Сравнение gtx 680. Энергопотребление видеокарт* в разгоне. Температурный режим, уровень шума и потребляемого электричества

Прежде чем принимать письма из ящика почтовой программой, включите доступ к ящику для почтовых программ. Как это сделать, описано по этой ссылке .

Настройка программы IPhone/IPod touch Mail для работы с почтовым ящиком @UKR.NET
Чтобы настроить программы IPhone/IPod touch Mail для работы с почтовым ящиком @UKR.NET, выполните следующее:

1. Нажмите на значок "Настройки" (значок в виде шестерёнки:)

2. Выберите пункт "Почта" .

4. Из списка выберите "Другое" .

5. В разделе "Почта" нажмите "Новая учётная запись" .

6. На следующем экране заполните, пожалуйста, все поля.


Поле Имя .

Эта информация будет добавляться к электронному адресу (т.е. к вашей почте) при отправке письма. Например, если ваш адрес - [email protected], а в строке "Имя" вы укажете "Тарас Шевченко", то получателю вашей почты придёт от вас письмо, в котором в строке "От кого" будет указано: Тарас Шевченко ;

Поле E-mail .
Здесь необходимо указать адрес вашего ящика @ukr.net (Например: [email protected]);

Поле Пароль .
Тут указываем пароль от своего ящика;

Поле Описание .
В этой строке можно написать что угодно (например: "мой ящик FREEMAIL"/ "мой ящик @UKR.NET"). Под этим именем учётная запись почты @UKR.NET будет отображаться в списке учётных записей вашего телефона iPhone.

Внимательно заполните все поля, после чего нажмите кнопку "Далее" .

7. Убедитесь, пожалуйста, что для настройки вы выбрали учетную запись IMAP :

8. На этом же экране чуть ниже найдите раздел "Сервер входящей почты" и введите настройки:
Необходимо указать:

- Имя узла – указать: imap.ukr.net . - Имя пользователя – указать: адрес вашего ящика @UKR.NET, например [email protected] . - Пароль – указать пароль от вашего ящика.

9. Тут же в разделе "Сервер исходящей почты" в поле "Имя узла" укажите, пожалуйста: smtp.ukr.net.


Остальные поля оставьте пустыми и нажмите кнопку "Далее" .

10. На экране "Учётные записи" выберите вашу учетную запись из списка дважды.

11. На появившемся экране найдите раздел "Сервер входящей почты". Проверьте, пожалуйста, правильно ли введены настройки (Имя узла imap.ukr.net , Имя пользователя – адрес вашего ящика @UKR.NET, Пароль – пароль от вашего ящика). Далее выберите меню Дополнительно .

12. В этом окне проверьте настройки сервера Входящей почты, как показано на картинке. Убедитесь, что настройки получения почты такие, как на картинке. В пункте "Идентификация" обязательно должно быть указано "Пароль". Затем вернитесь к основному разделу настроек почты (нажмите на кнопку "Учётная запись").

13. На этом экране пролистайте вниз и нажмите на надпись "smtp.ukr.net" ("Сервер исходящей почты").

14. Нажмите на надпись "первичный сервер smtp.ukr.net".

15. В настройках сервера smtp.ukr.net заполните, пожалуйста, все поля без исключения. В строку "Имя пользователя" обязательно впишите, пожалуйста, полный адрес ящика с @ukr.net (например, [email protected]), укажите пароль к этому ящику и включите режим SSL. Порт сервера следует установить 465. После заполнения нажмите Готово .

16. Теперь настройка учётной записи завершена. Можно нажать кнопку "Home" и приступить к работе с почтой при помощи программы mail.

Fermi – архитектура компании NVIDIA, названная так в честь итальянского ученого-атомщика Энрико Ферми. Видеокарты, основанные на ней, были представлены 30 сентября 2009 года и обладали поддержкой DirectX 11. В продаже они появились чуть позже, после 26 марта 2010 года, а в качестве причины была названа ставшая уже привычной в то время проблема производства графических процессоров на мощностях TSMC.

На текущий момент прошло порядка трех месяцев с момента анонса и поступления в продажу новых графических ускорителей основного конкурента и, пожалуй что, единственного. Фора, предоставленная им NVIDIA, позволила разработчикам компании учесть просчеты Tahiti и в полной мере реализовать свои задумки. Остается выяснить, что же представляет собой новая архитектура Kepler, и стала ли она вообще новой.

Краткий список изменений в архитектуре

Несмотря на широко устоявшееся в компьютерных кругах мнение, что выпуск Windows 8 принесёт новую версию API (Direct X), эта теория полностью провалилась, и пользователей, скорее всего, ждёт тотальное доминирование DirectX 11. К слову, определенная часть игровых приложений, если не большая их половина, до сих пор ориентируется на старый-добрый DirectX 9 в угоду «приставочным» покупателям. Поэтому нам, обладателям сверхсовременных и сверхпроизводительных видеокарт, приходится довольствоваться играми, в которых производительность даже младших решений находится на очень высоком уровне.

Тем не менее, прогресс не стоит на месте, и смена техпроцесса производства с 40 нм на 28 нм позволяет компаниям оптимизировать и улучшать физические показатели своих GPU. Именно это перевоплощение и произошло с основной архитектурой NVIDIA Fermi.

Здесь необходимо совершить небольшой экскурс в историю. Наиболее производительным графическим ядром NVIDIA до недавнего времени было GF100, которое впоследствии модернизировалось до GF110.

Оно сочетает в себе хороший баланс между производительностью и GPGPU-вычислениями, поскольку изначально разрабатывалось для DirectX 11 и GPGPU. Но и у такого решения нашлась «ахилессова пята». В условиях жёсткой конкуренции по уровню энергопотребления GF110 в сравнении с Cayman выглядел, мягко говоря, слабо.

Чуть позже инженеры пересмотрели количество ALU в GPC и вывели в свет GF104, оптимизировав ядро под текущие игровые требования.

Ухудшившаяся производительность GPGPU мало волновала покупателей, им гораздо важнее было соотношение «цена-производительность». С этим спорить не приходилось, для своего времени GTX 560 и GTX 560 Ti стали удачным решением.

Посмотрим на архитектуру подробнее.

В основе всех видеопроцессоров лежит простой блок из вычислительных ядер (CUDA Cores). В GF110, GF114 и Kepler его упрощенную схему можно представить следующим образом:

Так, за обработку геометрии отвечает PolyMorph Engine 2.0. В нём находятся исполнительные блоки Tesselation, Vertex Fetch, Viewport Transform, Attribute setup, Steam output. Немаловажный факт - производительность PolyMorph Engine 2.0 выросла в два раза по сравнению с архитектурой Fermi. Заметно, что разработчики NVIDIA работают в сторону увеличения исполнительных устройств в одном SMX блоке. А там, где количественного изменения не произошло, компания рассказывает о качественном. Обратимся к сухим цифрам. В одном SM/SMX:

Да, действительно, нас ждут укрупнённые массивы SM/SMX, без неприятных неожиданностей. Вкупе с возросшим числом транзисторов NVIDIA добавила в SM все необходимые вспомогательные блоки: загрузки и хранения, специальной функциональности, объёма регистров и прочие. Налицо количественный рост без ухудшения прочих характеристик.

В финальном варианте GPU выглядит следующим образом:

Несложно подсчитать изменившееся соотношение загрузки между планировщиками/диспетчерами/ CUDA-ядрами. В GF110 оно составляло 2/2:32, в GF114 - 2/4:48, в Kepler - 4/8:192. Если абстрактно, планировщик готовит очередь команд, которая в свою очередь делится диспетчерами и направляется на исполнение к ядрам. Ещё одно интересное изменение связано с адресацией блока растеризации. Так, в прошлых поколениях к нему было подключено 128 и 192 CUDA-ядер у GF110 и GF114 соответственно, в Kepler этот показатель равен 384. Видимо, инженеры посчитали, что блок растеризации еще не исчерпал свой лимит производительности.

Что касается системы адресации памяти, то здесь причин идти на серьёзные изменения нет. Для Kepler приготовили 256-битную память (четыре 64-битных канала) и 32 блока ROP. Но штатная частота памяти составила 6000 МГц, что является рекордом среди всех референсных видеокарт на данный момент.

Субъективно, мне видится направление движения развития графических процессоров (что NVIDIA, что AMD) в одну сторону. Первая постепенно увеличивает соотношение CUDA-ядер в одном объединённом блоке (SMX), не забывая при этом про уровень быстродействия блока тесселяции, которым снабжён каждый SMX! А так же про размер кэшей и регистров. AMD, наоборот, всеми силами пыталась уйти от непомерной загрузки блоков растеризации/тесселяции, которые были выделены в отдельные устройства в GPU. Причем, блокам растеризации, а раньше он и вовсе был один, приходилось снабжать данными уж слишком большое количество исполнительных ядер.

Естественно, что блоки растеризации AMD, скорее всего, мощнее, иначе бы им не хватило производительности. Но модульная структура Fermi/Kepler выглядит разумнее, как для этапа разработки, так и последующей модернизации. Поэтому новую архитектуру NVIDIA нельзя назвать новой в полном смысле этого слова, она скорее представляет собой реорганизованный и пересмотренный вариант Fermi.

Технические характеристики

Наименование HD 6970 HD 6990 HD 7950 HD 7970 GTX 580 GTX 590 GTX 680
Кодовое имя Cayman XT Antilles Tahiti Pro Tahiti XT GF110 GF110 GK104
Техпроцесс, нм 40 40 28 28 40 40 28
Размер ядра/ядер, мм 2 389 389 x2 365 365 ~530 ~530 x2 294
Количество транзисторов, млн 2640 2640 x2 4300 4300 3300 3300 x2 3540
Частота ядра, МГц 880 830/ 880 800 925 772/ 1544 608/ 1216 1006
Число шейдеров (PS), шт. 1536 1536x2 1792 2048 512 512 x2 1536
Число блоков растеризации (ROP), шт. 32 32 x2 32 32 48 48 x2 32
Число текстурных блоков (TMU), шт. 96 96 x2 112 128 64 64 x2 128
Макс. скорость закраски, Гпикс/с 28.2 53.1/ 56.3 25.6 29.6 37.1 58.4 32
Макс. скорость выборки текстур, Гтекс/с 84.5 159.4/ 169 89.6 118,5 49.4 77.8 128
Версия пиксельных/вертексных шейдеров 5.0 / 5.0 5.0 / 5.0 5.0 / 5.0 5.0 / 5.0 5.0 / 5.0 5.0 / 5.0 5.0 / 5.0
Тип памяти GDDR5 GDDR5 GDDR5 GDDR5 GDDR5 GDDR5 GDDR5
Эффективная частота памяти, МГц 5500 5000 5000 5500 4008 3420 6000
Объём памяти, Мбайт 2048 2048 x2 3072 3072 1536 1536 x2 2048
Шина памяти, бит 256 256 x2 384 384 384 384 x2 256
Пропускная способность памяти, Гбайт/с 176 160 x2 240 264 192.4 164 х2 192
Потребляемая мощность 2D/3D, Ватт 20/ 250 37/ 375; 450 3/ 200 3/ 250 нд/ 244 нд/ 365 нд/ 195
Crossfire/Sli да да да да да да да
Размер карты (ДхШхВ), мм 275x100x37 340x100x38 275x100x37 275x100x37 270x100x38 280x100x38 260x100x38
Рекомендованная цена, $ 369 699 450 550 499 699 500

Новые возможности

С анонсом новой архитектуры NVIDIA внедрила в GTX 680 дополнительные возможности, часть которых будет доступна на всех ранее выпущенных видеокартах. В частности, появилась возможность задействовать адаптивный VSync.

Суть его работы заключается в том, чтобы обеспечить максимально комфортное воспроизведение картинки в играх.

После активации адаптивного VSync максимальное число кадров не превышает частоту развёртки монитора, но здесь важнее другое - цикл падения производительности становится плавным, что позволяет избежать «дерганья» картинки. На мой взгляд, эта технология оптимальна для очень больших разрешений, особенно тогда, когда задействуется несколько игровых мониторов. Поскольку даже в 2560х1440 GTX 680 чувствует себя более чем уверенно. Адаптивный VSync активируется через контрольную панель драйверов, но, возможно, в будущем будет доступен непосредственно из меню игр.

ТХАА – новый метод сглаживания. Не секрет, что современные методы сглаживания порядком нагружают графические возможности GPU. И чем выше степень, тем меньше производительность. На другой чаше весов лежит качество сглаживания, ведь нельзя, улучшая его, не терять в скорости. Поэтому каждый год разрабатываются новые механизмы, позволяющие сочетать как скорость, так и качество.

Без сглаживания

TXAA как раз является тем методом, который позволяет насладиться степенью сглаживания MSAA 4x-8x по половинчатой цене. Доступно два режима: TXAA 1– аналогично качеству MSAA 8x, но с производительностью MSAA 2x, и TXAA 2 – с качеством выше MSAA 8x и производительностью MSAA 4x. Описываемые методы буквально в ближайшее время будут интегрированы в новые игры: MechWarrior Online, Secret World, Eve Online, Borderlands 2, Unreal 4 Engine и другие.

