Чем открыть ts файлы триколор. Как раскодировать каналы триколор тв самостоятельно. Простейшие операции видеомонтажа

III. Выпуклые множества и функции 569

3. Все функции одной переменной с постоянной эластичность ю имеют вид (8) (воспользоваться равенством (4)).

4. Функции нескольких переменных с постоянными частными эластичностями - это степенные функции вида

y = Ax1 B 1 x2 B 2 ,...,xN B N .

III. Выпуклые множества и функции

При исследовании экономических явлений математическими методами весьма значительным оказывается такое свойство м ногих множеств и функций, как выпуклость. Характер поведения мн огих экономических объектов связан с тем. что определенные зав исимости, описывающие эти объекты, являются выпуклыми. С выпукл о- стью функций и множеств часто связано существование или е динственность решения экономических задач: на этом же свойст ве основаны многие вычислительные алгоритмы.

Справедливость многих утверждений, относящихся к выпукл ым множествам и функциям, совершенно ясна, они почти очевидн ы. В то же время их доказательство зачастую очень сложно. Поэтому здесь будут изложены некоторые основные факты, связанные с выпу клостью, без доказательств, в расчете на их интуитивную убедит ельность.

1. Выпуклые множества на плоскости

Любая геометрическая фигура на плоскости может рассматр иваться как множество точек, принадлежащих этой фигуре. Одни множества (например, круг, прямоугольник, полоса между параллел ьными прямыми) содержат и внутренние, и граничные точки; другие (например, отрезок, окружность) состоят только из граничных точе к.

Множество точек на плоскости называется выпуклым, если он о обладает следующим свойством: отрезок, соединяющий любые две точки этого множества, целиком содержится в этом множестве (рис. 1).

Примерами выпуклых множеств являются: треугольник, отрезок, полуплоскость (часть плоскости, лежащая по одну сторону от какой-либо прямой), вся плоскость. Другие примеры выпуклых множеств приведены на рис. 2,а. На рис. 2,б приведены примеры невыпуклых множеств.

Множество, состоящее из одной-единственной точки, и пусто е множество, не содержащее ни одной точки, по принятому соглаше нию, также считаются выпуклыми. Во всяком случае, в этих множес твах невозможно провести отрезок, соединяющий какие-то точки э тих множеств и не принадлежащий этим множествам целиком, - в них

570 Математическое приложение

Рис. 1. Отрезок, соединяющий любые две точки выпуклой фигуры, содержится в ней целиком.

Рис. 2. Выпуклые (а) и невыпуклые (б) множества на плоскости.

вообще невозможно выбрать две точки. Поэтому их включение в число выпуклых множеств не приведет к противоречию с опре делением, а для математических рассуждений этого достаточно.

Пересечение, т. е. общая часть двух выпуклых множеств, всегда выпукло: взяв любые две точки пересечения (а они - общие, т. е. принадлежат каждому из пересекающихся множеств) и соедин ив их отрезком, мы легко убеждаемся в том, что все точки отрезка я вляются общими для обоих множеств, так как каждое из них выпукло. Вы - пуклым будет и пересечение любого числа выпуклых множест в.

Важным свойством выпуклых множеств является их отделимость: если два выпуклых множества не имеют общих внутрен них точек, то плоскость можно разрезать по прямой таким образ ом, что одно из множеств будет целиком лежать в одной полупло скости, а другое - в другой (на линии разреза могут располагат ься точки обоих множеств). Отделяющая их прямая в одних случая х оказывается единственно возможной, в других - нет (рис. 3).

Граничная точка любого выпуклого множества сама может ра с- сматриваться как выпуклое множество, не имеющее с исходным множе-

Рис. 3. Отделяющие прямые. Рис. 4. Опорные прямые.

III. Выпуклые множества и функции 571

ством общих внутренних точек, следовательно, она может быть отделена от него некоторой прямой. Прямая, отделяющая от выпуклого множества его граничную точку, называется опорной прямой этого множества в данной точке. Опорные прямые в одних точках контура могу т быть единственными, в других - не единственными (рис. 4).

