В столбце расчетный объем звукового файла. Работа со звуковой системой ПК. Вычисление информационного объема закодированного звука. Советы учителям и ученикам

Цель. Осмыслить процесс преобразования звуковой информации, усвоить понятия необходимые для подсчета объема звуковой информации. Научиться решать задачи по теме.

Цель-мотивация. Подготовка к ЕГЭ.

План урока

1. Просмотр презентации по теме с комментариями учителя. Приложение 1

Материал презентации: Кодирование звуковой информации.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера :

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ :

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация . Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и так

далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Аудиоадаптер (звуковая плата) - специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера:

  • Частотой дискретизации
  • Разрядностью(глубина звука).

Частота временной дискретизации

Это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров:

11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера, задает количество возможных уровней звука.

Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16) , то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 =65536) различных значений. Очевидно, 16 разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле:

N = 2 I = 2 16 = 65536, где I - глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

Звуковой файл - файл, хранящий звуковую информацию в числовой двоичной форме.

2. Повторяем единицы измерения информации

1 байт = 8 бит

1 Кбайт = 2 10 байт=1024 байт

1 Мбайт = 2 10 Кбайт=1024 Кбайт

1 Гбайт = 2 10 Мбайт=1024 Мбайт

1 Тбайт = 2 10 Гбайт=1024 Гбайт

1 Пбайт = 2 10 Тбайт=1024 Тбайт

3. Закрепить изученный материал, просмотрев презентацию, учебник

4. Решение задач

Учебник , показ решения на презентации.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

Задача (самостоятельно). Учебник , показ решения на презентации.
Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

5. Закрепление. Решение задач дома, самостоятельно на следующем уроке

Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность?

Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?

Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации - 22 050 Гц. Какова раз­рядность аудиоадаптера?

Объем свободной памяти на диске - 0,1 Гб, разрядность зву­ковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?

Ответы

№ 92. 124,8 секунды.

№ 93. 22,05 кГц.

№ 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и разрядности аудиоадаптера, равной 16. Требуемый объем памяти - 15,1 Мб.

№ 95. Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11 кГц, разрядность аудиоадаптера - 8. Длительность звучания равна 60,5 с.

№ 96. 16 битов.

№ 97. 20,3 минуты.

Литература

1. Учебник: Информатика, задачник-практикум 1 том, под редакцией И.Г.Семакина, Е.К. Хеннера)

2. Фестиваль педагогических идей «Открытый урок»Звук. Двоичное кодирование звуковой информации. Супрягина Елена Александровна, учитель информатики.

3. Н. Угринович. Информатика и информационные технологии. 10-11 классы. Москва. Бином. Лаборатория знаний 2003.

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за 1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000 отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое необходимо для кодирования 1 уровня громкости

Время звучания (t)


Объем памяти для хранения данных 1 канала (моно)

I=f·b·t

(для хранения информации о звуке длительностью t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется I бит памяти)

При двухканальной записи (стерео) объем памяти, необходимый для хранения данных одного канала, умножается на 2

I=f·b·t·2

Единицы измерения I - биты, b -биты, f - Герцы, t – секунды Частота дискретизации 44,1 кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации

Основные теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".

Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т.е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду, измеряется в герцах (Гц). Обозначим частоту дискретизации буквой f.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации b , которое называется глубиной кодирования звука

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 b . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 b = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Задачи для самостоятельной подготовки .

1. Рассчитайте объём монофонического аудиофайла длительностью 10 с при 16-битном кодировании и частоте дискретизации 44,1 к Гц. (861 Кбайт)

2. Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1)0,3 2) 4 3) 16 4) 132

3. Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 13 3) 15 4) 22

4. Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 12 3) 13 4) 15

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за 1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000 отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое необходимо для кодирования 1 уровня громкости

Время звучания (t)


Объем памяти для хранения данных 1 канала (моно)

I=f·b·t

(для хранения информации о звуке длительностью t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется I бит памяти)

При двухканальной записи (стерео) объем памяти, необходимый для хранения данных одного канала, умножается на 2

I=f·b·t·2

Единицы измерения I - биты, b -биты, f - Герцы, t – секунды Частота дискретизации 44,1 кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации

Основные теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".

Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т.е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду, измеряется в герцах (Гц). Обозначим частоту дискретизации буквой f.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации b , которое называется глубиной кодирования звука

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 b . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 b = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Задачи для самостоятельной подготовки .

1. Рассчитайте объём монофонического аудиофайла длительностью 10 с при 16-битном кодировании и частоте дискретизации 44,1 к Гц. (861 Кбайт)

2. Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1)0,3 2) 4 3) 16 4) 132

3. Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 13 3) 15 4) 22

4. Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 12 3) 13 4) 15

1. Общие сведения

Сложность: базовая.

Примерное время решения (для тех, кто будет выполнять часть 2): 2 минуты

Тема: Создание и обработка графической и мультимедийной информации

Подтема: Цифровая звукозапись

Что проверяется: Умение оценивать количественные характеристики процесса записи звука.

Краткие теоретические сведения: Поскольку данный тип задания является новым в КИМ ЕГЭ, приведем (пока без обоснования, обоснование ниже) математическую модель процесса звукозаписи:

N = k * F * L * T (1)

  • N – размер файла (в битах) , содержащего запись звука;
  • k - количество каналов записи (например, 1 – моно, 2 – стерео, 4 – квадро и т.д.);
  • F – частота дискретизации (в герцах), т.е. количество значений амплитуды звука фиксируемых за одну секунду;
  • L – разрешение, т.е. число бит, используемых для хранения каждого измеренного значения;
  • T – продолжительность звукового фрагмента (в секундах).

Как может выглядеть задание? Например, так: Заданы значения всех требуемых параметров процесса звукозаписи, кроме одного. Требуется оценить значение оставшегося параметра, например, размер файла или продолжительность звукового фрагмента.


Пример условия:

Варианты ответов:

1) 0,2 Мбайт

2. Пример задания

2.1. Условие задачи.

Задача 2012-А8-1.

Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 0,2 Мбайт 2) 2 Мбайт 3) 3 Мбайт 4) 4 Мбайт

2.2. Решение.

Приводим исходные данные к размерности биты-секунды-герцы и проводим расчеты по формуле (1):

Дано:

k = 1, т.к. одноканальная (моно) звукозапись;

F = 16 кГц = 16 000 Гц;

T = 1 мин = 60 с.

Найти N

Подставляем значение известных параметров в формулу (1)

N = 1 *16000 *24*60 =(16 *1000) * (8*3) * (4*15)=

= 2 4 *(2 3 *125) *(2 3 *3)*) *(2 2 * 15) = 2 12 *5625 (бит)=

= 2 12 *5625 бит = (2 12 *5625)/2 3 байт = 2 9 *5625 байт =

= (2 9 *5625)/ 2 20 Мбайт = 5625/2 11 Мбайт = 5625/2048 Мбайт.

Число 5625/2048 находится между числами 2 и 3. При этом оно ближе к 3, чем к 2, т.к. 3 * 2048 – 5625 < 1000; 5625 - 2 * 2048 > 1000.

Правильный вариант ответа: №3 (3 Мбайт)

Замечание. Другая идея решения приведена в п.3.3

3. Советы учителям и ученикам

3.1 Какие знания/умения/навыки нужны ученику, чтобы решить эту задачу

1) Не следует «зазубривать» формулу (1). Ученик, представляющий суть процесса цифровой звукозаписи, должен быть способен самостоятельно её сформулировать.

2) Необходимо умение записывать значения параметров в требуемой размерности, а также элементарные арифметические навыки, в т.ч. оперирование со степенями двойки.

А. Сильные ученики .

1. Скорее всего, они и так решат эту задачу.

2. Можно дать задание ученикам проверить формулу (1) на практике, записывая в файл звук с микрофона. При этом следует учесть, что она справедлива только в том случае, если записываемая информация не подвергается сжатию (формат WAV (PCM) без сжатия). Если используются аудиоформаты со сжатием (WMA, MP3), то объем получившегося файла будет по понятным причинам существенно меньше расчетного. Для экспериментов с цифровой звукозаписью можно использовать свободно распространяемый аудиоредактор Audacity (http://audacity.sourceforge.net/).

