Каноническая система пример в линейном программировании. Различные формы записи задачи линейного программирования. Определение и формы записи

Каноническая форма ЗЛП - задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.

Назначение сервиса . Онлайн-калькулятор предназначен для перехода ЗЛП к КЗЛП. Приведение задачи к канонической форме означает, что все ограничения будут иметь вид равенств, путем ввода дополнительных переменных.
Если на какую-либо переменную x j не наложено ограничение, то она заменяется на разность дополнительных переменных, x j = x j1 - x j2 , x j1 ≥ 0, x j2 ≥ 0.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
Как привести задачу линейного программирования к канонической форме

Математическая модель ЗЛП называется основной , если ограничения в ней представлены в виде уравнений при условии неотрицательности переменных.

Математическая модель называется канонической , если ее система ограничений представлена в виде системы m линейно независимых уравнений (ранг системы r=m), в системе выделен единичный базис , определены свободные переменные и целевая функция выражена через свободные переменные. При этом правые части уравнений неотрицательны (b i ≥ 0).

Переменные, входящие в одно из уравнений системы с коэффициентом один и отсутствующие в других уравнениях называются базисными неизвестными , а все другие - свободными .

Решение системы называется базисным , если в нем свободные переменные равны 0, и оно имеет вид:
X баз = (0, 0; b 1 , …, b m), f(X баз) = c 0

Базисное решение является угловой точкой множества решений системы, т.е. определяет вершину многоугольника решений модели. Среди таких решений находится и то, при котором целевая функция принимает оптимальное значение .

Базисное решение называется опорным, если оно допустимо, т.е. все правые части уравнений системы (или неравенств) положительны b i ≥ 0.

Компактная форма канонической модели имеет вид:
AX = b
X ≥ 0
Z = CX(max)

Понятие допустимого решения, области допустимых решений, оптимального решения задачи линейного программирования .
Определение 1 . Вектор X, удовлетворяющий системе ограничений ЗЛП, в том числе и условиям неотрицательности, если они имеются, называется допустимым решением ЗЛП.
Определение 2 . Совокупность всех допустимых решений образует область допустимых решений (ОДР) ЗЛП.
Определение 3 . Допустимое решение, для которого целевая функция достигает максимума (или минимума), называется оптимальным решением.

Пример №1 . Следующую задачу ЛП привести к каноническому виду: F(X) = 5x 1 + 3x 2 → max при ограничениях:
2x 1 + 3x 2 ≤20
3x 1 + x 2 ≤15
4x 1 ≤16
3x 2 ≤12
Модель записана в стандартной форме. Введем балансовые неотрицательные переменные x 3 , x 4 , x 5 , x 6 , которые прибавим к левым частям ограничений-неравенств. В целевую функцию все дополнительные переменные введем с коэффициентами, равными нулю:
В первом неравенстве смысла (≤) вводим базисную переменную x 3 . Во 2-ом неравенстве смысла (≤) вводим базисную переменную x 4 . В третьем неравенстве вводим базисную переменную x 5 . В 4-м неравенстве - базисную переменную x 6 . Получим каноническую форму модели:
2x 1 + 3x 2 + 1x 3 + 0x 4 + 0x 5 + 0x 6 = 20
3x 1 + 1x 2 + 0x 3 + 1x 4 + 0x 5 + 0x 6 = 15
4x 1 + 0x 2 + 0x 3 + 0x 4 + 1x 5 + 0x 6 = 16
0x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 1x 6 = 12
F(X) = 5x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 0x 6 → max

Пример №2 . Найти два опорных решения системы
x 1 + 2x 4 - 2x 5 = 4
x 3 + 3x 4 + x 5 = 5
x 2 + 3x 5 = 2

задачи линейного программирования

2.1. Определение и формы записи

В случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической. Она может быть представлена в координатной, векторной или матричной форме записи.

а) каноническая задача ЛП в координатной форме имеет вид:

,
.

Данную задачу можно записать, используя знак суммирования:

,

,

,
,
.

б) каноническая задача ЛП в векторной форме имеет вид: ,

,

где
;
;

,
;;
.

в) каноническая задача ЛП в матричной форме имеет вид:

,
,

где
,,.

2.2. Приведение общей задачи линейного

программирования к канонической форме

При составлении математических моделей экономических задач ограничения в основном формируются в системы неравенств. Поэтому необходимо уметь переходить от них к системам уравнений. Например, рассмотрим линейное неравенство

и прибавим к его левой части некоторую величину
такую, чтобы неравенство превратилось в равенство.

Неотрицательная переменная
называется дополнительной переменной. Следующая теорема даёт основание для возможности такого преобразования.