GTX 680 и последующие преемники архитектуры Kepler получат поддержку 4К-разрешений и 3 ГГц HDMI мониторов. Саму видеокарту уже сейчас можно подключить к четырем дисплеям.

Внутри микросхемы GK104 встроен аппаратный блок с поддержкой кодека H.264. NVENC до четырех раз быстрее справляется с задачами кодирования, нежели предыдущие варианты, основанные на языке CUDA. И опять же речь идёт о разрешениях вплоть до 4096х4096 и H.264 Base, Main, and High Profile Level 4.1.

Наконец по многочисленным просьбам реализовано удобное размещение панели «Пуск». Теперь она располагается на центральном дисплее. Естественно, что появилась возможность настраивать пересекающиеся меню в играх так, чтобы не разрывать и не скрывать содержимое окна между мониторами.

И, пожалуй, ещё одно очень интересное нововведение. Отныне нет понятия 3D частоты. У GK104 появились базовая частота, равная 1006 МГц, и частота GPU Boost. А также максимальный уровень энергопотребления.

Говоря проще, в зависимости от загрузки графического процессора и запаса до пика энергопотребления GPU Boost автоматически подстраивает эффективную частоту GPU.

Внешний вид и размеры

Модель A, мм B, мм C, мм D, мм A1, мм B1, мм C1, мм
AMD HD 6970 266 95 34 65 273 97 39
AMD HD 7970 266 98 34 71 277 98 39
NVIDIA GTX 580 268 98 36 68 268 98 38
NVIDIA GTX 680 254 98 34 63 254 98 38

А - длина печатной платы, без учёта системы охлаждения и планки портов видеовыходов.
В - ширина печатной платы, без учёта контактов PCI-E и системы охлаждения.
С - высота от горизонтальной плоскости печатной платы до уровня верхней поверхности системы охлаждения.
D - диаметр крыльчатки вентилятора/ов.

А1 - длина печатной платы, с учётом системы охлаждения (если выходит за пределы печатной платы) до планки портов видеовыходов.
В1 - ширина печатной платы, без учёта контактов PCI-E, но с замером системы охлаждения (если выходит за пределы печатной платы).
С1 - высота, с учётом задней пластины (если есть)/винтов крепления радиатора до уровня верхней поверхности системы охлаждения. Если она ниже высоты задней планки портов видеовыходов, то измеряется высота до верхней точки планки.

На самом деле, нестандартный разъём питания (с защелками, повёрнутыми внутрь) оказался не таким уж неудобным. Конечно, я допускаю, что некоторые блоки питания оснащаются массивными 6/8 pin разъёмами, и только тогда, вынимая их из видеокарты, вы вспомните инженеров нехорошим словом.

Количество видеопортов изменилось, теперь пользователю доступны следующие разъемы: два DVI, по одному HDMI и DP. Из-за вертикального расположения DVI конструкторам пришлось соразмерно уменьшить вентиляционную решётку.

Печатная плата

Как обычно, сразу после анонса первыми начинают продаваться видеокарты, основанные на эталонном дизайне. К счастью, он достаточно прост и не требует дорогостоящих комплектующих.

На NVIDIA GTX 680 две фазы питания памяти расположены в верхней части печатной платы. Вопреки привычному разделению питания на MEM и PLL, инженеры NVIDIA не выделяют отдельный ШИМ-контроллер, используя комбинированное питание. Совсем необычно размещены фазы питания GPU. Если раньше они вытягивались вертикально в ряд, то сейчас их расположили горизонтально. Чем обусловлено такое расположение, сказать сложно, но разработчикам и инженерам должно быть виднее. Из пяти доступных фаз распаяно лишь четыре. А поскольку максимальное потребление карты ограничено, то этого должно хватить. Можно выдвинуть предположение, что если AMD соизволит выпустить разогнанную версию AMD Radeon HD 7970, то свет увидит и NVIDIA GTX 680 Ti. Тогда-то и потребуется пятая фаза.

Температурный режим, уровень шума и потребляемого электричества

Рабочие температуры

Градусы, °C

#1 и #2 – соответственно температуры первого и второго графических ядер.
HD 6990* - видеокарта AMD с частотой GPU 880 МГц.

NVIDIA GTX 680 находится приблизительно на одном уровне по нагреву с AMD Radeon HD 7970. Разницей в 1°C можно пренебречь.

В тесте принимают участие видеокарты, выполненные на основе референсного дизайна.

Уровень шума


Включите JavaScript, чтобы видеть графики

Но про уровень шума, издаваемого системой охлаждения, этого уже не скажешь. При одинаковом уровне нагрева NVIDIA GTX 680 на 7.5 дБА тише основного конкурента AMD Radeon HD 7970.

Послушать систему охлаждения:

И сравнить:

Энергопотребление видеокарт*


Включите JavaScript, чтобы видеть графики

*

AMD Radeon HD 6990 и NVIDIA GTX 590 естественным образом занимают верхние строчки рейтинга. Далее за ними следует пара ускорителей, основанных на 40 нм техпроцессе, AMD Radeon HD 6970 и NVIDIA GTX 580. Большой транзисторный бюджет накладывает определенные требования к питанию и для новой видеокарты AMD – Radeon HD 7970, которая стоит на одной ступени с NVIDIA GTX 580. А NVIDIA GTX 680 удобно разместилась между AMD Radeon HD 7970 и 7950.

Энергопотребление видеокарт* в разгоне


Включите JavaScript, чтобы видеть графики

* - Тестовый стенд целиком, без учёта монитора.

После разгона позиции всех участников претерпевают изменения, за исключением пары двухпроцессорных видеокарт. На этом фоне за счет старого техпроцесса и высоких частот выделяется NVIDIA GTX 580. Практически недалеко от неё ушла и AMD Radeon HD 7970, уверенно обгоняя AMD Radeon HD 6970.

А первенец на Kepler, NVIDIA GTX 680, благодаря новым алгоритмам энергосбережения и управления частотами не только неплохо разгоняется, но и потребляет мало. По последнему показателю его обходят даже NVIDIA GTX 570 и 560 448 Core.

На данный момент стандарт Full HD стал повсеместным. Даже бюджетные мониторы небольших диагоналей нынче щеголяют разрешением 1920x1080 точек, не говоря уже о крупногабаритных моделях. С некоторых пор даже мобильные телефоны начали осваивать этот стандарт. А под конец года поспеют и новые игровые консоли с поддержкой честного Full HD. Но компьютерные энтузиасты уже осваивают новые горизонты, экспериментируя с мультимониторными конфигурациями и присматриваясь к мониторам повышенного разрешения 2560x1440. И если с 1920x1080 современные топовые однопроцессорные видеокарты легко справляются, то для более тяжелых режимов им может не хватить сил.

В данной статье мы как раз решили выяснить, насколько успешно справятся GeForce GTX 680, Radeon HD 7970 и Radeon HD 7970 GHz Edition со сверхвысоким разрешением 2560x1440. Ранее мы не раз сводили вместе GeForce GTX 680 и простой Radeon HD 7970. Первый всегда успешно доказывал свое преимущество на заводских частотах в большинстве приложений, а второй уравнивал шансы при разгоне. Но в 2560x1440 все может сложиться не столь удачно для видеоадаптера NVIDIA из-за меньшего объема видеопамяти и более узкой шины. Не было у нас и полноценного сравнения с Radeon HD 7970 GHz Edition. Честно говоря, и в этот раз референсного образца такой карты тоже не будет, мы просто приведем имеющийся у нас Radeon к соответствующим частотам. Плюс ко всему, это самое масштабное сравнение конкурентов от AMD и NVIDIA, включающее 21 тестовое приложение.

Никаких новых оригинальных видеокарт рассмотрено не будет, но мы все же бегло пробежимся по характеристикам участников.

GeForce GTX 680

Со стороны NVIDIA в нашем сравнении примет участие графический ускоритель от ASUS GTX680-2GD5.


Ничего особого в данной модели нет. С первого взгляда ясно, что это копия референса .


Сбоку красуется огромная надпись GeForce GTX. Шестиконтактные разъемы дополнительного питания расположены друг под другом, что является отличительной особенностью таких видеоадаптеров.


Малое количество декоративных элементов сводит к минимуму визуальные отличия от эталонной карты NVIDIA. Зато смотрится строго и солидно.


Нижняя фотография системы охлаждения еще раз демонстрирует полную конструктивную идентичность с референсными образцами.


Рабочие частоты стандартные. Память GDDR5 функционирует на эффективной частоте 6008 МГц. Базовая частота графического процессора 1006 МГц, а официальный Boost Clock 1059 МГц. Последний параметр, напомним, является средним значением повышенной частоты при работе технологии Boost. Пиковое значение у нашего экземпляра равно 1124 МГц. В зависимости от энергопотребления частота варьируется так, чтобы видеокарта не вышла за установленные ограничения по мощности. В тесте Crysis: Warhead на максимальном качестве графики при сглаживании MSAA 8x в разрешении 2560x1440 процессор почти все время держался в диапазоне от 1071 МГц до 1058 МГц, что демонстрирует нижний левый график. Разве что в начале теста на графике можно отметить скачок к более высоким значениям. Это практически полностью соответствует показателям других GeForce GTX 680 без заводского разгона. Первый референсный экземпляр от Zotac у нас даже работал на частоте 1084 МГц, но там было более низкое рабочее разрешение 1920x1080. Рабочие температуры у этого ASUS (при 24 °C в помещении) тоже отвечают показателям других референсов — не более 81 °C. В тесте Unigine Valley Benchmark при Ultra-качестве и сглаживании рабочий диапазон частот GPU понизился до 1019-1048 МГц, что демонстрирует правый график.
Разгонный потенциал у ASUS GTX680-2GD5 вполне заурядный для графического процессора и неплохой для памяти. По базовой частоте видеокарта одолела 1146 МГц при пиковом значении в 1254 МГц. Повышение ползунка лимита мощности до предела позволило карте все время работать на пиковом значении в Warhead. А вот в Valley Benchmark частоты упали уже до 1241 МГц с просадками до 1228 МГц. Все проиллюстрировано ниже.
Такой разгон был реализован при повышенных оборотах вентилятора в шумном режиме.

Radeon HD 7970 и Radeon HD 7970 GHz Edition

Честь графических решений AMD защищает MSI R7970 Lightning. Видеоадаптер подробным образом был рассмотрен нами в соответствующем обзоре .


Карта на своих заводских частотах не тестировалась. Для начала мы установили 925/5500 МГц, что соответствует параметрам простого Radeon HD 7970. При этом напряжение было понижено до 1,163 В, что давало реальное значение близкое к 1,175 В (при таком напряжении работает референс). Таким образом, мы попытались приблизить видеокарту не только к стандартной производительности, но и к стандартному значению энергопотребления. Два нижних графика демонстрируют работу видеокарты в Crysis: Warhead и Unigine Valley Benchmark.
Великолепные температурные показатели обеспечены мощной системой охлаждения. Некоторую роль сыграла и замена термопасты на Noctua NT-H1. Так что в итоге значения могут оказаться еще на один-два градуса ниже, чем в обзоре MSI R7970 Lightning.

Теперь о том, как мы получили версию GHz Edition. В заявленных характеристикам указана частота ядра 1000 МГц при возможном ее повышении до 1050 МГц в режиме Boost. Но судя по обзорам, реальная частота все время стремится ко второму значению 1050, снижаясь до 1000 МГц только в стресс-тестах и очень ресурсоемких приложениях. Поэтому мы сразу выставили 1050 МГц. Память у Radeon HD 7970 GHz Edition функционирует на 6000 МГц. Напряжение изменяется в зависимости от частоты GPU, но на практике, как и частота, держится на максимальном уровне. При этом, судя по тем же обзорам, это максимальное значение достигает 1,218 или 1,256 вольт. Мы не стали превращать нашу карту в такой «обогреватель», ограничившись подъемом напряжения до 1,2 В по программному мониторингу.


Максимальный стабильный разгон составил 1190/7200 МГц. Для простого Radeon HD 7970 такой результат отличный. Хотя обновленные карты из серии GHz Edition на базе GPU Tahiti новых ревизий, судя по отзывам, могут преодолевать рубеж в 1,2 ГГц.
Кстати, на всех графиках включено слежение за загрузкой видеопамяти. И при сравнении GeForce с Radeon видно, что последний использует на 340 МБ больше в Crysis: Warhead. Схожая ситуация была и во многих других приложениях.Характеристики тестируемых видеокарт

В нижней таблице приведены официальные спецификации участников тестирования. На сравнительных диаграммах производительности указан полный рабочий диапазон частот для GeForce.

