Как убить процесс в Linux. Определить PID процесса — команда pidof. Жизненный цикл процесса

Каждому новому процессу, созданному ядром, присваивается уникальный идентификационный номер (PID). Подобно номеру карточки социального страхования, фактическое значение PID большой роли не играет. Идентификационные номера процессам присваиваются по порядку, начиная с нуля. Когда номера у ядра заканчиваются, оно вновь возвращается к нулю и опять присваивает их по порядку, пропуская теPID, которые еще используются.

Идентификатор родительского процесса (ррid)

В UNIX нет системного вызова, который создавал бы новый процесс для выполнения конкретной программы. Новый процесс создается путем клонирования одного из уже существующих процессов, после чего текст клона заменяется текстом программы, которую должен выполнять процесс.

Исходный процесс в терминологии ОС UNIX называют родительским, а его клон – порожденным. Помимо собственного идентификатора, каждый процесс имеет атрибут РРID, т.е. идентификатор своего родительского процесса.

Идентификатор пользователя (uid) и эффективный идентификатор пользователя (euid)

UID – это идентификационный номер пользователя, создавшего данный процесс. Вносить изменения в процесс могут только его создатель и привилегированный пользователь. Система учета относит на счет создателя процесса все ресурсы, которые использует его процесс.

EUID– это «эффективный»UIDпроцесса. ЕUIDиспользуется для того, чтобы определить, к каким ресурсам и файлам у процесса есть право доступа. У большинства процессовUIDи ЕUID будут одинаковыми. Исключение составляют программы, у которых установлен бит смены идентификатора пользователя (см. обSUIDв разделе, посвященном установлению прав доступа на файлы и каталоги).

Идентификатор группы (gid) и эффективный идентификатор группы (egid)

GID– это идентификационный номер группы данного процесса. Допустимые идентификаторы групп указываются в файле/ etc / group и в поле GID файлаtc / passwd . Когда процесс запускается, егоGIDустанавливается равнымGIDродительского процесса.

EGIDсвязан сGIDтак же, как ЕUIDсUID. Если процесс попытается обратиться к файлу, на который не имеет прав владельца, ядро автоматически проверит, можно ли предоставлять разрешение на основании данного ЕEGID.

В некоторых системах процесс одновременно может относиться к нескольким группам. В этом случае EGIDпредставляет собой просто список идентификаторов групп. Если пользователь попытается получить доступ к какому-либо ресурсу, весь список проверяется на предмет того, принадлежит ли пользователь к группе, членам которой разрешается использовать данный ресурс.

Приоритет и значениеnice

От приоритета процесса зависит, какую часть времени центрального процессора он получит. Выбирая процесс для выполнения, ядро находит процесс с самым высоким «внутренним приоритетом».

Непосредственно установить внутренний приоритет невозможно, но можно установить так называемое значение nice, которое существенно влияет на внутренний приоритет. Кроме того, внутренний приоритет зависит от того, сколько времени центрального процессора уже использовал процесс и от времени ожидания своей очереди на выполнение.

Жизненный цикл процесса

Процессы не появляются в системе по волшебству и не создаются спонтанно ядром. Новые процессы порождаются другими процессами, как и человеческие существами.

Для создания нового процесса существующий процесс копирует самого себя с помощью системного вызова fork. Вызовforkсоздает копию исходного процесса, идентичную родителю, но имеющую следующие отличия:

    у нового процесса свой PID;

    PPIDнового процесса равенPIDродителя;

    учетная информация нового процесса обнулена;

    у нового процесса имеется свой собственный экземпляр дескрипторов файлов.

Когда система загружается, ядро самостоятельно создает несколько процессов. Наиболее важный из них – процесс (демон) init ,PIDкоторого всегда равен 1. Этот процесс отвечает за вызовshellдля выполнения сценариев запускаrc , если Ваша система их использует. Все процессы, кроме тех, которые создает ядро, являются потомкамиinit .

После обработки файлов запуска процесс init запускает для каждого виртуального терминала процессgetty .