Введем на плоскости систему декартовых координат х, у. Теперь у нас появилась возможность рассматривать различные фиг уры как множества таких точек, координаты которых удовлетвор яют тем или иным уравнениям или неравенствам (если координат ы точки удовлетворяют какому-либо условию, будем для кратко сти говорить, что сама точка удовлетворяет этому условию).

Упражнение 1

Рассмотрите фигуры, точки которых удовлетворяют неравен ствам: а) y ³ x2 ; á)xy ³ 1; â)xy ³ 1, õ > 0; ã) |õ| + |ó|£ 2;

ä) (õ+1)2 + (ó – 2)2 £ 9. Какие из них выпуклы?

Линейному уравнению ах + by = с удовлетворяют точки прямой. Иными словами, прямая является решением этого уравнения. Решением линейного неравенства

Решением каждого из неравенств является полуплоскость. Р ешение системы - это множество точек, каждая из которых удовл етворяет всем неравенствам системы, т. е. решение системы неравенств - это пересечение всех решений отдельных неравенств, составляющих систему. Полуплоскость - выпуклое множество, а пересече- ние выпуклых множеств всегда выпукло. Таким образом, решение системы (2) - выпуклое множество. На рис. 5 показано решение системы неравенств

ïî - 2x - y ³ -7.

Рис. 5. Решение системы из трех линейных неравенств.

572 Математическое приложение

Заметим, что неравенство ах + by £ с может быть заменено равносильным ему неравенством –àõ – by³ –ñ, имеющим вид (1). Кроме того, уравнение ах + by = с равносильно такой паре неравенств:

{ ax + by ³ c; ax + by £ c.

Таким образом, решение системы линейных уравнений и неравенств - всегда выпуклое множество.

Упражнение 2

Будет ли решение системы

ai x + bi y > ci , i = l, 2, ..., N

выпуклым множеством? Чем оно отличается от решения систем ы (2)?

Упражнение 3

Придумайте системы неравенств, решениями которых будут: а) параллелограмм; б) внутренность угла; в) полоса между двумя параллельными прямыми; г) единственная точка; д) пустое множество.

2. Выпуклые функции одной переменной

Проще всего определить выпуклую функцию геометрически. Д ля этого полезно ввести понятие надграфика функции. Надграфиком функции называется множество точек, расположенных над графиком ф ункции и на самом графике. Более строго, надграфик функции f(х) - это множество таких точек, координата х которых лежит в области определения функции, а координата у удовлетворяет неравенству у ³ f(x).

Функция называется выпуклой вниз, если ее надграфик - выпуклое множество. Рис. 6 иллюстрирует это определение.

Рис. 6. Надграфик выпуклой функции.

Рис. 7. Точка хорды не может располагаться ниже графика.

III. Выпуклые множества и функции 573

Приведенное определение является вполне строгим и может быть однозначно переведено на аналитический язык.

Во-первых, функция f(х) должна иметь выпуклую область определения - отрезок, луч или всю прямую.

В противном случае надграфик распался бы на несколько отдельных областей, и отрезок, соединяющий точки из разных о бластей, проходил бы через «запретную зону».

Для выяснения того, какому условию должны отвечать значе- ния выпуклой вниз функции f(x) «выберем какие-либо две точки M1 è M2 на ее графике и проведем хорду M1 M2 (рис. 7). Она целиком должна лежать в надграфике, т. е. надграфику должна принадлежать любая точка М хорды.

Рассмотрим число l , показывающее, в какой пропорции точка M делит хорду:

l = M 2 M .

M2 M1

Эта величина лежит в пределах 0 £ l £ 1. Ясно, что в такой же пропорции абсцисса и ордината точки М делят отрезки è [ó1 , ó2 ]:

õ2 – õ3 =l ·(õ2 – x1 ); y2 – y3 =l ·(y2 – y1 );

õ3 =l ·x1 + (1 –l )õ2 ; y3 =l ·y1 + (1 –l )y2 .

Условие принадлежности точки ние неравенства y3 ³ f(õ3 ). А так неравенство можно представить в

М надграфику - это выполне- âèäå êàê y 1 = f(x 1 ), y 2 = f(õ 2 ) - ýòî

Если неравенство (3) выполняется для любых значений x1 è õ2 , то любая хорда лежит в надграфике, тем более в надграфике л ежит любой отрезок, соединяющий точки, расположенные выше.

