значит, U 0C развернут на p/2 «назад» относительно U 0R , а U 0L , соответственно «вперед» (рис. 19,а ). Поскольку эти векторы вращаются с одной частотой w против часовой стрелки, то их взаимное расположение друг относительно друга не изменяется, и найти суммарное напряжение U 0 можно в любой момент времени (рис. 19,б ).

Из рис. 19,б видно, что

Величина называется полным сопротивлением цепи или импедансом , а формула (26) - обобщенным законом Ома . По аналогии с треугольником, образуемым амплитудными значениями падений напряжения, можно построить треугольник сопротивлений (рис. 20) Графически полное сопротивление будет представлять собой гипотенузу прямоугольного треугольника. Один катет такого треугольника равен R – его называют активным сопротивлением . Другой катет равен (w·L – ), эту составляющую полного сопротивления называют реактивным сопротивлением и обычно обозначают X :

При условии w·L = полное сопротивление цепи минимально и равно активному сопротивлению R 0 . Формула (26) показывает, что величина переменного тока в цепи существенно зависит от его частоты. При частоте w = амплитудные значения тока принимают максимальные значения I 0max = U 0 /R . Такое явление называют резонансом напряжений, а частоту w = называют резонансной частотой электрической цепи . Величина тока при резонансе получается тем больше, чем меньше активное сопротивление цепи.

Параллельное соединение элементов

Рассмотрим цепь переменного тока, содержащую параллельно соединенные элементы R , L и C (рис. 21).

Пусть U (t ) = U 0 ·coswt . Напряжение на всех элементах цепи одинаково и равно U (t ). Мгновенное значение тока в неразветвленной части цепи I (t ) равно сумме токов в параллельных участках:

I (t ) = I R (t ) + I C (t ) + I L (t ). (29)

В этом случае удобно строить векторную диаграмму для токов.

С учетом, что ток через сопротивление находится в фазе с приложенным напряжением, ток через участок, содержащий С , опережает напряжение на , а через участок, содержащий L , отстает от напряжения на , векторную диаграмму можно изобразить следующим образом (рис. 22).

Из диаграммы видно, что

Воспользовавшись векторной диаграммой и формулой (31), нетрудно получить выражения для амплитуды тока через неразветвленную часть цепи и для сдвига по фазе между приложенным напряжением и током

При условии, что w·L = , сдвиг фаз между током в неразветвленной части цепи и напряжением равен нулю (j = 0). При этом токи I L и I C находятся в противофазе и численно равны. Эти токи могут превосходить ток в подводящих проводах, что требует особенно внимательного соблюдения правил техники безопасности . Такая ситуация называется резонансом токов . При этом происходит периодический обмен энергией между электрическими и магнитными полями в емкости и индуктивности, а источник питания только компенсирует потери энергии на нагревание сопротивления R .

Резонанс токов в цепи с параллельным соединением элементов приводит к тому, что ток во внешней цепи имеет наименьшее значение.

Если убрать сопротивление R , то ток в подводящих проводах будет равен нулю, хотя в контуре, состоящем из L и C , ток может быть очень большим. Это устройство используется в резонансных усилителях, в которых колебательный контур настраивается на частоту сигнала, который требуется усилить.

МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА

Напомним, что мощностью называется физическая величина, численно равная работе в единицу времени. Элементарная работа dA по переносу заряда dq , совершенная за время dt на участке цепи с падением напряжения U , определяется выражением

dA = U ·dq .

Тогда мгновенная мощность:

Мгновенная мощность переменного тока также является величиной переменной. Для оценки энергетических свойств электроустановок используется значение средней мощности.

Для определения средней мощности P достаточно подсчитать работу тока за один период колебания T :

Интеграл от первого слагаемого в квадратных скобках есть среднее значение косинуса за период и, следовательно, обращается в ноль. Таким образом, получили

. (41)

Величину P = I ·U ·cosφ называют активной мощностью или средней мощностью , или просто мощностью переменного тока . Активная мощность в системе СИ измеряется в ваттах (1 Вт = 1 В ´ 1 А). Прибор, предназначенный для регистрации активной мощности, называется ваттметром (подробнее об устройстве и принципе действия ваттметра см. раздел «Ваттметр» в главе «Электроизмерительные приборы»).

Кроме активной мощности в теории переменных токов рассматривают полную (кажущуюся) мощность S = I ·U иреактивную мощность Q = I ·U ·sinj.

Для того чтобы понять смысл реактивной мощности, рассмотрим энергетические процессы в цепи переменного тока, содержащей индуктивность L . В такой цепи потребление мощности в каждый момент времени не сводится только к выделению тепла. В той части периода, где ток нарастает, в катушке индуктивности L возбуждается магнитное поле, на что расходуется энергия источника. Когда же ток начинает уменьшаться, энергия, запасенная магнитным полем катушки, возвращается обратно источнику. Таким образом, индуктивность является то потребителем, то генератором энергии, а в среднем за период расход энергии в индуктивности равен нулю.

Аналогичные колебания происходят в цепи переменного тока, содержащей емкость C . В этом случае энергия запасается в электрическом поле конденсатора. Реактивная мощность Q не совершает никакой полезной работы, однако, она оказывает существенное влияние на режим функционирования электрических цепей. Поэтому расчет проводов и других элементов цепей переменного тока производят, исходя из полной мощности, которая учитывает активную и реактивную составляющие.

Очевидно, что активная P, реактивная Q и полная S мощности имеют одинаковую размерность. Однако в электротехнике, в отличие от единиц активной мощности, для удобства полную мощность принято измерять в вольт-амперах (ВА), а единица измерения реактивной мощности Q вольт-ампер реактивный (ВАр).

Каким образом величины P , S и Q связаны между собой?

Для наглядности рассмотрим векторную диаграмму напряжений для последовательной цепи переменного тока, содержащей R , L и C , изображенную на рис. 23.

Разделив стороны векторного треугольника напряжений на величину силы тока I , получаем треугольник сопротивлений A′0′B′ (рис. 23,б ), который уже не будет векторным. Умножив стороны треугольника напряжений на I , получаем треугольник мощностей A″0″B″, также не векторный (рис. 23,в ). Очевидно, что эти три треугольника подобны. Сопоставляя стороны треугольника мощностей и треугольника напряжений, заключаем:

И, как видно из треугольника A″0″B″, справедливо соотношение:

где R – активное сопротивление цепи, X – реактивное сопротивление, X L = wL – индуктивное сопротивление, X C = – емкостное сопротивление, – полное сопротивление (импеданс) цепи переменного тока.

Если известны индуктивная Q L i и емкостная Q C i составляющие реактивной мощности и активная P i мощность каждого i -го потребителя, то полная мощность, на которую должен рассчитываться источник, составляет

. (50)

Величина cosj, стоящая в выражении для активной мощности (см. формулу (44)), показывает, какая часть полной мощности цепи приходится на долю активной мощности, поэтому cosj называют коэффициентом мощности .

Из формулы (50) видно, что коэффициент мощности можно увеличить, уменьшая второе слагаемое под корнем. Большинство промышленных потребителей (трансформаторы, электродвигатели) потребляют индуктивную реактивную мощность. Для уменьшения такой реактивной мощности параллельно индуктивной нагрузке включают емкость.


Подробнее о целесообразности введения эффективных значений тока и напряжения см. в разделе «Мощность переменного тока».

1 При построении векторной диаграммы можно вместо амплитудных значений использовать эффективные (см. предыдущий раздел).

Подробнее см. в разделе «Приложения. Построение векторных диаграмм».