Стохастические модели взаимодействия. Метод построения стохастических моделей одношаговых процессов демидова анастасия вячеславовна. Виды математических моделей

Построение стохастической модели

Построение стохастической модели включает разработку, оценку качества и исследование поведения системы с помощью уравнений, описывающих изучаемый процесс.

Для этого путем проведения специального эксперимента с реальной системой добывается исходная информация. При этом используются методы планирования эксперимента, обработки результатов, а также критерии оценки полученных моделей, базирующиеся на таких разделах математической статистики как дисперсионный, корреляционный, регрессионный анализ и др.

В основе методов построения статистической модели, описывающей технологический процесс (рис.6.1) лежит концепция «черного ящика». Для него возможны многократные измерения входных факторов: x 1 ,x 2 ,…,x k и выходных параметров: y 1 ,y 2 ,…,y p , по результатам которых устанавливают зависимости:

При статистическом моделировании вслед за постановкой задачи (1) производится отсеивание наименее важных факторов из большого числа входных переменных, влияющих на ход процесса (2). Выбранные для дальнейшего исследования входные переменные составляют список факторов x 1 ,x 2 ,…,x k в (6.1), управляя которыми можно регулировать выходные параметры y n . Количество выходных параметров модели также следует по возможности уменьшить, чтобы сократить затраты на эксперименты и обработку данных.

При разработке статистической модели обычно ее структура (3) задается произвольно, в виде удобных для использования функций, аппроксимирующих опытные данные, а затем уточняется на основе оценки адекватности модели.

Наиболее часто используется полиномиальная форма модели. Так, для квадратичной функции:

(6.2)

где b 0 , b i , b ij , b ii – коэффициенты регрессии.

Обычно сначала ограничиваются наиболее простой линейной моделью, для которой в (6.2) b ii =0, b ij =0 . В случае ее неадекватности усложняют модель введением членов, учитывающих взаимодействие факторов x i ,x j и (или) квадратичных членов .

С целью максимального извлечения информации из проводимых экспериментов и уменьшения их числа проводится планирование экспериментов (4) т.е. выбор количества и условий проведения опытов необходимых и достаточных для решения с заданной точностью поставленной задачи.

Для построения статистических моделей применяют два вида экспериментов: пассивный и активный. Пассивный эксперимент проводится в форме длительного наблюдения за ходом неуправляемого процесса, что позволяет собрать обширный ряд данных для статистического анализа. В активном эксперименте имеется возможность регулирования условий проведения опытов. При его проведении наиболее эффективно одновременное варьирование величины всех факторов по определенному плану, что позволяет выявить взаимодействие факторов и сократить число опытов.

На основе результатов проведенных экспериментов (5) вычисляют коэффициенты регрессии (6.2) и оценивают их статистическую значимость, чем завершается построение модели (6). Мерой адекватности модели (7) является дисперсия, т.е. среднеквадратичное отклонение вычисляемых значений от экспериментальных. Полученная дисперсия сопоставляется с допустимой при достигнутой точности экспериментов.

Особенности стохастического моделирования.

Особенности стохастического мод-ия: стохастическое моделирование – моделирование случайных воздействий.

Стохастическое моделирования (СМ) - м оделирование случайных процессов и случайных событий.

Суть СМ – многократное повторение модельных экспериментов с целью получения статистики о свойствах системы, получения данных о свойствах случайных событий и величин.

Цель – в результате СМ для параметров объектов должна быть получена оценка мат ожидания, дисперсии и закона распределения случайной величины.

Понятие случайного события и случайной величины.

Случайным событием называется любой факт, который в результате опыта может произойти или не произойти. Случайные события могут быть: Достоверными (событие, которое происходит в каждом опыте). Невозможными (событие, которое в результате опыта произойти не может).

Числовая величина, принимающая то или иное значение в результате реализации опыта случайным образом, называется случайной величиной .

Характеристики случайных величин и случайных событий.

Характеристики случайного события:

Частота появления события - вероятность появления того или иного события при неограниченном количестве опытов.