Таким образом, функция f(х), заданная на выпуклом множестве, выпукла вниз, если она обладает следующим свойством: для л ю- бых двух чисел x1 è õ2 из области определения функции и любого числаl из отрезка выполняется неравенство (3).

Неравенство (3) часто записывают в «симметричном» виде

574 Математическое приложение

Рис. 8. Функции: выпуклая вниз (а), выпуклая вверх (б), не имеющая постоянного знака выпуклости (в).

Аналогично можно определить и функции, выпуклые вверх: дл я этого нужно знаки неравенства (3) и (4) заменить на противоположные.

Функции, выпуклые вниз, часто называют просто «выпуклыми» . Выпуклые функции обладают свойством более общим, чем нера венство (4). Если x1 , õ2 ,..., xN - произвольные значения аргументаl 1 ,l 2 ,...,

l N - неотрицательные числа, сумма которых равна единице, то

Выберем четыре значения аргумента x1 < õ2 < õ3 < õ4 è ïðî-

ведем хорду M1 M4 (ðèñ. 9).

Промежуточные точки M2 è Ì3

лежат в надграфике, так что угол

наклона хорды M M * не больше,

а хорды М * M

Не меньше, чем

M M *

угол наклона хорды

абсцисс (углы наклона - с учетом

знаков!). Следовательно,

скорость

возрастания выпуклой функции в

области «больших» значений ар-

гумента (на участке [х3 , õ4 ]) íå

меньше, чем в области «малых»

значений (). Переходя к

пределам

x 2® x 1è

® õ 3 ,

f¢(x3 )

³ f¢(x1 ) ,

Рис. 9. Хорда, проведенная в области

производная

¢(x) дифференциру-

емой выпуклой функции f(х)- не-

больших значений аргумента, имеет

III. Выпуклые множества и функции 575

Если производная f¢(x) дифференцируема (т. е. выпуклая функция f(х) дважды дифференцируема), то f¢¢(x) ³ 0. Для дважды дифференцируемых функций это неравенство оказывается р авносильным приведенному выше определению выпуклой функции; в курсах математического анализа выпуклость обычно опред еляют по знаку второй производной. Но в экономических приложени ях, где часто приходится иметь дело с функциями, графики кото рых имеют изломы, такое определение оказывается мало полезны м.

Если f(х) и g(x) - выпуклые функции и а ³ 0, то выпуклыми будут функции

á) f(x) + g(x);

â) max(f(õ), g(x)).

Выпуклость функций в а) и б) проверяется непосредственно с помощью неравенства (3) или (4). Функция в) при каждом х принимает значение, равное большему из значений f(х) и g(x) (и любому из них, если они равны). Надграфик функции max(f(x), g(x)) есть пересечение надграфиков функций f(х) и g(x) (проверьте!) - отсюда и выпуклость функции в).

Упражнение 4

Существуют ли функции, выпуклые вниз и выпуклые вверх одновременно?

Упражнение 5

Ê ак выглядит график функции f(х) = = mах (0, а + bх) при различных значе- ниях параметров а и b? Выпуклы ли эти функции?

Упражнение 6

Выпукла ли функция

Рис. 10. Графики функций f(х) (1), g(x)

N (2) è max(f(x), g(x)) (3). f(x) = å fi (x) ,

fi (x) = max (0, ai + bi x)?

Как выглядит ее график?

576 Математическое приложение

Упражнение

Рассмотрим

ì ax,

f(x) = í

ïï

B × (x - 1) , x ³ 1.

При каких значения а и b эта функция

Выпукла вниз?

Выпукла вверх?

- не имеет постоянного знака выпуклости?

IV. Пространство благ

Основные понятия

Многие теоретические вопросы обсуждаются в нашем учебни ке применительно к случаю двух продуктов. В качестве удобного средства, существенно упрощающего их анализ, использовались г рафические построения, в которых набор, включающий два продукта в коли- чествах x1 , è x2 изображался точкой на плоскости с декартовыми координатами (x1 , x2 ). Перевод теоретических понятий на геометри- ческий язык делал свойства обсуждаемых явлений весьма на глядными и при этом не приводил к потере строгости: все геометрические понятия (прямые, кривые, углы наклона и т. п.) имели точно определенные аналитические эквиваленты - уравнения, производные, с оотношения между параметрами и т. д. Поэтому такие построения широко используются и в учебниках по экономике, и в научных публикациях.