Видеоадаптер GeForce GTX 680 Radeon HD 7970 GHz Edition
Ядро GK104 Tahiti Tahiti
Количество транзисторов, млн. шт 3500 4312 4312
Техпроцесс, нм 28 28 28
Площадь ядра, кв. мм 294 365 365
Количество потоковых процессоров 1536 2048 2048
Количество текстурных блоков 128 128 128
Количество блоков рендеринга 32 32 32
Частота ядра, МГц 1006-1059 1000-1050 925
Шина памяти, бит 256 384 384
Тип памяти GDDR5 GDDR5 GDDR5
Частота памяти, МГц 6008 6000 5500
Объём памяти, МБ 2048 3072 3072
Поддерживаемая версия DirectX 11.1 11.1 11.1
Интерфейс PCI-E 3.0 PCI-E 3.0 PCI-E 3.0
Заявленный уровень мощности, Вт 195 250 250

Тестовый стенд

Конфигурация тестового стенда следующая:

  • процессор: Intel Core i7-3930K (3,2@4,4 ГГц, 12 МБ);
  • кулер: Thermalright Venomous X;
  • материнская плата: ASUS Rampage IV Formula/Battlefield 3 (Intel X79 Express);
  • память: Kingston KHX2133C11D3K4/16GX (4x4 ГБ, DDR3-2133@1866 МГц, 10-11-10-28-1T);
  • системный диск: Intel SSD 520 Series 240GB (240 ГБ, SATA 6Gb/s);
  • дополнительный диск: Hitachi HDS721010CLA332 (1 ТБ, SATA 3Gb/s, 7200 об/мин);
  • блок питания: Seasonic SS-750KM (750 Вт);
  • монитор: ASUS PB278Q (2560х1440, 27");
  • операционная система: Windows 7 Ultimate SP1 x64;
  • драйвер GeForce: NVIDIA GeForce 314.22;
  • драйвер Radeon: ATI Catalyst 13.3 beta 3.
В операционной системе были отключены User Account Control, Superfetch и визуальные эффекты интерфейса. Настройки драйверов стандартные, без изменений.

Методика тестирования

Приложения расположены в алфавитном порядке, в конец вынесены 3DMark. Везде использовалось разрешение 2560x1440 кроме нескольких отдельных случаев — последние версии тестовых пакетов 3DMark и один тестовый режим во втором «Ведьмаке» при активном «запредельном качестве».

При разрешении 2560x1440 все параметры и дальность прорисовки установлены на максимум, сглаживание 8x. Тестирование проводилось на самом первом уровне после первой контрольной точки. Совершалась пробежка от багажника машины до моста через две освещенные фонарями зоны. В момент пересечения второй зоны срабатывала скриптовая сценка: камера пролетала над погруженным в туман лесом и показывала маяк. Именно в этот момент заметно проседал fps и минимум производительности приходится на эту сценку.

Частота кадров в игре измерялась при помощи Fraps. Совершалась прогулка по пристани Бостона, сразу после момента прибытия в город. Совершалось четыре повтора. В случае большой разницы в результатах на одной видеокарте проводились дополнительные повторы. Самое высокое качество изображения под DirectX 11, сглаживание «очень высокое».

Частота кадров измерялась при помощи Fraps. Выбрана миссия «Молот и наковальня» (Rock and a hard place). После первой контрольной точки мы спускаемся по склону холма в долину до укреплений врага. Тестовая сценка включала кроме спуска начало перестрелки при штурме первого ряда укреплений. Огонь велся по двум точкам через прицел из-за камней справа и слева от дороги. С учетом простого спуска общий порядок действий легко повторим, а итоговые результаты почти не зависят от случайных факторов. Плюс в кадре находится не только большая площадь с детализированными текстурами, но и световые эффекты выстрелов, и взрывы. Это помогает создать вполне адекватную картину реальной производительности, как в сложных насыщенных сценах одиночной кампании, так и в многопользовательских схватках. Все параметры детализации и качества на Ultra под DirectX 11, задействован максимально возможный режим сглаживания AA4x.

Тестирование проводилось при помощи встроенного игрового теста. К сожалению, он не ведет подсчет кадров, просто запускает подготовленное игровое демо. Поэтому соответствующие данные получены при помощи Fraps. Три повтора. Максимальные настройки качества графики под DirectX 11 с активным сглаживанием FXAA.

Тестирование проводилось в поселке на первой локации Southern Shelf. Совершалась пробежка от ворот селения вниз по дороге к блокпосту бандитов. Туда швырялись три разделяемые гранаты, расстреливались две обоймы из кислотного пистолета и три из дробовика. Максимальное качество графики, сглаживание включено. Активно наивысшее качество эффектов PhysX. А благодаря взрывам и стрельбе все эти эффекты проявляются в полной мере.

Тестирование проводилось на второй миссии «Целерий», сразу после полета в момент начала штурма вражеской базы. Специально выбран этот детализированный уровень с атмосферными эффектами и яркими прожекторами, который является одним из самых красивых в игре. Совершалась короткая пробежка со стрельбой. Пять повторов для уменьшения погрешности. Установлено максимальное качество графики при сглаживании MSAA 8x.

Средний результат по прогонам 12-минутного теста Ambush из Crysis Warhead Benchmarking Tool и дополнительного пятикратного прогона этого теста. Настройки графики максимальные (Enthusiast) под DirectX 10 при сглаживании AA 8x.

Тест проводился в начале уровня «Всего лишь человек». Небольшая пробежка по зоне ограниченной видимости сочеталась с осмотром через прицел дальних объектов (поэтому и выбран столь масштабный уровень). Четыре повтора. Первый режим тестирования — качество графики максимальное при отключенном сглаживании. Второй режим — максимальное качество при MSAA 2x.

Совершалась прогулка по территории первого поселка и окружающим зарослям. Обилие гирлянд и огней в поселке создает значительную нагрузку на видеокарту, поэтому для тестирования и было выбрано это место. Пять повторов. Максимальные настройки качества под DirectX 11, сглаживание MSAA 4x. Пять прогов для более точных результатов.

Четыре прогона стандартного игрового теста производительности. Максимальные настройки качества изображения под DirectX 11 при сглаживании MSAA 4x (FXAA отключен).

Для теста подобрана одна из самых ресурсоемких сцен в фавеле, описанная ранее в обзоре игры . Небольшая пробежка по территории с густой травой и лужами. Пять повторов. Частота кадров измерялась при помощи Fraps. Максимальные настройки детализации и эффектов, освещение HDAO, наивысшее качество тесселяции, сглаживание AA 4x.

Три пятикратных прогона встроенного теста производительности (демо Frontlines). Настройки графики Very High под DirectX 11 без Depth of Field. Дополнительно проведено тестирование при включенном эффекте Depth of Field.

Четыре прогона встроенного теста производительности при максимальном качестве графики в двух режимах, отличающихся настройками сглаживания. Последний параметр связан и с качеством затенения, что в основном и садит производительность. Первый режим предполагает среднее положение ползунка сглаживания (высокое качество), второй — крайнее правое (экстремальное качество).

Ultra-качество при разрешении 2560x1440 и сглаживании AA 4x. Три повтора.

К сожалению, встроенный бенчмарк никак не характеризует реальную производительность в игре. Его можно рассматривать лишь как демонстрацию технологии симуляции волос TressFX. Да и сама эта симуляция в тесте используется не на максимуме, в игре есть и более сложные сцены, когда на волосы воздействует сильный ветер или вода. Поэтому мы отказались от встроенного теста и для сравнения производительности использовали вступительную сцену в самом начале игры: Лара барахтается в волнах, выбирается на берег и наблюдает спор товарищей, после чего неизвестный оглушает героиню. Четыре повтора этого эпизода. Тестирование в двух режимах: максимальное качество графики со сглаживанием FXAA, аналогичные настройки при активации TressFX. Отметим, что включены все дополнительные визуальные эффекты.

Использовался встроенный тест производительности. Настройки графики установлены на максимум, плюс активированы все дополнительные возможности рендеринга для DirectX 11, которые сама игра не включает при выборе максимального качества. Поэтому наши настройки обозначены как Ultra+. Тестирование проводилось при сглаживании MSAA в режиме 4x. Настройки проиллюстрированы на нижнем скриншоте.

War of the Roses

Запускался последний уровень тренировки и замерялся fps, пока камера облетала поле боя. Наиболее тяжелыми для видеокарт являются сцены на закате, поэтому и был выбран данный эпизод. Продолжительность тестовой сцены 47 секунд, она повторялась четыре раза. Настройки графики максимальные под DirectX 11, SSAO и FXAA активны.

Witcher 2: The Assassins of Kings Enhanced Edition

Тестирование проводилось при максимальных настройках качества без активации «запредельного качества» в разрешении 2560x1440. В этой игре некоторые параметры при выборе максимального профиля настроек можно поднять еще выше. Поэтому приводим скриншот этих настроек.


Дополнительно проводилось сравнение производительности при идентичных настройках с включением параметра «запредельного качества» в разрешении 1920x1080.

World of Tanks

Тестирование проводилось путем проигрыша небольшой записи, отрезка длительностью 42 секунды на карте «Заполярье». Частота кадров измерялась Fraps. Настройки графики максимальные, самое высокое качество сглаживания FXAA. Четыре повтора.

Тестирование на профиле Extreme, который предполагает использование разрешения 1920x1080.

Последний бенчмарк от Futuremark, использующий возможности DirectX 11. Кроме стандартного режима 1920x1080 у него предусмотрен режим Extreme с разрешением 2560x1440. Мы провели тестирование в обоих.

Энергопотребление

Для комплексной оценки энергопотребления замеры производились в нескольких играх:

  • Metro 2033 (без DOF);
  • Sleeping Dogs (при высоком качестве сглаживания);
Измерения проводились прибором Cost Control 3000. В расчет брались самые высокие показания во время прохождения тестов, на основе которых рассчитывалось среднее значение.Результаты тестирования



Игра всегда отличалась любовью к графическим продуктам AMD. В высоком разрешении GeForce GTX 680 и вовсе выглядит печально, проигрывая 23-46% даже простому Radeon HD 7970. Постоянные читатели нашего сайта помнят о замеченной нами странной особенности, когда после сворачивания и разворачивания игры на видеокартах NVIDIA fps повышался на 5-10%. Это актуально и поныне. Но даже если прибавить эти несколько процентов к приведенным результатам, то глобально ничего не изменится.



Иная ситуация в третьей части Assassin’s Creed . Тут явное преимущество на стороне GeForce GTX 680. Даже высокочастотный Radeon HD 7970 GHz Edition слабее конкурента от NVIDIA. При разгоне последний сохраняет свое лидирующее положение.



В преимущество GeForce GTX 680 над простым Radeon HD 7970 в 9-12%. Высокие частоты помогают GHz Edition обойти конкурента, но лишь на 1-2%. При разгоне соперники практически равны, мизерное преимущество у GeForce GTX 680.



Мощно выглядит GeForce GTX 680 в свежем Bioshock, который, кстати, поставляется с некоторыми видеокартами AMD. В номинале видеоадаптер зеленых на 7-10% производительнее Radeon HD 7970 GHz Edition и на 18-20% быстрее простого Radeon HD 7970.



Из-за обработки PhysX на процессоре в системы с Radeon демонстрируют существенные просадки частоты кадров вплоть до 20 fps. По этому параметру GeForce GTX 680 выигрывает более 50%. А вот по средней частоте кадров разница не столь критична, Radeon HD 7970 GHz Edition уступает лидеру лишь 1%.



В Black Ops 2 снова лидирует GeForce GTX 680, обгоняя старший Radeon примерно на 3%. Младший HD 7970 уступает своему собрату 10-11%.



В Warhead мы видим примерное равенство между Radeon HD 7970 и GeForce GTX 680, хотя в 1920x1080 небольшое преимущество всегда было у последнего. Лидирует Radeon GHz Edition, обгоняя остальных участников на 8-12%. При разгоне разница между видеоадаптерами 6-9% в пользу представителя AMD.



выводит на первое место Radeon HD 7970 GHz Edition, но на пятки ему наступает GeForce GTX 680, уступая лишь 3%. Между двумя Radeon разница в 11-12%. При разгоне на первое место с мизерным отрывом выходит GeForce GTX 680.


При включении сглаживания никто из участников не может обеспечить достаточный уровень производительности.



В лидирует Radeon HD 7970 GHz Edition. GeForce GTX 680 равен простому Radeon по минимальному fps, но чуть хуже по среднему параметру. Со старшим конкурентом у них разница в 13%. В разгоне тоже лидирует красный флагман.



Последняя часть Hitman предпочитает решения AMD. Так что GeForce GTX 680 в роли аутсайдера, проигрывая 16-19% простому Radeon HD 7970. Даже при разгоне он немного не дотягивает до уровня Radeon HD 7970 GHz Edition на заводских частотах.



В младший Radeon HD 7970 уступает GeForce GTX 680 4,5% по минимальному fps, но обгоняет на 1% по среднеигровой частоте кадров. При разгоне преимущество 5-10% на стороне видеоадаптера AMD.