3. Целесообразно подчеркнуть концептуальную общность растрового представления звука и изображения, являющихся разновидностями одного и того же процесса приближенного представления непрерывного сигнала последовательность коротких дискретных сигналов, т.е. оцифровывания на основе дискретизации. В случае растрового изображения производится двумерная дискретизизация яркости в пространстве, в случае звука – одномерная дискретизация по времени. И в том, и в другом случае повышение частоты дискретизации (количества пикселей или звуковых отсчетов) и/или увеличение количества битов для представления одного отсчета (разрядность цвета или звука) ведет к повышению качества оцифровки, при одновременном росте размера файла с цифровым представлением. Отсюда – необходимость сжатия данных.

4. Желательно упомянуть об альтернативных способах оцифровки звука – запись «партий» инструментов в MIDI-формате. Здесь уместно провести аналогию с растровым и векторным представлением изображений.

Б. Не столь сильные ученики .

1. Необходимо обеспечить усвоение соотношения (1). Рекомендуется дать задания типа «Как изменится объем файла, если время записи звучания увеличить/уменьшить в p раз? »,

«Во сколько раз можно увеличить/уменьшить продолжительность записи, если максимальный размер файла увеличить/уменьшить в p раз? », «Как изменится объем файла, если количество бит для записи одного значения увеличить/уменьшить в p раз?» и т.д.

2. Необходимо убедиться, что учащиеся свободно оперируют размерностями, знают, что в Мбайте 2 23 бит и т.д.

3. Необходимо убедиться, что учащиеся достаточно арифметически грамотны, свободно владеют устным счетом со степенями двойки (умножение, деление, выделение сомножителей, представляющих собой 2 n).

4. Придумывайте свои подходы и пробуйте их.

3.3. Полезный прием.

В подобных задачах часто возникают степени двойки. Перемножать и делить степени проще, чем произвольные числа: умножение и деление степеней сводится к сложению и вычитанию показателей.

Заметим, что числа 1000 и 1024 отличаются менее, чем на 3%, числа 60 и 64 отличаются менее, чем на 7%. Поэтому можно поступить так. Провести вычисления, заменив 1000 на 1024 = 2 10 и 60 на 64 = 2 6 , используя преимущества операций со степенями. Ближайший к полученному числу ответ и будет искомым. Можно после этого перепроверить себя, проведя точные вычисления. Но можно учесть, что общая погрешность вычислений при нашем приближении не превышает 10%. Действительно, 60*1000 = 60000; 64*1024=65536;

60000 > 0.9 * 65536 = 58982.4

Таким образом, правильный результат умножений по формуле (1) немного больше, чем 90% от полученного приближенного результата. Если учет погрешности не меняет результата – можно не сомневаться в ответе.

Пример. (ege.yandex.ru, вариант 1).

Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 12 минут, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 30 Мбайт 2) 60 Мбайт 3) 75 Мбайт 4) 90 Мбайт

Решение. Размер записи в битах равен

2*16*1000*32*12*60

С учетом замены 1000 на 1024=2 10 и 60 на 64=2 6 получим:

2 1 *2 4 *2 10 *2 5 *3*2 2 *2 6 =3*2 28

Как известно, 1 Мбайт = 2 20 байт = 2 23 бит. Поэтому 3*2 28 бит = 3*32 = 96 Мбайт. Уменьшив это число на 10%, получим 86.4 Мбайт. В обоих случаях ближайшей величиной является 90 Мбайт.

Правильный ответ: 4

1. Прочитайте условие задачи. Выразите неизвестный параметр через известные. Особое внимание обратите, на размерность известных параметров. Она должна быть – биты-секунды-герцы (напомним, что 1 Гц = с -1). При необходимости, приведите значения параметров к нужной размерности, так же как это делается в задачах по физике.

2. Проводите вычисления, стараясь выделять степени двойки.

3. Обратите внимание, что в условии требуется выбрать наиболее подходящий ответ, поэтому высокая точность вычислений до знаков после запятой не требуется. Как только стало ясно, какой из вариантов ответов наиболее близок к вычисляемому значению, вычисления следует прекратить. Если расхождение со всеми вариантами ответов очень велико (в разы или на порядок), то вычисления надо перепроверить.

4. Задачи для самостоятельного решения

4.1. Клоны задачи 2012-А8-1.

Ниже приведены еще четыре варианта задачи 2012-А8-1.