Однако эти геометрические рассуждения были строгими и то ч- ными лишь для случаев, когда перечень потребляемых благ в клю- чал всего два наименования. В действительности же число б лаг, которыми пользуются люди, значительно больше. Выводы, пол у- ченные геометрическим путем, можно считать обладающими д остаточной общностью, если их удастся распространить на слу чаи произвольного числа благ.

Выпуклое множество - подмножество евклидова пространства содержащей отрезок, соединяющий любые какие две точки этой множества.

Определение

Другими словами, множество называется выпуклой, если:

То есть, если множество X вместе с любыми двумя точками, которые принадлежат этому множеству, содержит отрезок, их соединяющий:

В пространстве выпуклыми множествами будут прямая, полупрямой, отрезок, интервал, одноточечный множество.

В пространстве выпуклым будет само пространство, любое его линейный подпространство, шар, отрезок, одноточечный множество. Также, выпуклыми будут такие множества:

  • гиперплоскости H p? с нормалью p :
  • полупространства на которые гиперплоскости разделяет пространство:

Все перечисленные множества (кроме пули) является частным случаем выпуклой множества полиэдры.

Свойства выпуклых множеств

  • Пересечение выпуклых множеств является выпуклым.
  • Линейная комбинация точек выпуклой множества выпуклая.
  • Выпуклая множество содержит любую выпуклую комбинацию своих точек.
  • Любую точку n -мерного евклидова пространства с выпуклой оболочки множества можно представить как выпуклую комбинацию не более n +1 точек этого множества

Рассмотрим n - мерное евклидово пространство и пусть  точка в этом пространстве.

Рассмотрим две точки и , принадлежащие .Множество точек , которые могут быть представлены в виде

(в координатах это записывается так:

отрезком , соединяющим точки и . Сами точки и называются концами отрезка . В случаях n =2 и n =3 это  отрезок в обычном понимании этого слова на плоскости или в пространстве (см. рис. 12). Заметим, что при  =0 , а при  =1 , т.е. при  =0 и  =1 получаются концы отрезка.



Пусть в заданы k точек . Точка

где все и называется выпуклой комбинацией точек .

Пусть есть некоторая область в пространстве (другими словами,

G есть некоторое множество точек из ).

Определение. Множество (область) называется выпуклым , если из того, что и следует, что для   . Другими словами, G  выпуклое множество, если оно, вместе с любыми двумя своими точками, содержит в себе отрезок, соединяющий эти точки.

На этих рисунках "а" и "б" - выпуклые множества, а "в" не является выпуклым множеством, так как в нём есть такая пара точек, что соединяющий их отрезок не весь принадлежит этому множеству.

Теорема 1. Пусть G  выпуклое множество. Тогда любая выпуклая комбинация точек, принадлежащих этому множеству, также принадлежит этому множеству.

Доказательство

Докажем теорему методом математической индукции. При k =2 теорема верна, так как она просто переходит в определение выпуклого множества.

Пусть теорема верна для некоторого k . Возьмём точку и рассмотрим выпуклую комбинацию

где все и .
Представим в виде

Теорема доказана.

Теорема 2. Допустимая область задачи линейного программирования является выпуклым множеством.

Доказательство.

1. В стандартной форме в матричных обозначениях допустимая область G определяется условием

Т.е. x принадлежит G и, следовательно, выпукло.

2. В канонической форме область G определена условиями

Пусть и принадлежат G, т.е.

.

т.е. и, следовательно, G выпукло. Теорема доказана.

Таким образом, допустимая область в задаче линейного программирования является выпуклым множеством. По аналогии с двумерным или трехмерным случаями, при любом n эту область называют выпуклым

многогранникомв n - мерном пространстве

Теорема 3. Множество оптимальных планов задачи линейного программирования выпукло (если оно не пусто).