Теорема 2.2.1. Каждому решению
неравенства (2.2.1) соответствует единственное решениеуравнения (2.2.2) и неравенства
, и, наоборот, каждому решению уравнения (2.2.2)с
соответствует решение
неравенства (2.2.1).

Доказательство. Пусть
решение неравенства (2.2.1). Тогда. Возьмём число
. Ясно, что
. Подставив в уравнение (2.2.2), получим

Первая часть теоремы доказана.

Пусть теперь векторудовлетворяет уравнению (2.2.2) с
, т.е.. Отбрасывая в левой части последнего равенства неотрицательную величину
, получаем, и т.д.

Таким образом, доказанная теорема фактически устанавливает возможность приведения всякой задачи ЛП к каноническому виду. Для этого достаточно в каждое ограничение, имеющее вид неравенства, ввести свою дополнительную неотрицательную переменную. Причём, в неравенства вида (1.2.1) эти переменные войдут со знаком « + », а в неравенствах вида (1.2.2) – со знаком « – ». Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому на её значение не влияют.

Замечание. В дальнейшем мы будем излагать симплекс-метод для канонической задачи ЛП при исследовании целевой функции на минимум. В тех задачах, где требуется найти максимум
, достаточно рассмотреть функцию
, найти её минимальное значение, а затем, меняя знак на противоположный, определить искомое максимальное значение
.

3. Графический метод решения задач

линейного программирования

3.1. Общие понятия, примеры

В тех случаях, когда в задаче ЛП лишь две переменные, можно использовать для решения графический метод. Пусть требуется найти максимальное (минимальное) значение функции
при ограничениях

(3.1.1)

Данный метод основывается на возможности графического изображения области допустимых решений задачи, т.е. удовлетворяющих системе (3.1.1), и нахождения среди них оптимального решения. Область допустимых решений задачи строится как пересечение (общая часть) областей решений каждого из заданных ограничений (3.1.1). Каждое из них определяет полуплоскость с границей
,
. Для того, чтобы определить, какая из двух полуплоскостей является областью решений, достаточно координаты какой-либо точки, не лежащей на прямой, подставить в неравенство: если оно удовлетворяется, то областью решений является полуплоскость, содержащая данную точку, если же неравенство не удовлетворяется, то областью решений является полуплоскость, не содержащая данную точку.

Пересечение этих полуплоскостей образует некоторую область, называемую многоугольником решений, который является выпуклым множеством. (Допустим, что система ограничений совместна, а многоугольник её решений ограничен.) Для нахождения среди допустимых решений оптимального используются линии уровня и опорные прямые.

Линией уровня называется прямая, на которой целевая функцияпринимает постоянное значение. Уравнение линии уровня имеет вид

, где
. Все линии уровня параллельны между собой. Их нормаль
.

Опорной прямой называется линия уровня, которая имеет хотя бы одну общую точку с областью допустимых решений, по отношению к которой эта область находится в одной из полуплоскостей (рис. 1).

Значения
возрастают в направлении вектора
. Поэтому необходимо передвигать линию уровня
в направлении этого вектора параллельно самой себе до опорной прямойL 1 в задаче на максимум и в противоположном направлении – в задаче на минимум (до опорной прямойL 2).

Приведём решение примера 1.1. Напомним, что нужно найти максимум функции
при ограничениях

Решение. Строим область допустимых решений. Нумеруем ограничения задачи. В прямоугольной декартовой системе координат (рис. 2) строим прямую

, соответствующую ограничению (1). Находим, какая из полуплоскостей, на которые эта прямая делит всю координатную плоскость, является областью решений неравенства (1).

Для этого достаточно координаты какой - либо точки, не лежащей на прямой, подставить в неравенство. Так как прямая не проходит через начало координат, подставляем
в первое ограничение. Получим строгое неравенство
. Следовательно, точка
лежит в полуплоскости решений. Аналогично строим прямую

и область решений ограничения (2). Находим общую часть полуплоскостей решений, учитывая ограничения (3). Полученную область допустимых решений выделим на рис.2 тёмным цветом.

Строим линию уровня
и вектор
, который указывает направление возрастания функциии перпендикулярен прямой

. Линию уровня
перемещаем параллельно самой себе в направлении
до опорной прямой. Получим, что максимума целевая функция достигнет в точке
точке пересечения прямыхи. Решая систему из уравнений этих прямых
, получим координаты точки
. Следовательно,, а
,
оптимальное решение.