В равенство у Radeon HD 7970 и GeForce GTX 680, на 11% их обгоняет Radeon HD 7970 GHz Edition. В разгоне GeForce GTX 680 уступает конкуренту почти 10%.


При активации Depth of Field никто из участников не может выдать комфортный уровень fps. Хотя максимально разогнанный Radeon рубеж в 30 fps преодолевает.




Еще одна игра, в которой уверенно лидируют видеокарты AMD. GeForce GTX 680 в приходится довольствоваться последним местом во всех режимах. При максимальном качестве сглаживания и затенения он даже не может выдать приемлемую частоту кадров, а вот разогнанный Radeon с этой задачей легко справляется. Хотя, как мы не раз отмечали ранее, между старшими режимами сглаживания разница очень мизерная и слабо заметная. Так что и владельцы GeForce смогут комфортно поиграть в игру при «высоком» качестве сглаживания и затенения без потерь в качестве картинки.



Значительный отрыв у GeForce GTX 680 по минимальному fps. И если Radeon HD 7970 GHz Edition по среднему значению обходит конкурента на 2%, то по минимальному параметру хуже на 18%. Простой Radeon слабее собрата на 11-12%.




В обоих режимах уверенно лидируют видеокарты AMD. GeForce GTX 680 слабее даже простого Radeon HD 7970, причем без активации TressFX видеоадаптеру NVIDIA нужен разгон, чтобы обеспечить достаточный уровень производительности в игре с разрешением 2560x1440. При включении TressFX без разгона ни один из участников не обеспечит комфорта в игре. И при повышенных частотах на Radeon HD 7970 наблюдаются значительные просадки производительности.




В «Ведьмаке 2 » лидирует Radeon HD 7970 GHz Edition. Его младший собрат слабее на 10-13%. GeForce GTX 680 выигрывает у него 1-5%.


В более тяжелом режиме GeForce сохраняет преимущество по минимальному fps над Radeon HD 7970. При разгоне по этому параметру соперники снова равны. При «запредельном качестве» даже в разрешении 1920x1080 видеокартам очень трудно обеспечить достойный уровень производительности, просадки fps весьма существенные. Фактически, поиграть в таком режиме на них удастся лишь при разгоне.

В номинале GeForce GTX 680 на 1,5% лучше Radeon HD 7970 GHz Edition и на 13% быстрее его младшего собрата. При разгоне преимущество видеоадаптера NVIDIA на уровне 4%.




Немного неожиданный результат в сравнении с предшественником. Теперь GeForce GTX 680 проигрывает даже простому Radeon HD 7970 от 3% до 5%. У GHz Edition преимущество 13-15%. Между разогнанными соперниками в разрешении 1920x1080 разница 12%, в 2560x1440 — 11%.

Энергопотребление


GeForce GTX 680 экономичнее простого Radeon HD 7970 и уж тем более старшей его версии с частотами 1050/6000 МГц. Конечно, стоит помнить, что участие в сравнении принимал не референсный адаптер AMD, а MSI R7970 Lightning . С его более сложной схемотехникой и многофазным питанием он теоретически может быть более прожорливым в сравнении с обычной картой HD 7970. Изначально завышенный Power Limit у Lightning тоже может оказать влияние на конечные результаты. Впрочем, общая тенденция в любом случае видна, и все предыдущие наши тестирования не раз подтверждали более низкое энергопотребление GeForce GTX 680, особенно в разгоне.

Выводы

Теперь попытаемся обобщить и систематизировать полученные данные. Для начала оценим расстановку сил в номинале. Из 22 тестовых приложений GeForce GTX 680 уверенно обгоняет Radeon HD 7970 в 12. Еще в 4 играх можно говорить о примерном равенстве (Warhead, Far Cry 3, Max Payne 3), если не брать в расчет самые тяжелые режимы (Metro 2033). И лишь в оставшихся 6 приложениях выигрывает представитель AMD. Так что в общем зачете GeForce GTX 680 выходит мощнее, хотя очень веским его преимущество нельзя назвать. Тем более что есть такие игры как Tomb Raider или Hitman, где видеоадаптер NVIDIA выглядит очень хило на фоне конкурента. В более низком разрешении ситуация для GeForce GTX 680 складывалась в некоторых приложениях получше. В качестве примера можно вспомнить Crysis: Warhead, в котором мы всегда наблюдали преимущество над Radeon HD 7970 в 1920x1080, а при 2560x1440 конкуренты уже равны. Но все сказанное касается лишь сравнения с простым Radeon HD 7970. Версия GHz Edition благодаря повышенных частотам прочно занимает место лидера, демонстрируя преимущество над соперником NVIDIA в 12 приложениях из 22. Еще в двух случаях отставание обновленного Radeon минимально.

В разгоне Radeon HD 7970 одерживает победу над GeForce GTX 680 в 10 тестовых приложениях. В двух играх (Battlefield 3 и Crysis 3) можно говорить об относительном равенстве, потому как преимущество GeForce в них мизерное. В итоге имеем паритет между конкурентами. Довольно хороший для NVIDIA результат, если вспомнить, что их референс сравнивался с оверклокерской версией Radeon HD 7970. Впрочем, для флагмана AMD возможны еще более высокие частоты, если речь будет идти о топовых видеокартах на базе реального GPU Tahiti новой ревизии. GeForce же может похвастать более низким энергопотреблением, особенно в режиме разгона.

Что касается преимущества Radeon в объеме видеопамяти, то даже в разрешении 2560x1440 третий гигабайт погоды не делает. За все время тестирования мы не видели пиковую кратковременную загрузку свыше 2,1 ГБ. На GeForce эти значения еще меньше. Так что объем видеобуфера пока еще не является ограничителем мощности для старших видеоадаптеров NVIDIA. Но в мультимониторных конфигурациях это может стать очень актуальным.

В нынешнем поколении видеокарт сложилась довольно непростая ситуация, когда в отдельных приложениях мы наблюдаем диаметрально противоположные результаты. Все дело в оптимизации под какие-то конкретные графические решения. С момента старта продаж Radeon HD 7970 позиции этой видеокарты во многом укрепились благодаря развитию партнерской программы AMD Gaming Evolved. Мы получаем все больше игр оптимизированных под графические решения Radeon. Одним из элементов такой оптимизации является продвижение OpenCL (в котором не сильны GeForce) для реализации дополнительных физических расчетов или линзовых визуальных эффектов. NVIDIA со своей стороны тоже продолжает сотрудничество с разработчиками. В итоге часто получается не столько противостояние реальных вычислительных мощностей, сколько противостояние «оптимизаций». Для старших видеокарт ничего страшного в этом нет, и добиться комфортной производительности всегда можно при понижении отдельных параметров, не особо критичных для общего качества изображения.

Оборудование для тестирования было предоставлено следующими компаниями:

  • ASUS — монитор ASUS PB278Q, материнская плата Rampage IV Formula/Battlefield 3, видеокарта GTX680-2GD5;
  • MSI — видеокарта R7970 Lightning;
  • Intel — процессор Intel Core i7-3930K и накопитель SSD 520 Series 240GB;
  • Kingston — комплект памяти Kingston KHX2133C11D3K4/16GX;
  • Syntex — блок питания Seasonic SS-750KM;
  • Thermalright — Thermalright Venomous X.
  • Часть 2 — Практическое знакомство
  • Часть 3 — Результаты игровых тестов (производительность)

В этой части, как обычно, мы изучим саму видеокарту, а также познакомимся с результатами синтетических тестов.

Плата

  • GPU: Geforce GTX 680 (GK104)
  • Интерфейс: PCI Express x16
  • Частота работы GPU (ROPs): 1000-1100 МГц (номинал — 1000-1100 МГц)
  • Частота работы памяти (физическая (эффективная)): 1500 (6000) МГц (номинал — 1500 (6000) МГц)
  • Ширина шины обмена с памятью: 256 бит
  • Число вычислительных блоков в GPU/частота работы блоков: 8/1000-1100 МГц (номинал — 8/1000-1100 МГц)
  • Число операций (ALU) в блоке: 192
  • Суммарное число операций (ALU): 1536
  • Число блоков текстурирования: 128 (BLF/TLF/ANIS)
  • Число блоков растеризации (ROP): 32
  • Размеры: 255×100×33 мм (последняя величина — максимальная толщина видеокарты)
  • Цвет текстолита: черный
  • Энергопотребление (пиковое в 3D/в режиме 2D/в режиме «сна»): 197-212/79/65 Вт
  • Выходные гнезда: 2×DVI (Dual-Link/VGA), 1×HDMI 1.4a, 1×DisplayPort 1.2
  • Поддержка многопроцессорной работы: SLI (Hardware)

Nvidia Geforce GTX 680 2048 МБ 256-битной GDDR5 PCI-E

Карта имеет 2048 МБ памяти GDDR5 SDRAM, размещенной в 8 микросхемах на лицевой сторонe PCB.

Карта требует дополнительного питания, причем двумя 6-контактными разъемами. Обратите особое внимание на расположение этих гнезд. Раньше всегда два гнезда питания соседствовали на PCB, будучи припаянными раздельно на карте. Теперь же установлен специальный блок, в котором разъемы питания размещены один над другим на манер этажерки. Мы помним такой вариант размещения гнезд (замками друг ко другу) у карт типа 9800 GX2 (двухпроцессорных ускорителей, имевщих не одну, а две PCB, и каждая имела свое гнездо питания). Это очень неудобно - так как приходится протискивать палец в середину этого блока для нажатия на замки разъемов питания. Очень непонятно, почему отказались от традиционной схемы размещения, ведь на фото отчетливо видно, что PCB имеет распайку под еще одно гнездо питания стандартного размера.

О системе охлаждения.

Nvidia Geforce GTX 680 2048 МБ 256-битной GDDR5 PCI-E

Система охлаждения внешне не претерпела особых изменений после GTX 580, да и незачем, ведь ядро греется меньше, карта потребляет также меньше, сама PCB не сложна.

Однако теперь мы видим кулер, имеющий в качестве основания особый радиатор со встроенными тепловыми трубками, который прижимается как к ядру, так и к микросхемам памяти, потому последние также имеют охлаждение. Цилиндрический вентилятор на конце устройства гонит воздух через радиатор.

Однако же в данном устройстве используется более современный и бесшумный вентилятор, который даже при работе на 2500 оборотах в минуту малошумен. А концепция ускорителя в целом предусматривает поддержание температуры ядра в пределах 80 градусов (плюс-минус), поэтому ради этого вентилятор может работать и на высоких оборотах, что мы могли наблюдать в ходе многочасовых прогонов под сильной нагрузкой, и тогда уже шум был ощутим.

Мы провели исследование температурного режима с помощью новой бета-версии утилиты MSI Afterburner (автор А. Николайчук AKA Unwinder) и получили следующие результаты. Хочу напомнить, что GTX 680 по ядру работает на плавающих частотах от 1000 до 1100 МГц. Что делает разгон весьма проблематичным, поскольку диапазоны частот работы на номинальном и разогнанном режимах могут пересекаться. Мы получили стабильную работу карты на диапазоне частот 1129-1229 МГц. При этом выбор частоты работы в каждый конкретный момент остается за драйвером, поэтому иногда в тот же самый момент при работе в штатном режиме частота может быть 1100 МГц, а при работе в режиме оверклокинга - 1129 МГц, и как следствие, прироста производительности может почти не быть. Поэтому не следует ожидать примерно одинаковых процентов приростов скорости при разгоне.

Вернемся к мониторингу.

Nvidia Geforce GTX 680 2048 МБ 256-битной GDDR5 PCI-E
Nvidia Geforce GTX 680 2048 МБ 256-битной GDDR5 PCI-E - при разгоне

Как мы видим, после 6-ти часов прогона карты в каждом случае максимальные температуры ядра - в нормальных рамках не только для топового, но и даже для среднего уровня продукта. А вот кулер действительно работает на приличных оборотах.

Видеокарта прибыла к нам без упаковки и комплекта, потому вопрос комплектации мы опускаем.

Установка и драйверы

Конфигурация тестового стенда:

  • Компьютер на базе Intel Core i7-975 (Socket 1366)
    • процессор Intel Core i7-975 (3340 МГц);
    • системная плата Asus P6T Deluxe на чипсете Intel X58;
    • оперативная память 6 ГБ DDR3 SDRAM Corsair 1600 МГц;
    • жесткий диск WD Caviar SE WD1600JD 160 ГБ SATA;
    • блок питания Tagan TG900-BZ 900 Вт.
  • операционная система Windows 7 64-битная; DirectX 11;
  • монитор Dell 3007WFP (30″);
  • драйверы AMD версии Catalyst 12.3; Nvidia версии 295.72/300.99

VSync отключен.