Доказательство

Если решение задачи линейного программирования единственно, то оно выпукло по определению  точка считается выпуклым множеством Пусть теперь и два оптимальных плана задачи линейного программирования.

т.е. есть также оптимальный план и, в силу этого, множество оптимальный планов выпукло. Теорема доказана.

Теорема 4. Для того, чтобы задача линейного программирования имела решение, необходимо и достаточно, чтобы целевая функция на допустимом множестве была ограничена сверху (при решении задачи на максимум) или снизу (при решении задачи на минимум).

Эту теорему мы даем без доказательства.

    Задачи выпуклого программирования

    1. Выпуклые множества

2.1.1. Понятие выпуклого множества

Определение . МножествоSE n называется выпуклым, если для любых двух точек
и
имеем

при любом
. Геометрически это означает, что вместе с
и
и весь отрезок
принадлежит множеству . Отметим, что отрезок
называется выпуклой комбинацией точек
и
.

Примеры выпуклых множеств

1. E n .

2. Пустое множество.

3. Множество, состоящее из одной точки

,

где
.

4. Гиперплоскость

где
, a ≠
0, иb – число. Приn = 3 это множество совпадает с обычной плоскостью, а приn = 2 – с прямой.

5. Полупространство

где
, a ≠
0, иb – число.

6. Конус

а y (k) – заданные векторы
. Заметим, что часто рассматриваются конусы с вершиной не в нуле, а в какой-либо другой точке
, то есть множества типа

7. Выпуклая комбинация (оболочка) конечного числа точек

Такое множество геометрически представляет собой n -мерный выпуклый многогранник.

8. Пересечение конечного числа полупространств

где
.
Такое множество называется многогранным выпуклым множеством. В том случае, когда оно ограничено, оно также является выпуклым многогранником. Таким образом, возможны два представления выпуклого многогранника – в виде выпуклой оболочки конечной совокупности точек и в виде пересечения конечного числа полупространств, заданных неравенствами.

9. Шар радиуса r ≥0 с центром в

.

В качестве примеров невыпуклых множеств можно назвать множество целых чисел или множество рациональных чисел.

2.1.2. Свойства выпуклых множеств

    Пересечение любого числа выпуклых множеств является выпуклым множеством.

    Объединение двух выпуклых множеств не обязательно выпукло.

Пример: объединение двух точек не есть выпуклое множество.



также является выпуклым множеством.

Эти утверждения следуют из определения выпуклого множества. Докажем, например, первое утверждение для пересечения двух множеств
и
. Пусть. Рассмотрим

Из выпуклости A иB получаем, что
и
при всех
.
Отсюда
. Утверждение доказано.

Определение .Крайней (экстремальной) точкой выпуклого множества называется такая его точка, которая не может быть представлена в виде выпуклой комбинации двух различных точек этого множества.

В качестве примера приведем выпуклый многогранник. Его крайними точками являются его вершины.

Определение . МножествоSE n называетсястрого выпуклым , если оно выпукло и все его граничные точки являются крайними.

Примером строго выпуклого множества является замкнутый шар.

2.1.3. Опорная гиперплоскость

Рассмотрим важнейшее понятие опорной гиперплоскости . Прежде всего заметим, что любая гиперплоскость , где
, a ≠
0, определяет в пространстве
два замкнутых полупространства

Гиперплоскость является пересечением этих полупространств и одновременно границей каждого из них.

Пусть имеется некоторое выпуклое множество S и его граничная точкаy .

Определение . ГиперплоскостьH , проходящая через точкуy и содержащая все точки множествоS в одном из определяемых ею замкнутых полупространств, называется гиперплоскостью,опорной к множествуS в точкеy .

Можно показать, что опорную гиперплоскость можно провести через любую граничную точку выпуклого множества. Иллюстрация опорной гиперплоскости приведена на рис. 3.1.

Рис. 3.1. Опорная гиперплоскость H к выпуклому множеству S в точке y .

Отметим, что опорная гиперплоскость может быть не единственна (см. рис. 3.2).

Рис. 3.2. Две опорных гиперплоскости H 1 и H 2 к выпуклому множеству S в точке y .