Процесс init играет важную роль и в управлении процессами. Когда процесс завершается, он вызывает подпрограмму_ exit , чтобы уведомить ядро о своей готовности «умереть». В качестве параметра подпрограмме_ exit передаетсякод завершения – целое число, указывающее на причину завершения процесса. По соглашению нулевой код завершения означает, что процесс был «успешным».

Код завершения необходим родительскому процессу, поэтому ядро должно хранить его, пока родительский процесс не запросит его системным вызовом wait . Дело в том, что когда процесс завершается, его адресное пространство освобождается, время центрального процессора этому процессу не выделяется, однако в таблице процессов ядра запись о нем сохраняется. Процесс в этом состоянии называют «зомби».

Этот механизм работает нормально, если родительский процесс завершается позже порожденных им процессов и добросовестно вызывает wait для того, чтобы все процессы - зомби умерли. Если же родительский процесс умирает первым, то ядро понимает, что вызоваwait не последует, и дарит всех зомби процессуinit . Процессinit обязан принять этих «осиротевших» зомби и выполнить вызовwait , необходимый для того, чтобы ликвидировать их. Иногдаinit не выполняет свои обязанности как следует, и зомби остаются в системе. Но каких-либо проблем при этом они не создают.

Бывают такие моменты, когда приложение начинает глючить, и вместе с ним и все рабочее окружение, конечно, можно и перезагрузить компьютер, и исправность сама по себе улетучиться, но это не вариант каждый раз перезагружать свой компьютер. И для этого существует команда Kill , которая поможет вам, остановить зависший процесс.

Команда Kill может быть использована, чтобы убить или прекратить процесс, используя “Signal” или “PID”. Команда Kill посылает указанный сигнал чтобы завершить некорректно ведущее себя приложение. Если не указан ни один сигнал, посылается сигнал TERM. Этот сигнал TERM будет убивать процессы, которые не поймают его; для других процессов может быть необходимо использовать сигнал Kill (номер 9), так как этот сигнал не может быть перехвачен.

SIGTERM – это сигнал который запрашивает остановку работы процесса. Этому процессу дается некоторое время на завершение работы.

Ну а с помощью сигнала SIGKILL мы можем заставить процесс прекратить работу немедленно. И Программа не имеет права проигнорировать этот сигнал, и завершает работу приложения.

Ниже приведен формат команды Kill:

kill [ -signal | -s signal ] pid …

Самый простой способ убить процесс, это найти PID ресурса, а затем запустить PID, как аргумент с командой Kill.

Что такое PID?

Каждому процессу Linux или Unix или выполняемой программе, автоматически присваивается идентификационный номер уникального процесса (PID). PID автоматически присваивает номер для каждого процесса в системе.

Вы можете найти PID ресурса с использованием команды “pidof” или команды “ps”. Чтобы узнать PID процесса (скажем, firefox), используйте следующую команду

Pidof firefox

Вы также можете использовать команду в другой форме:

Ps -A | grep -i firefox

В приведенном выше примере, выводится число “23814” которое и является PID процесса firefox. После того, как PID процесса (firefox) вам известно, вы можете использовать команду Kill, чтобы убить процесс (Firefox), как показано ниже.

Kill 23814

Когда команда выполняет уничтожение, то есть она посылает сигнал процессу, чей PID передается вместе с командой в качестве аргумента.

Чтобы быть более конкретным, то команда Kill имеет следующие формы:

  • kill PID
  • kill -15 PID
  • kill -9 PID
  • kill -SIGTERM PID
  • kill -SIGTERM PID

Команда Kill имеет следующие коды возврата:

  • 0 – при успехе
  • 1 – неудача
  • 64 – частичный успех (если указано более одного процесса)

Еще одна команда, которую вы можете использовать, это KillAll . Killall также использует имя процесса вместо PID и завершает все экземпляры процесса с этим именем. Например, если вы запустили несколько экземпляров Firefox, вы можете завершить их все с помощью команды

Killall firefox

Для X-сервера, есть еще одна команда называется Xkill , которая может убивать процессы. Команда Xkill предназначена для графического режима, без прохождения имени процесса или его PID, то есть если вы запустите в терминале

то у вас появится крестик, с помощь которого вы можете завершить не работающую программу, просто кликнув по ней.