Синтетические тесты

Используемые нами пакеты синтетических тестов можно скачать здесь:

  • D3D RightMark Beta 4 (1050) с описанием на сайте 3d.rightmark.org .
  • D3D RightMark Pixel Shading 2 и D3D RightMark Pixel Shading 3 — тесты пиксельных шейдеров версий 2.0 и 3.0, ссылка .
  • RightMark3D 2.0 с кратким описанием: под Vista без SP1 , под Vista c SP1 .

В качестве синтетических тестов DirectX 11 мы использовали примеры из пакетов SDK компаний Microsoft и AMD, а также демонстрационной программой Nvidia. Во-первых, это HDRToneMappingCS11.exe и NBodyGravityCS11.exe из комплекта DirectX SDK (February 2010) .

Мы взяли и приложения обоих производителей видеочипов: Nvidia и AMD. Из ATI Radeon SDK были взяты примеры DetailTessellation11 и PNTriangles11 (они также есть и в DirectX SDK). Дополнительно использовалась демонстрационная программа компании Nvidia — Realistic Water Terrain , также известная как Island11 (автор — Тимофей Чеблоков, известный специалист 3D-графики).

Синтетические тесты проводились на следующих видеокартах:

  • Geforce GTX 680 GTX 680 )
  • Geforce GTX 590 со стандартными параметрами (далее GTX 590 )
  • Geforce GTX 580 со стандартными параметрами (далее GTX 580 )
  • Radeon HD 7970 со стандартными параметрами (далее HD 7970 )
  • Radeon HD 7870 со стандартными параметрами (далее HD 7870 )
  • Radeon HD 6970 со стандартными параметрами (далее HD 6970 )

Для сравнения результатов анонсированной видеокарты Geforce GTX 680 именно эти модели были выбраны по следующим причинам. Geforce GTX 580 является старшей одночиповой моделью предыдущего поколения и прямым предшественником новинки, который она заменяет на рынке, а GTX 590 до сих пор остаётся быстрейшей видеокартой на двух видеочипах производства Nvidia.

Выбранные решения от конкурирующей компании AMD были взяты нами для тестов потому, что Radeon HD 7970 имеет близкую к анонсированной видеокарте Geforce цену (на момент написания статьи — даже выше), и является её прямым конкурентом на данный момент. Radeon HD 6970 взята как топовая предыдущая модель от конкурента, которая поможет оценить приросты от смены поколений у AMD и Nvidia. Ну а модель HD 7870 используется в нескольких тестах просто для того, чтобы посмотреть, насколько сильно придётся урезать GK104, чтобы создать конкурента для этой видеокарты.

Direct3D 9: тесты Pixel Shaders

С некоторого времени мы перестали использовать собственный тест текстурирования и заполнения (филлрейта) 32-битных текстур из RightMark первой версии, так как большинство видеокарт в нём в настоящее время показывают цифры, далёкие от теоретически возможных и явно некорректные в целом. Уж слишком тест устарел. Далее мы рассмотрим более похожие на правду результаты скорости текстурирования по цифрам из теста 3DMark Vantage, в котором получаются вполне реалистичные цифры.

Первая группа пиксельных шейдеров, которую мы рассматриваем, очень проста для современных видеочипов, она включает в себя различные версии пиксельных программ сравнительно низкой сложности: 1.1, 1.4 и 2.0, встречающихся в старых играх.

Эти тесты слишком просты для современных GPU, и они зачастую упираются в производительность текстурирования или филлрейт. Поэтому они способны показать далеко не все возможности современных видеочипов, но интересны нам с точки зрения аналогов устаревших игровых приложений, которых до сих пор довольно много.

Судя по предыдущим свежим сравнениям, производительность новых видеокарт в этих тестах ограничена чаще всего именно филлрейтом, хотя и влияние скорости текстурных модулей тоже прослеживается. Но оно неявное, так как Geforce GTX 680 не стал единоличным победителем, как мог бы, исходя из текстурной производительности. Отрывы от GTX 580 не позволяют выделить единственную характеристику, влияющую на скорость.

Топовая видеоплата компании AMD в этих тестах стала явным победителем, хотя разница несколько сократилась, по сравнению с тем, что было в предыдущих поколениях. В любом случае, HD 7870 вовсю конкурирует с GTX 680. Чего, по идее, быть не должно. Смущает и крайне небольшой прирост от SLI у двухчипового GTX 590. Возможно, здесь наблюдается разница в программных оптимизациях в драйверах.

За исключением пары тестов, GTX 680 выступает вполне на уровне GTX 590, что не может не радовать. А вот по сравнению с конкурирующей моделью Radeon HD 7970, новинка компании Nvidia явно уступает ей. Посмотрим на результаты более сложных пиксельных программ промежуточных версий:

А вот тут — совсем другое дело! Тест Cook-Torrance более интенсивен вычислительно, разница в нём примерно соответствует разнице в количестве ALU и их частоте, но и от скорости TMU она также зависит. Поэтому данный тест лучше подходит графическим решениям компании AMD, а теперь и Geforce GTX 680.

Именно эти модели завоевали лидерство в данных тестах, в одном из них (где важнее быстрая математика) чуть быстрее Radeon, в другом (где важна текстурная производительность) — Geforce немного впереди. Всё ровно так, как и должно быть по теории. Кроме того, новая модель GTX 680 в обоих тестах опережает двухчиповый GTX 590 и заметно впереди GTX 580.

Во втором, больше зависящем от скорости текстурирования, тесте процедурной визуализации воды «Water» используется зависимая выборка из текстур больших уровней вложенности, и поэтому видеокарты в нём располагаются по скорости текстурирования. И в этом «текстурном» тесте разница между GTX 680 и GTX 580 получилась чуть ли не трёхкратной!

Direct3D 9: тесты пиксельных шейдеров Pixel Shaders 2.0

Эти тесты пиксельных шейдеров DirectX 9 сложнее предыдущих, они близки к тому, что мы сейчас видим в мультиплатформенных играх, и делятся на две категории. Начнем с более простых шейдеров версии 2.0:

  • Parallax Mapping — знакомый по большинству современных игр метод наложения текстур, подробно описанный в статье .
  • Frozen Glass — сложная процедурная текстура замороженного стекла с управляемыми параметрами.

Существует два варианта этих шейдеров: с ориентацией на математические вычисления и с предпочтением выборки значений из текстур. Рассмотрим математически интенсивные варианты, более перспективные с точки зрения будущих приложений:

Это — универсальные тесты, производительность в которых зависит и от скорости блоков ALU, и от скорости текстурирования, также в них важен общий баланс чипа и эффективность исполнения вычислительных программ. Результаты теста показывают, что в устаревших задачах архитектура AMD всё же опережает GPU производства Nvidia.

Производительность свежих видеокарт AMD в тесте «Frozen Glass» значительно выше, чем у новинки, ведь даже Radeon HD 6970 оказалась впереди. Возможно, скорость GTX 680 упирается в филлрейт, но скорее всего, чипы Nvidia просто неэффективно выполняют эту задачу. Ну а в сравнении с предшественниками, GTX 680 почти догнала двухчиповый GTX 590, правда преимущество над GTX 580 не такое уж и большое и не соответствует росту ни одного из пиковых показателей.

Во втором тесте «Parallax Mapping» новая видеокарта Nvidia показала производительность, сравнимую с той, что мы получили от Radeon HD 7870. А вот старшая модель AMD остаётся в лидерах — она всё так же опережает калифорнийскую новинку. Хотя решения Nvidia в этом тесте ведут себя немного лучше, они не могут догнать конкурирующие с ними платы от AMD по каким-то причинам, хотя из теоретических слабых мест осталась только ПСП. Но у HD 7870 то она ещё ниже, поэтому упор явно не в неё. Возможно, новая архитектура Radeon банально эффективнее в таких вычислениях. Рассмотрим эти же тесты в модификации с предпочтением выборок из текстур математическим вычислениям:

Для плат с GPU производства Nvidia положение стало заметно лучше, и Geforce GTX 680 отстаёт от Radeon HD 7970 уже гораздо меньше и уже смогла обогнать HD 7870. И всё же скорость Geforce упирается во что-то, так как разница между новыми моделями и старыми должна быть больше. Хотя жаловаться грех, ведь в этот раз первый из Kepler обогнал быстрейшую видеоплату на двух чипах Fermi! Но всё же, современные чипы AMD в этих задачах эффективнее и догнать их не удалось. Видеокарта Geforce в тесте Parallax Mapping отстаёт лишь немного, но во втором отставание больше.

Это были устаревшие задачи, с упором в текстурирование и филлрейт. Далее мы рассмотрим результаты ещё двух тестов пиксельных шейдеров — но уже версии 3.0, самых сложных из наших тестов пиксельных шейдеров для Direct3D 9. Они наиболее показательны с точки зрения современных игр на ПК, среди которых много мультиплатформенных. Тесты отличаются тем, что сильно нагружают и ALU, и текстурные модули, обе шейдерные программы сложны и длинны, и включают большое количество ветвлений:

  • Steep Parallax Mapping — значительно более «тяжелая» разновидность техники parallax mapping, также описанная в статье Современная терминология 3D-графики .
  • Fur — процедурный шейдер, визуализирующий мех.

В наших самых сложных DX9-тестах из первой версии пакета RightMark видеокарты производства Nvidia раньше первенствовали, в противоположность всем предыдущим испытаниям в тестах из нашего обзора, но в последней архитектуре компании AMD смогли избавиться от всех недостатков и теперь именно решения на чипах архитектуры GCN в PS 3.0 сравнении показывают лучшие результаты. И это улучшение производительности в сложных вычислениях отлично заметно при сравнении старых и новых плат AMD.

Данные тесты уже не ограничены производительностью лишь текстурных выборок, а больше всего зависят от эффективности исполнения шейдерного кода. И чипы AMD явно лучше справляются со сложными шейдерами, вроде параллакс маппинга и имитации шерсти, и вероятно, что из-за большего количества доступных регистров на потоковый процессор.

Наш сегодняшний герой также показал очень неплохие результаты, хотя в одном из тестов серьёзно уступил более эффективному в тяжёлых задачах Radeon HD 7970 и конкурирует лишь с младшим Radeon из новой серии. Зато в «Fur» он показывает результат на уровне двухчиповой GTX 590 и почти как у HD 7970. Это более чем в полтора раза лучше, чем у предшествующей одночиповой модели. Большей разницы между ними не получилось из-за снижения эффективности выполнения сложных задач — упрощение SM явно сказалось на Kepler в подобных задачах.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (текстурирование, циклы)

Во вторую версию RightMark3D вошли два знакомых теста PS 3.0 под Direct3D 9, которые были переписаны под DirectX 10, а также ещё два новых теста. В первую пару добавились возможности включения самозатенения и шейдерного суперсэмплинга, что дополнительно увеличивает нагрузку на видеочипы.

Данные тесты измеряют производительность выполнения пиксельных шейдеров с циклами при большом количестве текстурных выборок (в самом тяжелом режиме до нескольких сотен выборок на пиксель) и сравнительно небольшой загрузке ALU. Иными словами, в них измеряется скорость текстурных выборок и эффективность ветвлений в пиксельном шейдере.

Первым тестом пиксельных шейдеров будет Fur. При самых низких настройках в нём используется от 15 до 30 текстурных выборок из карты высот и две выборки из основной текстуры. Режим Effect detail — «High» увеличивает количество выборок до 40—80, включение «шейдерного» суперсэмплинга — до 60—120 выборок, а режим «High» совместно с SSAA отличается максимальной «тяжестью» — от 160 до 320 выборок из карты высот.

Проверим сначала режимы без включенного суперсэмплинга, они относительно просты, и соотношение результатов в режимах «Low» и «High» должно быть примерно одинаковым.

Производительность в этом тесте зависит в большей степени от количества и эффективности блоков TMU, но также влияет и эффективность выполнения сложных программ. В варианте без суперсэмплинга дополнительное влияние на производительность оказывает ещё и эффективный филлрейт и пропускная способность памяти (в меньшей степени). Результаты при детализации уровня «High» получаются до полутора раза ниже, чем при «Low».

Как и в аналогичных DX9 тестах, в задачах процедурной визуализации меха с большим количеством текстурных выборок, решения Nvidia раньше были заметно сильнее, но за пару поколений GPU компания AMD не только сократила разницу, но с выпуском GCN и вовсе вырвалась вперёд. И теперь мы часто видим Radeon HD 7970 в лидерах таких сравнений, что отлично говорит о высокой эффективности выполнения сложных пиксельных программ.

Рассматриваемая сегодня Geforce GTX 680 показала средний результат между GTX 580 и GTX 590, что может указывать на снизившуюся эффективность исполнения сложных шейдеров в Kepler. Разница между GTX 580 и GTX 680 не впечатляет — лишь 14-17%! Впрочем, возможно тут виноват сниженный филлрейт или пропускная способность памяти.