Характеристики случайной величины:

    Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины.

    Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Плотности распределения вероятности - вид функции, которой определяет закон распределения случайных величин.

Моделирование случайных событий.

Исходные данные:

Вероятность события Pa;

Требуется построить модель события A, которое происходит с вероятностью Pa.

Алгоритм моделирования:

Используется датчик случайных чисел с равномерным законом распределения от 0 до 1:

Randomize(RND)  x i . 0<=x i <=1

Если выполняется Xi<=Pa то событие A произошло. В противном случае произошло событие не A.

Моделирование полной группы случайных событий.

Группа несовместимых событий называется полной, если при испытаниях только одно событие произойдет обязательно (алгоритм).

Примеры стохастических моделей.

Модели для прогнозирования изменений состояния автотр. предприятия .

Литература: , .

3. Имитационное моделирование

Понятие имитационного моделирования.

Суть ИМ – компьютерный эксперимент – исследования свойств объекта путем экспериментирования с его компьютерной моделью.

Актуальность имитационного моделирования.

1)моделирование сложных систем (когда аналитически использовать объект невозможно)

2)моделирование действия случайных факторов (необходимо многократное повторение)

3)отсутствие математической модели (при исследовании неизвестных явлений).

4)необходимость получения результатов к определенному сроку (скорее всего самая главная причина)

Примеры задач имитационного моделирования: модели систем массового обслуживания, модели случайных событий, клеточные автоматы, модели сложных систем и т.д.

1. Модели систем массового обслуживания

Схема СМО

Цель СМО : определение оптимальных параметров системы

Пример: очередь в супермаркете

На обслуживание могут поступать заявки с более высоким приоритетом. Пример: бензоколонка (скорая, полиция).

2. Модели случайных событий

Случайным называют событие, которое в результате испытания может наступить, а может и не наступить. Исчерпывающей характеристикой случайного события является вероятность его наступления. Примеры: объемы выпускаемой продукции предприятием каждый день; котировки валют в обменных пунктах; интервал времени до появления очередного клиента, длительность проведения технического обслуживания автомобиля.

3. Клеточные автоматы

Клеточный автомат – система, представляющая собой совокупность одинаковых клеток. Все клетки образуют, так называемую, решетку клеточного автомата. Каждая клетка является конечным автоматом, состояния которого определяются состояниями соседних клеток и ее собственным состоянием. Впервые, идея таких автоматов отмечена в работах Неймана в 1940-х годах.

Пример: игра «Жизнь». Была в 1970 году Джоном Конвэем.

Моделирование – построение моделей для исследования и изучения объектов, процессов, явлений.

стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

один подход к классификации математических моделей подразделяет их на детерминированные истохастические (вероятностные). В детерминированных моделях входные параметры поддаются измерению однозначно и с любой степенью точности, т.е. являются детерминированными величинами. Соответственно, процесс эволюции такой системы детерминирован. В стохастических моделях значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются стохастическими; соответственно, случайным будет и процесс эволюции системы. При этом, выходные параметры стохастической модели могут быть как величинами вероятностными, так и однозначно определяемыми.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

    детерминированные,

    стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

Типовые схемы. Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в области системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы.

В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени, конечные автоматы и конечно-разностные схемы.

В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем – системы массового обслуживания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех процессов, происходящих в больших системах. Для таких систем в ряде случаев более перспективным является применение агрегативных моделей. Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы:

    непрерывно-детерминированный (например, дифференциальные уравнения);

    дискретно-детерминированный (конечные автоматы);

    дискретно-стохастический (вероятностные автоматы);

    непрерывно-стохастический (системы массового обслуживания);

    обобщенный, или универсальный (агрегативные системы).

20. Модель популяции .

Модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию о нем. Рассмотрим примеры динамических систем - модели популяций. Популя­ция (от лат.populatio- население) - термин, используемый в различных разделах биологии, а также в генетике, демографии и медицине.