Вот так просто и легко, убивать процессы в операционных системах GNU/Linux.

В этой статье мы попытаемся создать модуль ядра, способный изменить PID уже запущенного процесса в ОС Linux, а так же поэкспериментировать с процессами, получившими измененный PID.


Предупреждение : смена PID - нестандартный процесс, и при определенных обстоятельствах может привести к панике ядра.

Наш тестовый модуль будет реализовывать символьное устройство /dev/test, при чтении с которого процессу будет изменен PID. За пример реализации символьного устройства спасибо этой статье. Полный код модуля приведен в конце статьи. Конечно, самым правильным решением было добавить системный вызов в само ядро, однако это потребует перекомпиляцию ядра.

Окружение

Все действия по тестированию модуля выполнялись в виртуальной машине VirtualBox с 64 битным дистрибутивомLInux и версией ядра 4.14.4-1. Связь с машиной осуществлялась с помощью SSH.

Попытка #1 простое решение

Пару слов о current : переменная current указывает на структуру task_struct с описанием процесса в ядре(PID, UID, GID, cmdline, namespaces и т.д)

Первой идеей было просто поменять параметр current->pid из модуля ядра на нужный.

Static ssize_t device_read(struct file *filp, char *buffer, size_t length, loff_t * offset) { printk("PID: %d.\n",current->pid); current->pid = 1; printk("new PID: %d.\n",current->pid); , }
Для проверки работоспособности модуля я написал программу на C++:

#include #include #include int main() { std::cout << "My parent PID " << getppid() << std::endl; std::cout << "My PID " << getpid() << std::endl; std::fstream f("/dev/test",std::ios_base::in); if(!f) { std::cout << "f error"; return -1; } std::string str; f >> str; std::cout << "My new PID " << getpid() << std::endl; execl("/bin/bash","/bin/bash",NULL); }
Загрузим модуль коммандой insmod, создадим /dev/test и попробуем.

# ./a.out My parent PID 293 My PID 782 My new PID 782
PID не изменился. Возможно, это не единственное место, где указывается PID.

Попытка #2 дополнительные поля PID

Если не current->pid является идентификатором процесса, то что является? Быстрый просмотр кода getpid() навел на структуру task_struct , описывающую процесс Linux и файл pid.c в исходном коде ядра. Нужная функция - __task_pid_nr_ns. В коде функции встречается обращение task->pids.pid, этот параметр мы и изменим

Компилируем, пробуем

Так как тестировал я по SSH, мне удалось получить вывод программы до падения ядра:

My parent PID 293 My PID 1689 My new PID 1689
Первый результат, уже что-то. Но PID все равно не изменился.

Попытка #3 не экспортируемые символы ядра

Более внимательное изучение pid.c дало функцию, которая делает то, что нам нужно
static void __change_pid(struct task_struct *task, enum pid_type type,
struct pid *new)
Функция принимает задачу, для которой надо изменить PID, тип PID и, собственно, новый PID. Созданием нового PID занимается функция
struct pid *alloc_pid(struct pid_namespace *ns)

Эта функция принимает только пространство имен, в котором будет находиться новый PID, это пространство можно получить с помощью task_active_pid_ns .
Но есть одна проблема: эти символы ядра не экспортируются ядром и не могут использоваться в модулях. В решении этой проблемы мне помогла замечательная . Код функции find_sym взят оттуда.

Static asmlinkage void (*change_pidR)(struct task_struct *task, enum pid_type type, struct pid *pid); static asmlinkage struct pid* (*alloc_pidR)(struct pid_namespace *ns); static int __init test_init(void) { printk(KERN_ALERT "TEST driver loaded!\n"); change_pidR = find_sym("change_pid"); alloc_pidR = find_sym("alloc_pid"); ... } static ssize_t device_read(struct file *filp, char *buffer, size_t length, loff_t * offset) { printk("PID: %d.\n",current->pid); struct pid* newpid; newpid = alloc_pidR(task_active_pid_ns(current)); change_pidR(current,PIDTYPE_PID,newpid); printk("new PID: %d.\n",current->pid); ... }
Комплируем, запускаем

My parent PID 299 My PID 750 My new PID 751
PID изменен! Ядро автоматически выделило нашей программе свободный PID. Но можно ли использовать PID, который занял другой процесс, например PID 1? Добавим после аллокации код

Newpid->numbers.nr = 1;
Комплируем, запускаем

My parent PID 314 My PID 1172 My new PID 1
Получаем настоящий PID 1!