Посмотрим на результат этого же теста, но с включенным «шейдерным» суперсэмплингом, увеличивающим работу в четыре раза: возможно, в такой ситуации что-то изменится, и ПСП с филлрейтом будут влиять меньше:

Действительно, GTX 680 явно улучшила результат относительно решений предыдущей линейки, и теперь она показывает скорость на уровне двухчиповой GTX 590. Но при включении суперсэмплинга, увеличивающего теоретическую нагрузку вчетверо, в целом результаты решений Nvidia значительно ухудшились, по сравнению с показателями видеокарт от AMD. И разница в эффективности выполнения данной задачи между ними стала просто огромной.

Протестированная новинка от Nvidia проигрывают чуть ли не вдвое проигрывает своему конкуренту от компании AMD. А топовая плата из серии HD 7000 в этом тесте показывает просто отличный уровень производительности, что явно говорит о «любви» к сложным вычислениям. Подумать только, а ведь раньше это было преимущество архитектур Nvidia! Теперь их внимание (по крайней мере, для игровых видеокарт) явно сместилось в сторону быстрой геометрической обработки, в отличие от чипов AMD, предпочитающих попиксельные вычисления.

Следующий DX10-тест измеряет производительность исполнения сложных пиксельных шейдеров с циклами при большом количестве текстурных выборок и называется Steep Parallax Mapping. При низких настройках он использует от 10 до 50 текстурных выборок из карты высот и три выборки из основных текстур. При включении тяжелого режима с самозатенением число выборок возрастает в два раза, а суперсэмплинг увеличивает это число в четыре раза. Наиболее сложный тестовый режим с суперсэмплингом и самозатенением выбирает от 80 до 400 текстурных значений, то есть в восемь раз больше по сравнению с простым режимом. Проверяем сначала простые варианты без суперсэмплинга:

Второй пиксель-шейдерный тест Direct3D 10 интереснее с практической точки зрения, так как разновидности parallax mapping широко применяются в играх, а тяжелые варианты, вроде steep parallax mapping, используются во многих проектах, например в играх серий Crysis и Lost Planet. Кроме того, в нашем тесте, помимо суперсэмплинга, можно включить самозатенение, увеличивающее нагрузку на видеочип ещё примерно в два раза — такой режим называется «High».

Диаграмма в целом очень похожа на предыдущую без включения SSAA, и решения Nvidia в этом тесте не смогли улучшить своё положение. Новая плата Geforce GTX 680 в обновленном D3D10-варианте теста без суперсэмплинга всё так же между GTX 580 и GTX 590, она не способна конкурировать с Radeon HD 7970. Посмотрим, что изменит включение суперсэмплинга, ведь он обычно вызывает сильное падение скорости на платах Nvidia.

В общем, всё примерно так же, что и в «Fur». При включении суперсэмплинга и самозатенения, задача получается ещё более тяжёлой, совместное включение сразу двух опций увеличивает нагрузку на карты почти в восемь раз, вызывая серьёзное падение производительности. Разница между скоростными показателями протестированных видеокарт изменилась, включение суперсэмплинга сказывается, как и в предыдущем случае — видеокарты производства AMD явно улучшили относительные показатели, по сравнению с платами на чипах Nvidia.

В этот раз Geforce GTX 680 немного отстаёт от GTX 590 на базе двух GF110, а опережение GTX 580 не такое уж большое. Понятно, что Radeon HD 7970 снова далеко впереди, она даже в режиме большей детализации показывает почти ту же скорость, что GTX 680 в простом режиме! В очередной раз подтверждаем снижение эффективности Kepler относительно Fermi в таких задачах.

В целом, по рассмотренным шейдерным D3D10 тестам можно сделать вывод о том, что новая архитектура компании Nvidia явно стала чуть слабее (не в абсолютных цифрах!), а вот последние решения AMD отлично справляются со сложными «шейдерными» задачами, заметно лучше конкурирующих плат Nvidia, в том числе и анонсированного сегодня поколения.

Direct3D 10: тесты пиксельных шейдеров PS 4.0 (вычисления)

Следующая пара тестов пиксельных шейдеров содержит минимальное количество текстурных выборок для снижения влияния производительности блоков TMU. В них используется большое количество арифметических операций, и измеряют они именно математическую производительность видеочипов, скорость выполнения арифметических инструкций в пиксельном шейдере.

Первый математический тест — Mineral. Это тест сложного процедурного текстурирования, в котором используются лишь две выборки из текстурных данных и 65 инструкций типа sin и cos.

Результаты предельных математических тестов чаще всего более-менее соответствуют разнице в частотах и количестве вычислительных блоков, разве что с некоторым влиянием разной эффективности их использования. Предыдущие архитектуры AMD нескольких последних лет в таких случаях имели подавляющее преимущество перед конкурирующими видеокартами Nvidia, но ведь в Kepler число потоковых процессоров и пиковая математическая производительность значительно возросли и ситуация обязана поменяться.

И действительно, результаты видеокарт расположились на диаграмме примерно соответственно теории, но с некоторыми исключениями. Geforce GTX 680 в этом тесте ведёт себя просто выше всяких похвал! Отставание новой модели Nvidia от лучшего решения конкурента — менее 3%! Когда это такое было видано? Причём, в этом тесте уже у Radeon эффективность ниже, чем у первого решения на Kepler. Исходя из теории (см. табличку в первой части статьи), разница между решениями должна быть значительно больше, но GTX 680 тут эффективнее работает и почти догоняет Radeon HD 7970.

Рассмотрим второй тест шейдерных вычислений, который носит название Fire. Он тяжелее для ALU, и текстурная выборка в нём только одна, а количество инструкций типа sin и cos увеличено вдвое, до 130. Посмотрим, что изменилось при увеличении нагрузки:

К сожалению, в этот раз относительный результат новинки от Nvidia оказался ниже, и она уступила Radeon HD 7970 ровно столько, сколько должна по теории — около 22%. И она теперь ближе к HD 6970, чем к HD 7970. В остальном, цифры поменялись, но позиции карт остались неизменными. Строгого соответствия теоретическим цифрам пиковой производительности нет и в этот раз, но результаты всех решений к ним ближе, чем в предыдущем тесте.

Так что диаграмма полностью соответствует теории. Скорость рендеринга в данном тесте ограничена исключительно производительностью шейдерных блоков и их эффективностью, поэтому платы Radeon показывают сильные результаты, самая современная из них стала лидером сравнения. Но Geforce GTX 680 уступает ей не так сильно, как это было ранее, в предыдущих поколениях, когда разница была чуть ли не в разы.

Так что вывод простой: в предельных вычислительных задачах с выходом Kepler ситуация изменилась, и хотя решения AMD до сих пор выигрывают такие математические сражения, но разница между конкурентами уже далеко не такая драматическая, как была ранее.

Direct3D 10: тесты геометрических шейдеров

В пакете RightMark3D 2.0 есть два теста скорости геометрических шейдеров, первый вариант носит название «Galaxy», техника аналогична «point sprites» из предыдущих версий Direct3D. В нем анимируется система частиц на GPU, геометрический шейдер из каждой точки создает четыре вершины, образующие частицу. Аналогичные алгоритмы должны получить широкое использование в будущих играх под DirectX 10.

Изменение балансировки в тестах геометрических шейдеров не влияет на конечный результат рендеринга, итоговая картинка всегда абсолютно одинакова, изменяются лишь способы обработки сцены. Параметр «GS load» определяет, в каком из шейдеров производятся вычисления — в вершинном или геометрическом. Количество вычислений всегда одинаково.

Рассмотрим первый вариант теста «Galaxy», с вычислениями в вершинном шейдере, для трёх уровней геометрической сложности:

Соотношение скоростей при разной геометрической сложности сцен примерно одинаковое для всех решений, производительность соответствует количеству точек, с каждым шагом падение FPS почти двукратное. Задача эта для современных видеокарт не слишком сложная, и производительность в ней ограничена или скоростью обработки геометрии или пропускной способностью памяти.

Во-первых, сразу же видна разница между Nvidia и AMD. Если в пиксель-шейдерных тестах платы AMD явно были эффективнее и быстрее, то первый же тест геометрии показал, что в этих задачах равных платам калифорнийцев нет. И первый из Kepler лишь укрепил позиции, Geforce GTX 680 почти догнала двухчиповую GTX 590 в этом тесте, с запасом обойдя предшествующую одночиповую плату.

Во-вторых, что касается сравнения новинки с конкурентом, то тут последнему просто нечего ловить — разница полуторакратная. И Radeon HD 7970 может конкурировать ну разве что с GTX 580. Посмотрим, как изменится ситуация при переносе части вычислений в геометрический шейдер:

При изменении нагрузки в этом тесте цифры почти не изменились для старых решений Nvidia и лишь немного улучшились для новых плат AMD и... GTX 680. Все видеокарты в данном тесте слабо реагируют на изменение параметра GS load, отвечающего за перенос части вычислений в геометрический шейдер, поэтому и все выводы остаются прежними. Но теперь GTX 680 показала ровно такую же скорость, что и GTX 590. Ну а Radeon HD 7970 всё так же в полтора раза отстала. Смотрим, что изменится в следующем тесте, который предполагает большую нагрузку именно на геометрические шейдеры.

«Hyperlight» — это второй тест геометрических шейдеров, демонстрирующий использование сразу нескольких техник: instancing, stream output, buffer load. В нем используется динамическое создание геометрии при помощи отрисовки в два буфера, а также новая возможность Direct3D 10 — stream output. Первый шейдер генерирует направление лучей, скорость и направление их роста, эти данные помещаются в буфер, который используется вторым шейдером для отрисовки. По каждой точке луча строятся 14 вершин по кругу, всего до миллиона выходных точек.

Новый тип шейдерных программ используется для генерации «лучей», а с параметром «GS load», выставленным в «Heavy» — ещё и для их отрисовки. То есть в режиме «Balanced» геометрические шейдеры используются только для создания и «роста» лучей, вывод осуществляется при помощи «instancing», а в режиме «Heavy» выводом также занимается геометрический шейдер.

Относительные результаты в разных режимах также примерно соответствуют изменению нагрузки: во всех случаях производительность неплохо масштабируется и близка к теоретическим параметрам, по которым каждый следующий уровень «Polygon count» должен быть чуть менее чем в два раза медленней.

В этом тесте скорость рендеринга также ограничена в основном геометрической производительностью, но уже с влиянием и ПСП. К сожалению, с тестом не справляется двухчиповая карта от Nvidia, поэтому с ней мы новинку не сравниваем. А вот ускорение по сравнению с Geforce GTX 580 не слишком большое, что может указывать именно на упор в пропускную способность памяти.

Да и по сравнению с конкурентом в этом тесте ситуация не такая радужная, как была на предыдущих диаграммах. Но всё же, новая плата на GK104 стала лучшей в сравнении (с учётом проблем у GTX 590), обогнав все остальные решения. Цифры должны измениться на следующей диаграмме, в тесте с более активным использованием геометрических шейдеров. Также будет интересно сравнить друг с другом результаты, полученные в режимах «Balanced» и «Heavy».

В этот раз диаграмма с переносом вычислений в геометрический шейдер меняется значительно серьёзнее. Все видеокарты Nvidia в этом сравнении явно быстрее всех плат AMD, но именно новинка на базе Kepler стала лучшей. Скорее всего, этот тест упирается именно в производительность геометрических блоков, и поэтому решения от Nvidia так сильны.

Все платы Geforce явно имеют преимущество перед чипами AMD с традиционным графическим конвейером, и GTX 680 ещё больше его укрепила. Она даже в тяжелом режиме показывает результат, как Radeon HD 7970 в среднем из них. Между GTX 580 и GTX 680 разница обусловлена преимуществом в тактовой частоте чипа GK104, на которой работают геометрические блоки.

Подводя итоги первых геометрических тестов, отметим, что хотя возможности по обработке геометрии и скорости исполнения геометрических шейдеров у нового чипа не изменились, его повышенная тактовая частота позволила улучшить скорость геометрических расчётов. И хотя результаты новых чипов конкурента также улучшились, но свежее решение на базе чипа GK104 всё так же сильно опережает их в этой категории тестов.

Direct3D 10: скорость выборки текстур из вершинных шейдеров

В тестах «Vertex Texture Fetch» измеряется скорость большого количества текстурных выборок из вершинного шейдера. Тесты схожи по сути, так что соотношение между результатами карт в тестах «Earth» и «Waves» должно быть примерно одинаковым. В обоих тестах используется displacement mapping на основании данных текстурных выборок, единственное существенное отличие состоит в том, что в тесте «Waves» используются условные переходы, а в «Earth» — нет.

Рассмотрим первый тест «Earth», сначала в режиме «Effect detail Low»:

Наши предыдущие исследования показали, что на результаты этого теста может влиять и скорость текстурирования и пропускная способность памяти, особенно в лёгком режиме. А результаты видеокарт Nvidia и вовсе ограничены ещё чем-то непонятным. Да и вообще, между схожими по классу платами разница в этом тесте получается очень маленькая — проценты, а не разы.