Пусть теперь задано два непустых множества A иB . ГиперплоскостьH называетсяразделяющей гиперплоскостью, если все точки множестваA лежат в одном из замкнутых полупространств, определяемых гиперплоскостьюH , а все точки множестваB лежат в другом из определяемых ею замкнутых полупространств. Можно доказать несколько теорем о разделяющих гиперплоскостях. Рассмотрим простейшую из них. Пусть
– совокупность внутренних точек множестваA .

Теорема 3.1. ПустьA иB – два непустых выпуклых множества, причем
Ø. Тогда существует гиперплоскостьH , разделяющая множестваA иB. 1

Примеры разделяющих гиперплоскостей приведены на рис. 3.3 и 3.4.

Рис. 3.3. Гиперплоскость H разделяет множества S 1 и S 2 , не имеющие общую точку

Рис. 3.4. Гиперплоскость H разделяет множества S 1 и S 2 , имеющие общую точку

      Выпуклые и вогнутые функции

В котором все точки отрезка , образуемого любыми двумя точками данного множества, также принадлежат данному множеству.

Определения

Примеры

  • Выпуклые подмножества множества \R (множество вещественных чисел) представляют собой интервалы из \R.
  • Примерами выпуклых подмножеств в двумерном евклидовом пространстве (\R^2) являются правильные многоугольники .
  • Примерами выпуклых подмножеств в трёхмерном евклидовом пространстве (\R^3) являются архимедовы тела и правильные многогранники .
  • Тела Кепплера - Пуансо (правильные звездообразные многогранники) являются примерами невыпуклых множеств.

Свойства

  • Выпуклое множество в топологическом линейном пространстве является связным и линейно связным , гомотопически эквивалентным точке.
  • В терминах связности, выпуклое множество можно определить так: множество выпукло, если его пересечение с любой (вещественной) прямой связно.
  • Пусть K - выпуклое множество в линейном пространстве. Тогда для любых элементов u_1,\;u_2,\;\ldots,\;u_r принадлежащих K и для всех неотрицательных \lambda_1,\;\lambda_2,\;\ldots,\;\lambda_r , таких что \lambda_1+\lambda_2+\ldots+\lambda_r=1, вектор w=\sum_{k=1}^r\lambda_k u_k
принадлежит K.
  • Вектор w называется выпуклой комбинацией элементов u_1,\;u_2,\;\ldots,\;u_r.

Вариации и обобщения

  • Без каких-либо изменений определение работает для аффинных пространств над произвольным расширением поля вещественных чисел.

См. также

Напишите отзыв о статье "Выпуклое множество"

Литература

  • Половинкин Е. С., Балашов М. В. Элементы выпуклого и сильно выпуклого анализа. - М .: ФИЗМАТЛИТ, 2004. - 416 с. - ISBN 5-9221-0499-3 . .
  • Тиморин В. А. . - М .: МЦНМО , 2002. - 16 с. - ISBN 5-94057-024-0 . .

Ссылки

Отрывок, характеризующий Выпуклое множество

И Наташа встала на цыпочках и прошлась из комнаты так, как делают танцовщицы, но улыбаясь так, как только улыбаются счастливые 15 летние девочки. Встретившись в гостиной с Соней, Ростов покраснел. Он не знал, как обойтись с ней. Вчера они поцеловались в первую минуту радости свидания, но нынче они чувствовали, что нельзя было этого сделать; он чувствовал, что все, и мать и сестры, смотрели на него вопросительно и от него ожидали, как он поведет себя с нею. Он поцеловал ее руку и назвал ее вы – Соня. Но глаза их, встретившись, сказали друг другу «ты» и нежно поцеловались. Она просила своим взглядом у него прощения за то, что в посольстве Наташи она смела напомнить ему о его обещании и благодарила его за его любовь. Он своим взглядом благодарил ее за предложение свободы и говорил, что так ли, иначе ли, он никогда не перестанет любить ее, потому что нельзя не любить ее.
– Как однако странно, – сказала Вера, выбрав общую минуту молчания, – что Соня с Николенькой теперь встретились на вы и как чужие. – Замечание Веры было справедливо, как и все ее замечания; но как и от большей части ее замечаний всем сделалось неловко, и не только Соня, Николай и Наташа, но и старая графиня, которая боялась этой любви сына к Соне, могущей лишить его блестящей партии, тоже покраснела, как девочка. Денисов, к удивлению Ростова, в новом мундире, напомаженный и надушенный, явился в гостиную таким же щеголем, каким он был в сражениях, и таким любезным с дамами и кавалерами, каким Ростов никак не ожидал его видеть.