Bash выдал ошибку, из-за которой не будет работать переключение задач по комманде %n, но все остальные функции работают отлично.

Интересные особенности процессов с измененным PID

PID 0: войти нельзя выйти

Вернемся к коду и изменим PID на 0.

Newpid->numbers.nr = 0;
Комплируем, запускаем

My parent PID284 My PID 1517 My new PID 0
Выходит PID 0 не такой и особенный? Радуемся, пишм exit и…

Ядро падает! Ядро определило нашу задачу как IDLE TASK и, увидев завершение, просто упало. Видимо, перед завершением наша программа должна вернуть себе «нормальный» PID.

Процесс-невидимка

Вернемся к коду и выставим PID, гарантированно не занятый
newpid->numbers.nr = 12345;

Комплируем, запускаем

My parent PID296 My PID 735 My new PID 12345
Посмотрим, что находится в /proc

1 148 19 224 288 37 79 86 93 consoles fb kcore locks partitions swaps version 10 149 2 226 29 4 8 87 acpi cpuinfo filesystems key-users meminfo sched_debug sys vmallocinfo 102 15 20 23 290 5 80 88 asound crypto fs keys misc schedstat sysrq-trigger vmstat 11 16 208 24 291 6 81 89 buddyinfo devices interrupts kmsg modules scsi sysvipc zoneinfo 12 17 21 25 296 7 82 9 bus diskstats iomem kpagecgroup mounts self thread-self 13 176 210 26 3 737 83 90 cgroups dma ioports kpagecount mtrr slabinfo timer_list 139 18 22 27 30 76 84 91 cmdline driver irq kpageflags net softirqs tty 14 182 222 28 31 78 85 92 config.gz execdomains kallsyms loadavg pagetypeinfo stat uptime
Как видим /proc не определяет наш процесс, даже если мы заняли свободный PID. Предыдущего PID тоже нет в /proc, и это весьма странно. Возможно, мы находимся в другом пространстве имен и поэтому не видны основному /proc. Смонтируем новый /proc, и посмотрим что там

1 14 18 210 25 291 738 81 9 bus devices fs key-users locks pagetypeinfo softirqs timer_list 10 148 182 22 26 296 741 82 90 cgroups diskstats interrupts keys meminfo partitions stat tty 102 149 19 222 27 30 76 83 92 cmdline dma iomem kmsg misc sched_debug swaps uptime 11 15 2 224 28 37 78 84 93 config.gz driver ioports kpagecgroup modules schedstat sys version 12 16 20 226 288 4 79 85 acpi consoles execdomains irq kpagecount mounts scsi sysrq-trigger vmallocinfo 13 17 208 23 29 6 8 86 asound cpuinfo fb kallsyms kpageflags mtrr self sysvipc vmstat 139 176 21 24 290 7 80 87 buddyinfo crypto filesystems kcore loadavg net slabinfo thread-self zoneinfo
По прежнему нашего процесса нет, а значит мы в обычном пространстве имен. Проверим

Ps -e | grep bash
296 pts/0 00:00:00 bash

Только один bash, с которого мы и запускали программу. Ни предыдущего PID, ни текущего в списке нет.

Не смотря на свою стабильность, некоторые приложения в Linux иногда виснут. Иногда приложения перестают отзываться или просто работают так медленно, что корректно закрыть их не получается. Один из способов «убить», запущенное приложение в Linux, это использование таких команд, как kill или killall. Рассмотрим, как использовать эти команды, находить PID процесса и посылать сигнал SIGKILL.

Под процессом мы будем понимать запущенную в системе копию программы. Например, если вы открыли три окна калькулятора (например, gcalctool), это значит, что вы запустили три процесса.