Пример 3.1. Найти минимум функции
при системе ограничений

Решение. Строим область допустимых решений (см. рис.3), вектор
и одну из линий уровня
. Перемещаем линию уровня в направлении, противоположном
, так как решается задача на отыскание минимума функции. Опорная прямая проходит в этом случае через точку А (рис.3), координаты которой найдём из решения системы

Итак,
. Вычисляем.

Замечание. В действительности от вида области допустимых решений и целевой функции
задача ЛП может иметь единственное решение, бесконечное множество решений или не иметь ни одного решения.

Пример 3.2. Найти минимум функции
при ограничениях

Решение. Строим область допустимых решений, нормаль линий уровня
и одну из линий уровня, имеющую общие точки с этой областью. Перемещаем линию уровняв направлении, противоположном направлению нормали, так как решается задача на отыскание минимума функции. Нормаль линий уровня
и нормаль граничной прямой, в направлении которой перемещаются линии уровня, параллельны, так как их координаты пропорциональны
. Следовательно, опорная прямая совпадает с граничной прямойобласти допустимых решений и проходит через две угловые точки этой областии(рис.4).

Задача имеет бесконечное множество оптимальных решений, являющихся точками отрезка
. Эти точки
,
находим, решая соответствующие системы уравнений:


;
;

,
;
,
;

;
.

Вычисляем .

Ответ:
при
,
.

Пример 3.3. Решить задачу линейного программирования

Решение. Строим область допустимых решений, нормаль
и одну из линий уровня. В данной задаче необходимо найти максимум целевой функции, поэтому линию уровняперемещаем в направлении нормали. Ввиду того, что в этом направлении область допустимых решений не ограничена, линия уровня уходит в бесконечность (рис.5).

Задача не имеет решения вследствие неограниченности целевой функции.

Ответ:
.

В исходной постановке ЗЛП могут допускать различные формы записи. Так, в одних задачах требуется максимизировать целевую функцию, в других - минимизировать; некоторые линейные ограничения могут иметь вид равенств, другие - неравенств и т.д.

Для единообразия записи ЗЛП вводится так называемая каноническая форма записи.

Говорят, что ЗЛП записана в канонической форме, если она имеет следующий вид:

Отметим следующие особенности канонического вида:

1) требуется минимизировать целевую функцию;

2) все линейные ограничения, кроме требований неотрицательности переменных, имеют вид равенств;

    на все переменные наложены требования неотрицательности.

Покажем, что любую ЗЛП можно привести к каноническому виду.

1) Если в ЗЛП требуется максимизировать целевую функцию f, то положим g = - f и потребуем минимизировать функцию g. Получится новая ЗЛП, которая эквивалентна исходной в том смысле, что каждое оптимальное решение исходной задачи будет оптимальным решением новой задачи и наоборот.

2) Предположим, что в ЗЛП есть линейное ограничение вида

Заменим такое ограничение следующими двумя ограничениями:

где z - новая переменная, которая в целевую функцию вводится с коэффициентом 0 (иначе говоря, переменная z не вводится в целевую функцию). Значение переменной z можно не учитывать после решения новой задачи.

Аналогично, ограничение вида заменяется двумя ограничениями:

3) Предположим, что в ЗЛП не ко всем переменным предъявлено требование неотрицательности. Тогда каждую, переменную , на которую не наложено требование неотрицательности, представим в виде разности двух неотрицательных переменных:

Каждое вхождение переменной в целевую функцию или ограничения заменим разностью
. Решив новую задачу с помощью (2.6), вернемся к прежним переменным.

Указанными приемами любая ЗЛП приводится к каноническому виду.

Пример. Привести к каноническому виду

Проделаем описанные действия.

Теперь получим ЗЛП в каноническом виде:

2.7. Понятие опорного плана злп.

Пусть ВЛП задана в каноническом виде (2.3 - 2.5). Предположим, что система уравнений (2.4) приведена к жордановой форме с неотрицательными правыми частями:

(2.6)

где
.

Приравняв к нулю свободные переменные, получим базисное решение системы (2.4)

В силу условия
набор значений переменных (2.7) удовлетворяет и ограничениям (2.5). Поэтому (2.6) являетсядопустимым решением ЗЛП .

Допустимое решение (2.7) называется базисным допустимым решением или опорным планом ЗЛП. При этом говорят, что переменные
образуют допустимый базис.

Оказывается, что если ОДР изобразить геометрически, то каждый опорный план ЗЛП соответствует вершине многогранника. Поэтому справедлива следующая теорема.

Если ЗЛП разрешима, то существует оптимальный опорный план.

3. Симплексный метод решения злп

3.1. Общая характеристика и основные этапы симплекс – метода

Основоположниками симплекс-метода являются советский математик Л.В. Канторович и американский математик Дж. Данциг.