А) Производится одноканальная (моно) звукозапись с частотой дискретизации 32 кГц и 24-битным разрешением. Запись длится 15 секунд, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

Б) Производится двухканальная (стерео) звукозапись с частотой дискретизации 32 кГц и 24-битным разрешением. Запись длится 30 секунд, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 1,5 Мбайт 2) 3 Мбайт 3) 6 Мбайт 4) 12 Мбайт

В) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 2 минуты, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

Г) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 32-битным разрешением. Запись длится 4 минуты, ее результаты записываются в файл, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?

1) 2 Мбайт 2) 4 Мбайт 3) 8 Мбайт 4) 16 Мбайт

Правильные ответы:

А:1; Б:3; В:3; Г:4.

4.2. Задача 2012-А8-2(обратная к предыдущей).

A) Производится одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Результаты записываются в файл, размер которого не может превышать 8 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

Б) Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. Результаты записываются в файл, размер которого не может превышать 8 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

В) Производится одноканальная (моно) звукозапись с частотой дискретизации 48 кГц и 8-битным разрешением. Результаты записываются в файл, размер которого не может превышать 2,5 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

Г) Производится одноканальная (моно) звукозапись с частотой дискретизации 48 кГц и 16-битным разрешением. Результаты записываются в файл, размер которого не может превышать 5 Мбайт, сжатие данных не производится. Какая из приведенных ниже величин наиболее близка к максимально возможной длительности записываемого звукового фрагмента?

1) 1минута 2) 30 секунд 3) 3 минуты 4) 90 секунд

Правильные ответы:

А:3; Б: 4 ; В: 1; Г:1 .

5.Дополнение. Некоторые сведения о цифровой звукозаписи.

Распространение звука в воздухе можно рассматривать как распространение колебаний давления. Микрофон преобразует колебания давления в колебания электрического тока. Это аналоговый непрерывный сигнал. Звуковая плата обеспечивает дискретизацию входного сигнала от микрофона. Это делается следующим образом – непрерывный сигнал заменяется последовательностью измеренных с определенной точностью значений.

График аналогового сигнала:

Дискретное представление этого же сигнала (41 измеренное значение):

Дискретное представление этого же сигнала (161 измеренное значение, более высокая частота дискретизации):

Видно, что чем выше частота дискретизации, тем выше качество приближенного (дискретного) сигнала. Кроме частоты дискретизации, на качество оцифрованного сигнала влияет количество двоичных разрядов, отводимых для записи каждого значения сигнала. Чем больше бит отводится под каждое значение, тем более точно можно оцифровать сигнал.

Пример 2-х битного представления этого же сигнала (двумя разрядами можно пронумеровать только 4 возможных уровня величины сигнала):

Теперь можно выписать зависимость для размера файла с оцифрованным звуком

размер_файла = (количество_значений,_фиксируемых_за_1_секунду)*

*(количество_двоичных_разрядов_для_записи_одного_значения)*

*(число_секунд_записи).

Учитывая возможность одновременной записи звука с нескольких микрофонов (стерео-, квадро- запись и т.д.), что делается для усиления реалистичности при воспроизведении, получаем формулу (1).

При воспроизведении звука цифровые значения преобразуются в аналоговые. Электрические колебания, передаваемые на динамики, преобразуются ими снова в колебания давления воздуха.

Решение задач на кодирование звуковой информации .

  1. Теоретическая часть

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Количество различных уровней громкости рассчитываем по формуле N= 2 I , где I – глубина звука.

Частота дискретизации – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц).

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Разрядность регистра - число бит в регистре аудио адаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2 I =N различных значений.

  1. Практическая часть. Разбор и решение задачи.

Задача 1 . Оцените информационный объём цифрового звукового стерео файла длительностью 20 секунд при глубине кодирования 16 бит и частоте дискретизации 10000 Гц? Результат представить в Кбайтах, округлить до сотых.

При решении таких задач надо не забывать следующее:

Что моно - 1 канал, стерео - 2 канала

Задача 2 . Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит.

Дано:

I = 8 бит=1 байт

t = 10 сек

η = 22,05 кГц = 22,05 * 1000 Гц = 22050 Гц

I - разрядность звуковой карты,

t - время звучания аудиофайла,

η - частота дискретизации

Решение:

V(Инфор.) = I · η ·t

V(Инфор.) = 22050 *10 *1 = 220500 байт

Ответ: V(Инфор.) = 220500 байт

Найти: V(информационный объём)-?