Находим PID зависшего процесса

Каждый процесс в Linux имеет свой идентификатор, называемый PID. Перед тем, как выполнить остановку процесса, нужно определить его PID. Для этого воспользуемся командами ps и grep. Команда ps предназначена для вывода списка активных процессов в системе и информации о них. Команда grep запускается одновременно с ps (в канале) и будет выполнять поиск по результатам команды ps. Вывести список всех процессов можно, выполнив в командной строке:

Но, как правило, список очень большой и найти процесс, который мы хотим «убить», бывает не так просто. Здесь на помощь приходит команда grep. Например, чтобы найти информацию о процессе с именем gcalctool выполните команду:

ps axu | grep gcalctool

Команда grep выполнит поиск по результатам команды ps и на экран будут выведены только те строки, которые содержат строку (слово) gcalctool. Здесь есть одна интересная деталь, например, если у вас не запущено приложение gcalctool, то после выполнения ps axu | grep gcalctool вы получите:

$ ps axu | grep gcalctool yuriy 25587 0.0 0.0 10636 884 pts/2 S+ 10:20 0:00 grep --color=auto gcalctool

То есть мы получили сам процесс grep, так как в качестве параметра команде мы указали слово gcalctool, и grep нашел сам себя в выводе команды ps .

Если процесс gcalctool запущен, то мы получим:

Yuriy@yuriy-NIX:~$ ps axu | grep gcalctool yuriy 25609 7.6 0.4 500840 17964 ? Sl 10:20 0:00 gcalctool yuriy 25624 0.0 0.0 10640 884 pts/2 S+ 10:21 0:00 grep --color=auto gcalctool

Здесь нас интересует строка: «yuriy 25609 7.6 0.4 500840 17964 ? Sl 10:20 0:00 gcalctool ». Число 25609 и есть идентификатор (PID) процесса gcalctool.

Есть еще один более простой способ узнать PID процесса — это команда pidof , которая принимает в качестве параметра название процесса и выводит его PID. Пример выполнения команды pidof:

$ pidof gcalctool 25609

«Убиваем» процесс командой kill

Когда известен PID процесса, мы можем убить его командой kill . Команда kill принимает в качестве параметра PID процесса. Например, убьем процесс с номером 25609:

Kill 25609

Вообще команда kill предназначена для посылки сигнала процессу. По умолчанию, если мы не указываем какой сигнал посылать, посылается сигнал SIGTERM (от слова termination — завершение). SIGTERM указывает процессу на то, что необходимо завершиться. Каждый сигнал имеет свой номер. SIGTERM имеет номер 15. Список всех сигналов (и их номеров), которые может послать команда kill, можно вывести, выполнив kill -l . Чтобы послать сигнал SIGKILL (он имеет номер 9) процессу 25609, выполните в командой строке:

Kill -9 25609

Сигнал SIGTERM может и не остановить процесс (например, при перехвате или блокировке сигнала), SIGKILL же выполняет уничтожение процесса всегда, так как его нельзя перехватить или проигнорировать.

Убиваем процессы командой killall

Команда killall в Linux предназначена для «убийства» всех процессов, имеющих одно и то же имя. Это удобно, так как нам не нужно знать PID процесса. Например, мы хотим закрыть все процессы с именем gcalctool. Выполните в терминале:

Killall gcalctool

Команда killall, также как и kill, по умолчанию шлет сигнал SIGTERM. Чтобы послать другой сигнал нужно воспользоваться опцией -s . Например:

Killall -s 9 gcalctool

Заключение

Некоторые процессы не удается остановить под обычным пользователем. Например, если процесс был запущен от имени пользователя root или от имени другого пользователя системы, то команды kill и killall нужно выполнять от имени суперпользователя, добавляя sudo (в Ubuntu):

Sudo kill 123

Бывают ситуации, когда вы работаете в графическом интерфейсе (например, GNOME) и вам не удается открыть эмулятор терминала, чтобы остановить зависший процесс. Тогда можно переключиться на виртуальную консоль клавишами Ctrl+Alt+F1 , залогиниться в ней и выполнять команды уже из нее. А потом перейти обратно, нажав Ctrl+Alt+F7 .