Вот и в этот раз разве что Radeon HD 7970 вырвалась далеко вперёд, чем отличилась от остального набора видеокарт, включая и предшественницу HD 6970. Остальные решения выступили примерно одинаково, особенно это касается трёх плат от Nvidia, разницу между которыми можно увидеть лишь в лёгком режиме. Новая плата семейства GTX 600 смогла соперничать с HD 7970 только в лёгком режиме, а в остальных сильно отстала, и подозреваем, что так получилось из-за низкого филлрейта и/или ПСП. Посмотрим на производительность в этом же тесте с увеличенным количеством текстурных выборок:

Взаимное расположение карт на диаграмме изменилось в основном за счёт того, что платы Nvidia обеспечили высокую скорость рендеринга в тяжёлых режимах, в отличие от решений AMD, которые немного сдали. И теперь результаты GTX 680 очень близки к скорости Radeon HD 7970, только в лёгком режиме выиграла плата Nvidia, а в тяжёлом — AMD. Про сравнение GTX 680 и GTX 590 можно сказать ровно то же самое. Скорее всего, скорость в тесте ограничена или филлрейтом или ПСП.

Рассмотрим результаты второго теста текстурных выборок из вершинных шейдеров. Тест «Waves» отличается меньшим количеством выборок, зато в нём используются условные переходы. Количество билинейных текстурных выборок в данном случае до 14 («Effect detail Low») или до 24 («Effect detail High») на каждую вершину. Сложность геометрии изменяется аналогично предыдущему тесту.

А вот результаты во втором тесте вершинного текстурирования «Waves» совсем не похожи не то, что мы видели на предыдущих диаграммах. В этом тесте видеокарты AMD и Nvidia выстроились по линии. Почти все, кроме выпавшей из тренда Radeon HD 7970. Она и стала лучшей в сравнении (кроме самого лёгкого режима), выступив явно сильнее представленной сегодня платы Geforce GTX 680.

Все протестированные решения Nvidia снова упёрлись непонятно во что, показав чуть ли не идентичные результаты. Возможно, в этом тесте нет упора производительности в ПСП и текстурирование, а HD 7970 выигрывает из-за лучшей эффективности блоков ROP. Рассмотрим второй вариант этого же теста:

И в этот раз произошли изменения, аналогичные тем, что мы видели ранее — некоторые видеокарты немного ухудшили свои результаты, причём, в лёгких режимах пострадали платы Nvidia, а в тяжёлых — AMD. Это позволило платам Geforce немного приблизиться к результатам Radeon HD 7970. И всё же, топовая плата AMD осталась лидером, а представленная новинка архитектуры Kepler ей проиграла. Тесты вершинного текстурирования как были очень странными и малопонятными, так и остались. Похоже, пришло время попрощаться и с ними.

3DMark Vantage: тесты Feature

Синтетические тесты из пакета 3DMark Vantage покажут нам то, что мы ранее упустили. Feature тесты из этого тестового пакета обладают поддержкой DirectX 10 и интересны тем, что отличаются от наших и до сих пор актуальны. При анализе результатов новой видеокарты Nvidia в этом пакете мы сделаем какие-то новые и полезные выводы, ускользнувшие от нас в тестах семейства RightMark.

Feature Test 1: Texture Fill

Первый тест — тест скорости текстурных выборок. Используется заполнение прямоугольника значениями, считываемыми из маленькой текстуры с использованием многочисленных текстурных координат, которые изменяются каждый кадр.

Хотя тест компании Futuremark не показывает теоретически возможного уровня производительности текстурных выборок, но эффективность видеокарт от AMD и Nvidia в нём достаточно высока и сравнительные цифры моделей довольно близки к соответствующим теоретическим параметрам. Но всё же иногда исключения есть. По идее, лучшей видеокартой в сравнении должна была стать представленная модель Geforce GTX 680, но именно она показала в тесте меньшую эффективность и не смогла опередить топовую плату семейства Radeon HD 7000, как должно быть по теории.

Конечно, если сравнивать с предыдущими видеокартами Nvidia, тут огромное улучшение просто налицо. И всё же, новинка обогнала GTX 580 на 125%, хотя по теории должно быть 160%. То есть, GTX 680 по каким-то причинам не смогла раскрыться полностью в данном тесте. И скорее всего, вина лежит на сравнительно низкой ПСП. В любом случае, результат GTX 680 очень неплохой, она почти сравнялась с Radeon HD 7970, а это говорит о том, что один из недостатков предыдущих поколений устранён. Ранние видеокарты Nvidia в этом тесте были весьма слабы из-за малого количества TMU, а теперь всё стало намного лучше.

Feature Test 2: Color Fill

Это тест скорости заполнения. Используется очень простой пиксельный шейдер, не ограничивающий производительность. Интерполированное значение цвета записывается во внеэкранный буфер (render target) с использованием альфа-блендинга. Используется 16-битный внеэкранный буфер формата FP16, наиболее часто используемый в играх, применяющих HDR-рендеринг, поэтому такой тест является вполне своевременным.

Ситуация в тесте производительности блоков ROP совсем другая. Как мы определили раньше, цифры этого подтеста из 3DMark Vantage хоть и показывают производительность блоков ROP, но с огромным влиянием величины пропускной способности видеопамяти (т. н. «эффективный филлрейт»). Тест часто измеряет скорее пропускную способность памяти, чем производительность ROP, но не в этот раз.

Новая модель Geforce GTX 680 неплохо справилась с работой, показав результат на одном уровне с Radeon HD 7970, имеющей теоретический филлрейт чуть хуже, но значительно более высокую пропускную способность памяти, и уступила только двухчиповой GTX 590. Интересно, что GTX 580 не помогла ни высокая ПСП, ни даже большее количество блоков ROP. Так что в Kepler явно видны улучшения в эффективности работы этих блоков, о которых мы писали в первой части статьи!

Feature Test 3: Parallax Occlusion Mapping

Один из самых интересных feature-тестов, так как подобная техника уже используется в играх. В нём рисуется один четырехугольник (точнее, два треугольника) с применением специальной техники Parallax Occlusion Mapping, имитирующей сложную геометрию. Используются довольно ресурсоёмкие операции по трассировке лучей и карта глубины большого разрешения. Также эта поверхность затеняется при помощи тяжёлого алгоритма Strauss. Это тест очень сложного и тяжелого для видеочипа пиксельного шейдера, содержащего многочисленные текстурные выборки при трассировке лучей, динамические ветвления и сложные расчёты освещения по Strauss.

Этот тест отличается от проведённых нами выше тем, что результаты в нём зависят не исключительно от скорости математических вычислений, эффективности исполнения ветвлений или скорости текстурных выборок, а от всего сразу. А для достижения высокой скорости тут важен верный баланс GPU, а также эффективность выполнения сложных шейдеров.

Интересно, что в синтетике из 3DMark Vantage новая плата Geforce показала примерно такой же результат, относительно других плат, что и в наших аналогичных тестах. Она немного не дотянула до скорости двухчиповой GTX 590, оказавшись быстрее предшественницы почти наполовину. Что явно маловато, если учитывать рост скорости текстурирования и математических вычислений. Похоже, что снова сказываются упрощения в вычислительных блоках Kepler, и его эффективность в таких задачах оказывается ниже, чем у Fermi и GCN.

Поэтому, по сравнению с платой AMD на базе новейшей архитектуры GCN новинке Nvidia в тесте похвастать особо нечем — она проиграла ей столько, сколько выиграла у GTX 580. В подобных сложных вычислительных задачах платы серии Radeon всё же эффективнее справляются с задачей, хотя и скорость первой из Kepler относительно старых решений компании весьма неплоха.

Feature Test 4: GPU Cloth

Тест интересен тем, что рассчитывает физические взаимодействия (имитация ткани) при помощи видеочипа. Используется вершинная симуляция, при помощи комбинированной работы вершинного и геометрического шейдеров, с несколькими проходами. Используется stream out для переноса вершин из одного прохода симуляции к другому. Таким образом, тестируется производительность исполнения вершинных и геометрических шейдеров и скорость stream out.

Скорость рендеринга в этом тесте также зависит сразу от нескольких параметров, но основными факторами влияния являются производительность обработки геометрии, эффективность выполнения уже геометрических шейдеров и производительность блоков ROP. Из-за большого влияния геометрических блоков вполне логично, что видеокарты производства Nvidia, имеющие их по несколько штук, чувствуют себя в этом приложении очень неплохо, а двухчиповая Geforce GTX 590 является лидером теста.

Да, топовая модель конкурента — Radeon HD 7970 — также усилила позиции компании, но так как это один из тех тестов, в которых видно преимущество решений Nvidia, имеющих по несколько геометрических блоков, то даже она не смогла дотянуться даже до Geforce GTX 580. Правда, представленная сегодня новинка на базе чипа GK104 не слишком то сильно опередила решение на одном GF110 — разница между ними составила лишь 6%. Вероятнее всего, вина в такой маленькой разнице лежит на ПСП, которая у GTX 680 нисколько не повысилась, относительно GTX 580. Или дело в скорости заполнения, которая даже снизилась.

Feature Test 5: GPU Particles

Тест физической симуляции эффектов на базе систем частиц, рассчитываемых при помощи видеочипа. Также используется вершинная симуляция, каждая вершина представляет одиночную частицу. Stream out используется с той же целью, что и в предыдущем тесте. Рассчитывается несколько сотен тысяч частиц, все анимируются отдельно, также рассчитываются их столкновения с картой высот.

Аналогично одному из тестов нашего RightMark3D 2.0, частицы отрисовываются при помощи геометрического шейдера, который из каждой точки создает четыре вершины, образующие частицу. Но тест больше всего загружает шейдерные блоки вершинными расчётами, также тестируется stream out.

Результаты второго аналогичного теста из пакета 3DMark Vantage были бы похожи на те, что мы видели на предыдущей диаграмме, если бы не серьёзное падение относительной скорости Geforce GTX 680, которое нас весьма удивило. К сожалению, это один из немногих тестов, где новинка на базе первого чипа с архитектурой Kepler уступает последнему представителю архитектуры Fermi. И вот тут почти точно виновато меньшее количество блоков ROP и меньший филлрейт, так как отставание от GTX 580 ровно такое же, как и отставание по пиковому теоретическому показателю.

Но если сравнивать Geforce GTX 680 с главным конкурентом, то тут не всё так плохо — процентов 20% новинка у него выигрывает. Итак, в синтетических тестах имитации тканей и частиц из тестового пакета 3DMark Vantage, в которых активно используются геометрические шейдеры, для конкурентной борьбы Nvidia и AMD мало что изменилось — хотя новому решению Nvidia мешают низкие показатели ПСП и филлрейта, оно всё же остаётся впереди Radeon HD 7970.

Feature Test 6: Perlin Noise

Последний feature-тест пакета Vantage является математически-интенсивным тестом видеочипа, он рассчитывает несколько октав алгоритма Perlin noise в пиксельном шейдере. Каждый цветовой канал использует собственную функцию шума для большей нагрузки на видеочип. Perlin noise — это стандартный алгоритм, часто применяемый в процедурном текстурировании, он использует много математических расчётов.

В чисто математическом тесте из пакета компании Futuremark, показывающем пиковую производительность видеочипов в предельных задачах, мы видим немного иное распределение результатов, по сравнению с аналогичными тестами из нашего тестового пакета Rightmark. В этом случае производительность решений с диаграммы слабо соответствует теории и расходится с тем, что мы видели ранее в математических тестах из пакета RightMark 2.0.

Неудивительно, что конкурирующая архитектура GCN справляется с этой задачей просто отлично, видеокарты от AMD всегда показывают лучшие результаты в случаях, когда выполняется простая и интенсивная математика. Поэтому топовое решение компании AMD обгоняет все остальные с огромным запасом.

А удивила нас сравнительно низкая эффективность Geforce GTX 680 в этом тесте. По идее, новинка должна быть вдвое быстрее GTX 580 и значительно быстрее GTX 590, но реальная разница в данном тесте получилась меньше. По какой-то причине даже в сравнительно «тупом» тесте Geforce GTX 680 не смогла подкрепить теорию, приблизившись к сопернику на 23%, как должно быть, в реальности отстав более чем на 40%. В этом тесте низкая ПСП не должна сказываться, поэтому все подозрения падают на всё ту же сниженную эффективность при выполнении шейдерных программ.

Direct3D 11: Вычислительные шейдеры

Чтобы протестировать новое решение компании Nvidia в задачах, использующих такие новые возможности DirectX 11, как тесселяция и вычислительные шейдеры, мы воспользовались примерами из пакетов для разработчиков (SDK) и демонстрационными программами компаний Microsoft, Nvidia и AMD.

Сначала мы рассмотрим тесты, использующие вычислительные (Compute) шейдеры. Их появление — одно из наиболее важных нововведений в последних версиях DX API, они уже используются в современных играх для выполнения различных задач: постобработки, симуляций и т. п. В первом тесте показан пример HDR-рендеринга с tone mapping из DirectX SDK, с постобработкой, использующей пиксельные и вычислительные шейдеры.