Вернувшись в Москву из армии, Николай Ростов был принят домашними как лучший сын, герой и ненаглядный Николушка; родными – как милый, приятный и почтительный молодой человек; знакомыми – как красивый гусарский поручик, ловкий танцор и один из лучших женихов Москвы.
Знакомство у Ростовых была вся Москва; денег в нынешний год у старого графа было достаточно, потому что были перезаложены все имения, и потому Николушка, заведя своего собственного рысака и самые модные рейтузы, особенные, каких ни у кого еще в Москве не было, и сапоги, самые модные, с самыми острыми носками и маленькими серебряными шпорами, проводил время очень весело. Ростов, вернувшись домой, испытал приятное чувство после некоторого промежутка времени примеривания себя к старым условиям жизни. Ему казалось, что он очень возмужал и вырос. Отчаяние за невыдержанный из закона Божьего экзамен, занимание денег у Гаврилы на извозчика, тайные поцелуи с Соней, он про всё это вспоминал, как про ребячество, от которого он неизмеримо был далек теперь. Теперь он – гусарский поручик в серебряном ментике, с солдатским Георгием, готовит своего рысака на бег, вместе с известными охотниками, пожилыми, почтенными. У него знакомая дама на бульваре, к которой он ездит вечером. Он дирижировал мазурку на бале у Архаровых, разговаривал о войне с фельдмаршалом Каменским, бывал в английском клубе, и был на ты с одним сорокалетним полковником, с которым познакомил его Денисов.
Страсть его к государю несколько ослабела в Москве, так как он за это время не видал его. Но он часто рассказывал о государе, о своей любви к нему, давая чувствовать, что он еще не всё рассказывает, что что то еще есть в его чувстве к государю, что не может быть всем понятно; и от всей души разделял общее в то время в Москве чувство обожания к императору Александру Павловичу, которому в Москве в то время было дано наименование ангела во плоти.
В это короткое пребывание Ростова в Москве, до отъезда в армию, он не сблизился, а напротив разошелся с Соней. Она была очень хороша, мила, и, очевидно, страстно влюблена в него; но он был в той поре молодости, когда кажется так много дела, что некогда этим заниматься, и молодой человек боится связываться – дорожит своей свободой, которая ему нужна на многое другое. Когда он думал о Соне в это новое пребывание в Москве, он говорил себе: Э! еще много, много таких будет и есть там, где то, мне еще неизвестных. Еще успею, когда захочу, заняться и любовью, а теперь некогда. Кроме того, ему казалось что то унизительное для своего мужества в женском обществе. Он ездил на балы и в женское общество, притворяясь, что делал это против воли. Бега, английский клуб, кутеж с Денисовым, поездка туда – это было другое дело: это было прилично молодцу гусару.
В начале марта, старый граф Илья Андреич Ростов был озабочен устройством обеда в английском клубе для приема князя Багратиона.
Граф в халате ходил по зале, отдавая приказания клубному эконому и знаменитому Феоктисту, старшему повару английского клуба, о спарже, свежих огурцах, землянике, теленке и рыбе для обеда князя Багратиона. Граф, со дня основания клуба, был его членом и старшиною. Ему было поручено от клуба устройство торжества для Багратиона, потому что редко кто умел так на широкую руку, хлебосольно устроить пир, особенно потому, что редко кто умел и хотел приложить свои деньги, если они понадобятся на устройство пира. Повар и эконом клуба с веселыми лицами слушали приказания графа, потому что они знали, что ни при ком, как при нем, нельзя было лучше поживиться на обеде, который стоил несколько тысяч.


Например, многоугольник на рис. 2.1, а - выпуклый, а мно­гоугольник на рис. 2.1, б не является выпуклым (он расположен по обе стороны от прямой ВС).