Популяция - это человеческое, животное или растительное население неко­торой местности, способной к более-менее устойчивому самовоспроизводству, относительно обособленное (обычно географически) от других групп.

Описание популяций, а также происходящих в них и с ними процессов, воз­можно путем создания и исследования динамических моделей.

Пример 1. Модель Мальтуса.

Скорость роста пропорциональна текущему размеру популяции. Она описы­вается дифференциальным уравнением х = ах , где α - некоторый параметр, оп­ределяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функцияx(t) = х 0 е*.

Если рождаемость превосходит смертность (α > 0), размер популяция не­ограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объема популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может слу­жить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста:

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к рав­новесному значению

Пример 2. Модель «хищник - жертва».

Модель взаимодействия «хищник - жертва» независимо предложили в 1925 - 1927 гг. Лотка и Вольтерра. Два дифференциальных уравнения модели­руют временную динамику численности двух биологических популяций жертвы и хищника. Предполагается, что жертвы размножаются с постоянной скоростью а их численность убывает вследствие поедания хищниками. Хищники же размно­жаются со скоростью, пропорциональной количеству пищи и умирают естествен­ным образом.

Допустим, что на некоторой территории обитают два вида животных: кро­лики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов -х, число лис -у. Используя модель Мальтуса с необходимыми поправ­ками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Вольтерра - Лотки:

х =(α -су)х;

Эта система имеет равновесное состояние, когда число кроликов и лис по­стоянно. Отклонение от этого состояния приводит к колебаниям численности кро­ликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в слу­чае гармонического осциллятора, это поведение не является структурно устойчи­вым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания числен­ности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов.

В последних главах настоящей книги стохастические процессы почти всегда представляются с использованием линейных дифференциальных систем, возбуждаемых белым шумом. Это представление стохастического процесса обычно имеет следующую форму. Предположим, что

а - белый шум. Выбирая такое представление стохастического процесса V, его можно моделировать. Использоваййе таких моделей может быть обосновано следующим образом.

а) В природе часто встречаются стохастические явления, связанные с воздействием быстро меняющихся флуктуаций на инерционную дифференциальную систему. Типичным примером белого шума, действующего на дифференциальную систему, является тепловой шум в электронной цепи.

б) Как будет видно из дальнейшего, в линейной теории управления почти всегда рассматриваются только среднее значение и. ковариация Стохастического процесса. Для линейной модели ксегда можно аппроксимировать любые полученные экспериментально характеристики среднего значения и ковариационной матрицы с произвольной точностью.

в) Иногда возникает задача моделирования стационарного стохастического процесса с известной спектральной плотностью энергии. В этом случае всегда имеется возможность генерировать стохастический процесс как процесс на выходе линейной дифференциальной системы; при этом матрица спектральных плотностей анергии аппроксимирует с произвольной точностью матрицу спектральных плотностей энергии исходного стохастического процесса.

Примеры 1.36 и 1.37, так же как и задача 1.11, иллюстрируют метод моделирования.

Пример 1.36. Дифференциальная система первого порядка

Предположим, что измеренная ковариационная функция стохастического скалярного процесса о котором известно, что он является стационарным, описывается экспоненциальной функцией

Этот процесс можно моделировать при как состояние дифференциальной системы первого порядка (см. пример 1.35)

где - белый шум интейсивности - стохастическая величина с нулевым средним и дисперсией .

Пример 1.37. Смесительный бак

Рассмотрим смесительный бак из примера 1.31 (разд. 1.10.3) и вычислим для него матрицу дисперсий выходной переменной примере 1.31 предполагалось, что флуктуации концентраций в потоках описываются экспоненциально коррелированными шумами и, таким образом, могут быть смоделированы как решение системы первого порядка, возбуждаемой белым шумом. Добавим теперь к дифференциальному уравнению смесительного бака уравнения моделей стохастических процессов Получим

Здесь - скалярный белый шум интенсивности чтобы

получить дисперсию процесса равной примем Для процесса используем аналогичную модель. Таким образом, получим систему уравнений