Да, это не самый удачный пример для вычислительных шейдеров, но всё же разницу в производительности в одной из конкретных задач он показывает. Интересно, что если разница в скорости расчётов в вычислительном и пиксельном шейдерах для видеокарт Nvidia на базе Fermi была, то в Kepler её почти нет. Более того, GTX 680 чуть быстрее в вычислительном шейдере, ровно как и плата AMD.

Судя по разнице между GTX 580 и GTX 680, результаты явно зависят не только от математической мощи и даже не только от эффективности вычислений, ни и от чего-то ещё, вроде ПСП. В общем, новинка Nvidia в этом тесте отстаёт от конкурирующего Radeon HD 7970, хотя и не слишком сильно.

Второй тест вычислительных шейдеров также взят из Microsoft DirectX SDK, в нём показана расчётная задача гравитации N тел (N-body) — симуляция динамической системы частиц, на которую воздействуют физические силы, такие как гравитация.

А вот результаты в этом тесте совсем другие, и тут Geforce GTX 680 нас изрядно удивила. Если в сравнении GTX 580 и HD 6970 разница была небольшой, то в более свежей паре GTX 680 и HD 7970 решение Nvidia явно быстрее, причём почти в полтора раза. Если этот тест и измеряет скорость именно математических вычислений, то эффективность в нём зависит от других характеристик.

Новая модель компании Nvidia обогнала предшествующую ей Geforce GTX 580 на 76%, что хоть и ниже теоретической разницы в пиковой математической производительности, но всё равно довольно много. В целом, результат новинки выглядит отлично, если учесть значительный отрыв от лучшей платы конкурентов. Ещё интереснее будут тесты производительности в задачах тесселяции, к которым мы и переходим.

Direct3D 11: Производительность тесселяции

Вычислительные шейдеры очень важны, но ещё одним важным нововведением в Direct3D 11 считается аппаратная тесселяция. Мы очень подробно рассматривали её в своей теоретической статье про Nvidia GF100. Тесселяцию уже довольно давно начали использовать в DX11-играх, таких как STALKER: Зов Припяти, DiRT 2, Aliens vs Predator, Metro 2033, Civilization V, Crysis 2, Battlefield 3 и других. В некоторых из них тесселяция используется для моделей персонажей, в других — для имитации реалистичной водной поверхности или ландшафта.

Существует несколько различных схем разбиения графических примитивов (тесселяции). Например, phong tessellation, PN triangles, Catmull-Clark subdivision. Так, схема разбиения PN Triangles используется в STALKER: Зов Припяти, а в Metro 2033 — Phong tessellation. Эти методы сравнительно быстро и просто внедряются в процесс разработки игр и существующие движки, поэтому и стали популярными.

Первым тестом тесселяции будет пример Detail Tessellation из ATI Radeon SDK. В нём реализована не только тесселяция, но и две разные техники попиксельной обработки: простое наложение карт нормалей и parallax occlusion mapping. Что ж, сравним DX11-решения AMD и Nvidia в различных условиях:

Мы уже видели ранее, что parallax occlusion mapping (средние столбики на диаграмме) на видеокартах обоих производителей выполняется гораздо менее эффективно, чем тесселяция (нижние столбики), а тесселяция не даёт падения производительности в разы — сравните верхние и нижние столбцы. То есть, качественная имитация геометрии при помощи пиксельных расчётов обеспечивает даже меньшую производительность, чем реальная оттесселированная геометрия с displacement mapping.

Разберём все подтесты по очереди, так как в них есть над чем задуматься. В тесте простого бампмаппинга видно, что платы наверняка упираются в ПСП, так как результаты GTX 580 и GTX 680 слишком близки, чего быть не должно. В остальном, можно отметить, что платы AMD в целом тут быстрее, и лидирует в подтесте новая топовая модель Radeon HD 7970.

Второй подтест со сложными пиксельными расчётами в очередной раз показал, что эффективность выполнения сложных математических вычислений у чипов архитектуры GCN гораздо выше, чем у остальных участников сравнения. Топовая плата семейства HD 7000 показала лучший результат в тесте parallax mapping, обогнав представленную сегодня GTX 680 более чем на 40%. Падение производительности при включении POM на платах Nvidia явно сильнее. Первый чип Kepler выполняет задачу лишь на 27% быстрее, чем лучший из Fermi, что говорит о сниженной эффективности вычислений.

Ну и в самом интересном подтесте мы удивились, увидев равный результат у Geforce GTX 680 и Radeon HD 7970. Да, в этом тесте тесселяции разбиение треугольников умеренное, и поэтому платы компании AMD теряют не слишком много производительности, и их запаса скорости хватает, чтобы показать схожий результат с анонсированной сегодня одночиповой видеокартой от Nvidia. Нас больше интересует разница в скорости между GTX 580 и GTX 680. Она получилась равной 42%, что явно выше разницы в частотах, на которых работают геометрические блоки. И это — ещё одно подтверждение того, что подтест не полностью упирается в скорость обработки геометрии.

Вторым тестом производительности тесселяции будет ещё один пример для 3D-разработчиков из ATI Radeon SDK — PN Triangles. Собственно, оба примера входят также и в состав DX SDK, так что мы уверены, что на их основе создают свой код игровые разработчики. Этот пример мы протестировали с различным коэффициентом разбиения (tessellation factor), чтобы понять, как сильно влияет его изменение на общую производительность.

Мы вернули в тесты результаты с максимальным уровнем тесселяции (tessellation factor = 19), «откатив» версию примера из DirectX SDK к более старой версии февраля 2010 года (о причинах читайте в предыдущей статье раздела). В этом примере мы видим уже более правдоподобное сравнение геометрической мощи различных решений. Все современные чипы вполне неплохо справляются даже с серьёзной геометрической нагрузкой, но графические процессоры Nvidia остаются непревзойдёнными по этому показателю.

Все их чипы архитектур Fermi и Kepler весьма хороши в таких задачах, но наш сегодняшний герой материала превзошёл всех. У своей предшественницы он выигрывает до двух раз, хотя чисто теоретически разница должна быть меньше — видимо, всё-таки провели какие-то оптимизации. И хотя чипы архитектуры GCN в тесселяции заметно ускорились, но это позволило догнать лишь GTX 580, да и то не в любых условиях. Ну а GTX 680 так и снова вырвался далеко вперёд. Поэтому можно быть уверенными, что и в псевдоигровых тестах с применением тесселяции, таких как 3DMark 11 и Heaven, новая плата Nvidia покажет сильные результаты.

Давайте рассмотрим результаты ещё одного теста — демонстрационной программы Nvidia Realistic Water Terrain, также известной как Island. В этой демке используется тесселяция и карты смещения (displacement mapping) для рендеринга реалистично выглядящей поверхности океана и ландшафта.

Island не является чисто синтетическим тестом для измерения только геометрической производительности, он содержит и сложные пиксельные и вычислительные шейдеры в том числе, и такая нагрузка ближе к реальным играм, в которых используются сразу все блоки GPU, а не только геометрические, как в предыдущем бенчмарке.

Как всегда, мы протестировали демо при четырёх разных коэффициентах тесселяции, в данном случае настройка называется Dynamic Tessellation LOD. И если при самом первом коэффициенте разбиения треугольников видеокарты компании AMD сильны (скорость не ограничена производительностью геометрических блоков), то при усложнении работы платы от компании Nvidia начинает выигрывать, и весьма значительно. При увеличении коэффициента разбиения и сложности сцены производительность любых плат Radeon падает очень сильно, и тут можно только признать очередную победу Nvidia в сложных геометрических тестах.

Так что сравнивать в этом тесте платы Nvidia и AMD очень просто — первые быстрее просто в разы! Поэтому обратим внимание на пару Geforce GTX 680 и GTX 580. Разница между ними получилась снова весьма большой, что может указывать как на улучшенную геометрическую производительность, так и на увеличение чисто математической мощи. Ведь, как мы написали выше, нагрузка в тесте является не чисто синтетической и не грузит только геометрические блоки, но и весь чип в целом. И раз Kepler быстрее в целом, то и в этой задаче GTX 680 получилась быстрее предшествующей топовой модели, причём на 30-50%.

Подведём итог тестов тесселяции. В условиях очень тяжёлой геометрической нагрузки новый чип GK104 показывает себя исключительно с хорошей стороны. Хотя количество геометрических блоков с GF110 не увеличилось, но увеличенная тактовая частота GPU и большая математическая мощь позволили чипу нового семейства показать ещё более сильные результаты. И хотя AMD в семействе GCN очень сильно подтянули геометрическую производительность и в реальных применениях, где нет сверхвысоких степеней разбиения треугольников, практически не уступают решениям Nvidia, то в синтетических мы определили явного победителя, и это — новая плата Geforce GTX 680.

Выводы по синтетическим тестам

По результатам проведённых нами синтетических тестов новой модели видеокарты из серии Geforce GTX 600, основанной на графическом процессоре GK104, ставшем первым GPU с архитектурой Kepler, а также результатам других моделей видеокарт производства обоих производителей дискретных видеочипов, мы делаем вывод о том, что новое топовое решение Nvidia должно стать быстрейшим графическим решением на рынке. Потому что самые важные технические характеристики в GTX 680 были серьёзно улучшены и это было подтверждено синтетикой.

Графический процессор GK104 выполнен с применением самого совершенного (у TSMC на данный момент) 28 нм техпроцесса, и является первенцем новой архитектуры Kepler, которая хоть и основана на удачных решениях Fermi, но очень сильно модифицирована. Чип новой архитектуры имеет массу улучшений, направленных на увеличение энергоэффективности, ускорение выполнения математических расчётов, обработки геометрических данных и текстурирования. И наш набор синтетических тестов показал, что производительность решения в почти во всех задачах значительно возросла. Geforce GTX 680 почти всегда значительно опережал предыдущую топовую модель компании, а разница между ними иногда была даже двукратной.

К сожалению, не обошлось и без некоторых шероховатостей. Во-первых, в некоторых тестах сложных пиксельных шейдеров, вроде Parallax Occlusion Mapping и Fur, эффективность Kepler ожидаемо снизилась по сравнению с Fermi. И топовое решение конкурента, имеющее большее количество регистров в вычислительных устройствах, имеют в таких тестах явное преимущество, ведь в тяжёлых шейдерах производительность сильно зависит от объёма регистровой памяти, да и общего количества потоковых процессоров.

Тут снова можно говорить о разном архитектурном балансе у решений Nvidia и AMD. Ведь на сложных геометрических расчётах чипы Nvidia значительно быстрее конкурентов. Причём, так получается не только из-за распараллеленной обработки вершин и примитивов, о которой мы уже не раз рассказывали. В Kepler сравнительно много блоков SFU, которые занимаются интерполяцией атрибутов геометрии и трансцендентными функциями, которые часто используются в вершинных шейдерах, а в GCN этими операциями занимаются те же потоковые процессоры, не вынесенные в отдельные массивы. В общем, получается, что Nvidia уделяет особое внимание быстрой обработке сложной геометрии, а AMD упирает на сложные пиксельные программы.

Ещё одним спорным моментом для модели Geforce GTX 680 является не слишком высокая пропускная способность видеопамяти. Хотя в Nvidia сделали всё, чтобы подтянуть её хотя бы до уровня GTX 580, этого часто будет недостаточно, как показали некоторые из синтетических тестов. То же самое касается и производительности ROP (скорости заполнения), которая даже ниже, чем у GTX 580. И можно предположить, что в некоторых играх эти два ограничения не позволят новой плате показать всё, на что способна архитектура Kepler. Кстати, это же касается и объёма видеопамяти в 2 ГБ, ведь у конкурента её в полтора раза больше. И пусть в 95-99% случаев вполне хватит и 2 ГБ, обязательно найдутся игры и условия, в которых этого объёма будет мало. Да и чисто психологический фактор стоит учитывать.

В целом же, благодаря проведённым в Kepler архитектурным изменениям, Nvidia явно улучшила основные характеристики своего быстрейшего на данный момент решения. Новый чип GK104 отличается высочайшей производительностью, но при этом потребляет энергии заметно меньше предыдущего топового чипа GF110. То есть, с основной своей задачей по повышению энергетической эффективности в Nvidia справились на отлично! И видеокарта Geforce GTX 680 по рекомендуемой цене станет неплохим приобретением для энтузиастов, так как должна стать наиболее производительным DirectX 11 решением на рынке.

Предполагаем, что сильные результаты видеоплаты Geforce GTX 680 в большинстве синтетических тестов будут подкреплены отличными показателями и в игровых приложениях из нашего тестового набора. Новая модель просто обязана показать столь же высокую скорость в играх по сравнению с соперниками и предшественниками, как она уже сделала это в синтетических тестах этого раздела.