Общим определяющим свойством, которое отличает выпук­лый многоугольник от невыпуклого, является то, что если взять любые две его точки и соединить их отрезком, то весь отрезок будет принадлежать этому многоугольнику. Это свойство может быть принято за определение выпуклого множества точек.

Множество точек называется выпуклым, если оно вместе с лю­быми двумя своими точками содержит весь отрезок, соединяющий эти точки.

Согласно этому определению многоугольник на рис. 2.1, а яв­ляется выпуклым множеством, а многоугольник на рис. 2.1, б таковым не является, ибо отрезок МЫ между двумя его точками М и./V не полностью принадлежит этому многоугольнику.

Пусть М и N - любые две точки пересечения двух мно­жеств А и В (рис. 2.3). Так как точки М и N принадлежат пересе­чению множеств, т.е. одновременно и выпуклому множеству А, и выпуклому множеству В, то согласно определению выпуклого множества все точки отрезка МИ будут принадлежать как множе­ству А, так и множеству В, т.е. пересече­нию этих множеств. А это и означает, что пересечение данных множеств есть выпуклое множество. ■

Среди точек выпуклого множества можно выделить внутренние, граничные и угловые точки.

Точка множества называется внут­ренней, если в некоторой ее окрестности содержатся точки только данного мно­жества.

Рис- 2-3 Точка множества называется граничной,

если в любой ее окрестности содержатся как точки, принадлежащие данному множеству, так и точки, не принадлежащие ему.

Особый интерес в задачах линейного программирования пред­ставляют угловые точки.

Точка множества называется угловой (или крайней), если она не является внутренней ни для какого отрезка, целиком принадлежаще­го данному множеству.


На рис. 2.4 приведены примеры различных точек многоуголь­ника: внутренней (точки М), граничной (точка И) и угловых (точки А, В, С, Д Е). Точка А - угловая, так как для любого от­резка, целиком принадлежащего многоугольнику, например, от­резка АР, она не является внутренней; точка А - внутренняя для отрезка КЬ, но этот отрезок не принадлежит целиком много­угольнику.

Для выпуклого множества угловые точки всегда совпадают с вершинами многоугольника (многогранника), в то же время для невыпуклого множества это не обязательно. Так, на рис. 2.5 точка А является вершиной невыпуклого многоугольника, но не угловой (она является внутренней для отрезка КЬ, целиком принадлежа­щего этому многоугольнику).

Множество точек называется замкнутым, если включает все свои граничные точки. Множество точек называется ограничен­ным, если существует шар (круг) радиуса конечной длины с цен­тром в любой точке множества, который полностью содержит в себе данное множество; в противном случае множество называет­ся неограниченным.

Если фигура ограничена только прямыми или их отрезками, то число ее угловых точек конечно; в случае криволинейности границ фигура содержит бесконечно много угловых точек, что позволяет сделать следующее определение.

Выпуклое замкнутое множество точек пространства (плоскости), имеющее конечное число угловых точек, называется выпуклым много­гранником (многоугольником), если оно ограниченное, и выпуклой много­гранной (многоугольной) областью, если оно неограниченное.

До сих пор рассматривались выпуклые множества точек на плоскости и в пространстве. Аналитически такие точки изобра­жаются упорядоченной парой чисел (хь х2) или упорядоченной тройкой чисел (*1, *2, *з)- Понятие точки можно обобщить, под­разумевая под точкой (или вектором) упорядоченный набор п чисел Х= (хь XI, ..., хп), в котором числа хх, х2, ..., х„ называются координатами точки (вектора). Такое обобщение имеет смысл, так как если взять какой-либо экономический объект, то для его ха­рактеристики двух-трех чисел обычно бывает недостаточно и не­обходимо взять п чисел, где п > 3.

Множество всех точек Х= (хь х2,..., х„) образ^т п-мерное точеч­ное (векторное) пространство. При п > 3 точки и фигуры «-мерного пространства не имеют реального геометрического смысла и все ис­следования объектов этого пространства необходимо проводить в аналитической форме. Тем не менее оказывается целесообразным и в этом случае использовать геометрические понятия для облегчения представлений об объектах «-мерного пространства.