Справку по использованию любой команды можно получить командой man:

Man ps man grep man pidof man kill man killall

Управление компьютером кажется простым занятием, но так ли это? Километры машинного кода, организация взаимодействия программ, ресурсов и пользователя. Важно не только создать жизнеспособную среду, но и придать ей возможность дальнейшего развития и оптимизации. Разработчикам же остается использовать доступный инструментарий.

Функции операционной системы

Прежде чем ответить на вопрос, что такое pid, важно понять функциональные возможности, от реализации которых зависят и функции идентификатора:

  • работа с данными, запуск и остановка ПО;
  • взаимодействие с устройствами ввода/вывода;
  • распределение и организация оперативной памяти;
  • обеспечение доступа к энергозависимым носителям;
  • оптимизация ресурсов машины;
  • обеспечение безопасного доступа каждого объекта к ресурсам машины;
  • надежные вычисления;
  • защита данных от вредоносного ПО и намеренного взлома.


Базовые понятия

Дальнейшее повествование будет базироваться на приведенных ниже понятиях. Пренебрегая этим пунктом, будет сложно понять, что такое pid.

Процесс - это любой объект, использующий ресурсы системы, согласно стандарту ISO. 9000:2000 - совокупность операций, взаимодействие которых преобразует входящие данные в исходящие.

Любой процесс характеризуется несколькими параметрами:

  • машинным кодом;
  • исполняемым кодом;
  • зарезервированным фрагментом памяти (иногда - виртуальной);
  • атрибутами безопасности;
  • входными/выходными данными;
  • стеком вызова, который следит за активностью каждого объекта;
  • так называемой «кучей», хранящей промежуточные результаты операций и вычислений.

Процесс создается операционной системой с момента запуска или при получении соответствующего запроса. Завершение происходит путем сбора статистической информации с последующим удалением и взаимодействием с очередью планирования и выделением ресурсов. С теоретической базой покончено, пора дать ответ на важнейший вопрос, что такое pid.

Понятие идентификатора

Каждая запущенная программа идентифицируется или распознается с помощью уникального номера с меткой. Таким образом система взаимодействует с каждым процессом.

Чтобы поближе познакомиться с указателем, можно пойти двумя путями:

  1. Вызываем диспетчер задач правой кнопкой мыши на панели задач. Далее, переходим во вкладку «Процессы», выбираем меню «Вид». Находим пункт «Выбрать столбцы», в открывшемся диалоговом окне ставим галочку для PID. В командной строке прописываем tasklist.
  2. Для Unix-систем верна и другая тактика. Здесь рекомендуется использовать команду ps. С ее помощью можно найти идентификатор для конкретной программы.

Разрешается использование уникального номера для поиска потенциально вредоносного ПО. Дело в том, что вирусы часто маскируются под «благопристойные» файлы, указатель же дает четкое представление о безопасности рассматриваемого объекта. Нужно только уметь распознать, «что такое pid» из кодового потока системных и менее значительных процессов.

Современные языки программирования позволяют «вычленить» из обычного номера информацию об интересующем объекте. На программном уровне можно разработать код, напрямую взаимодействующий с pid. Что это дает? Ценой пары кликов удастся вывести полный путь к интересующему файлу или программе. По сути, это позволит не только понять и оптимизировать работу системы (количество необходимых ресурсов), но и защитить машину от потенциальной угрозы.

Чтобы не запутаться

В электронике существует и pid-регулятор - электронное устройство, использующееся в системах автоматического управления. Позволяет не только формировать сигнал управления, но и влиять на показатели точности и качества переходного процесса.

Многие пользователи путают два понятия, но они абсолютно разные. После прочтения статьи окончательно должен иссякнуть вопрос, «что такое pid процесса», так как приведенные сведения дают полное описание и возможности указателя. Важно понимать, что функционирование «операционки» напрямую зависит от каждого винтика фундаментальной системы. Сегодня был рассмотрена лишь частичка на микроуровне компьютера как машины.