Симплекс-методом можно решить любую ЗЛП или обнаружить ее неразрешимость. Многие специальные классы ЗЛП можно решить другими, более эффективными для этих классов методами. Однако преимущество симплекс-метода - его универсальность. Почти для всех ЭВМ разработаны стандартные программы для решения ЗЛП симплекс - методом.

Опишем общую идею симплекс-метода.

Считаем, что ЗЛП записана в каноническом виде и целевую функцию нужно минимизировать. Как мы уже знаем, оптимальный план следует искать среди опорных планов ЗЛП. Симплекс-метод не перебирает все опорные планы (что было бы часто невозможно из-за их огромного количества), а, начиная с некоторого исходного опорного плана, он последовательно переходит к другим опорным планам с уменьшением целевой функции. Симплекс-метод прекращает свою работу тогда, когда либо будет найден оптимальный опорный план, либо установлена неразрешимость задачи.

При решении ЗЛП симплекс-методом можно выделить следующие этапы:

1) приведение ЗЛП к каноническому виду;

2) приведение системы линейных уравнений к жордановой форме с неотрицательными правыми частями с одновременной проверкой на неразрешимость ЗЛП из-за противоречивости системы линейных ограничений;

3) исследование опорного плана на оптимальность;

4) исследование ЗЛП на неразрешимость из-за неограниченности снизу на ОДР целевой функции;

5) переход к новому, "лучшему" опорному плану.

Запись целевой функции и системы ограничений в различных задачах линейного программирования неодинаков: в одних задачах требуется найти минимум целевой функции, а в других – максимум; в одних случаях искомые переменные зависят от одного индекса, а в других – от двух; в одних задачах ограничения заданы в виде системы линейных неравенств, а в других – в виде системы линейных уравнений. На практике возможны также задачи, в которых часть ограничений имеет вид линейных неравенств, а часть – линейных уравнений. Также не во всех задачах может требоваться неотрицательность переменных .

Учет такого разнообразия задач линейного программирования требует разработки специальных методов для решения отдельных их классов. Мы же сосредоточим свое внимание на изучении общих свойств и методов линейного программирования, записанных в так называемой канонической форме.

Если в задаче линейного программирования система исходных ограничений приобретает вид уравнений типа

и нужно найти максимум линейной целевой функции

то считается, что задача линейного программирования записана в канонической форме.

Любую задачу линейного программирования можно легко свести к канонической форме. В общем случае для этого достаточно уметь, во-первых, свести задачу минимизации целевой функции к задаче ее максимизации, во-вторых, переходить от ограничений-неравенств к ограничениям-равенствам, и в-третьих, менять те переменные, которые не подчинены условию неотрицательности.

В том случае, когда нужно найти минимум функции , можно перейти к нахождению максимума функции , поскольку справедливо утверждение:
.

Ограничение-неравенство исходной задачи, которое имеет вид «» , можно превратить в ограничение-уравнение путем добавления к его левой части дополнительной неотрицательной переменной, а ограничение-неравенство вида «»– путем вычитания из его левой части дополнительной неотрицательной переменной.

Заметим, что количество введенных дополнительных неотрицательных переменных всегда равно количеству неравенств в исходной системе ограничений.

Введены дополнительные переменные имеют вполне конкретный экономический смысл. Так, если в ограничениях исходной задачи линейного программирования отражаются расходы и наличие производственных ресурсов, то числовое значение дополнительной переменной показывает объем соответствующего неиспользованного ресурса.

Отметим также, что если некоторая переменная не подчиняется условию неотрицательности, то ее нужно заменить двумя неотрицавтельными переменными и , приняв
.

Пример . Записать в канонической форме следующую задачу линейной оптимизации: найти минимум функции
при ограничениях

Решение

В данной задаче нужно найти минимум целевой функции, а система ограничений включает четыре неравенства. Для того, чтобы записать ее в канонической форме, нужно перейти от ограничений-неравенств к ограничениям-уравнениям, а также превратить целевую функцию.

Так как количество неравенств, входящих в систему ограничений задачи, равно четырем, то этот переход должен быть осуществлен с введением четырех дополнительных неотрицательных переменных. При этом во втором и четвертом неравенствах стоит знак «» , поэтому к их левой части дополнительные переменные добавляем. В первом и третьем неравенствах – знак «», значит от их левой части дополнительные переменные вычитаем.

Также превращаем целевую функцию, поменяв все знаки на противоположные, и находим ее максимум.

Таким образом, данная задача линейного программирования будет записана в следующем каноническом виде:

найти максимум функции

при ограничениях