Момент нужно передать на большое расстояние. На какие расстояния эффективно передавать электроэнергию? Передача данных на большое расстояние

Бывают ситуации, когда нужно подключить камеру видеонаблюдения на большое расстояние. Передача цифрового сигнала для ip-камер, как правило происходит по неэкранированной витой паре. Он состоит из одного или нескольких пар медных проводников в цветной изоляции. Если говорить про провод, то он стандартный, сетевой пятой категории UTP, в народе «витая пара».

Витая пара подключается к сетевому интерфейсу c разъемом rj45. Один конец подключается к камере, другой к оборудованию, роутеру или коммутатору.

Как же подключить ip-камеру на большое расстояние?

Дело в том, что у неэкранированной витой пары, есть ограничение — расстояние в сто метров, cогласно стандарту IEEE 802.3u, то есть длина кабеля не должна превышать 100 м.

Это связано прежде всего с тем, что в этом отрезке провода корректно работает half duplex (определение коллизий) принятый для сетей Ethernet на основе витой пары. Здесь нужно немного погрузиться в теорию, а именно модели взаимодействия OSI. Кадры перемещаются со скоростью света. Если длина будет больше 100 м, то они не успеют достичь конца провода. Пакеты будут теряться.

Способы преодоления расстояния 100 метров

Выделим способы преодоления расстояния 100 метров:

    • При подключении ip-камеры использовать более качественную витую пару, а именно UTP без меди, это позволит увеличить длину до 150 м;
    • Использовать специальный коммутатор с увеличенной дальностью связи. До 250 м. Обычно такие устройства используются для ip-видеонаблюдения.
  1. падение пропускной способности до 10 Мбит/c;
  2. не соответствует стандарту IEEE;
  3. зависимость от вендора оборудования. IP камеры и свитч должны быть одного производителя.
  1. простейший способ увеличить дистанцию;
  2. не требует разрывать линию;
  3. передача данных и питание.

  1. к каждому устройству требует подведения питания:
  2. требует разрывать линию.
  1. простая и понятная схема;
  2. сохранения пропускной способности;
  3. передача данных и питания.

Медиаконвертер — это устройство, передает информацию из одной среды в другую. Позволяет соединять оптиволоконные соединения.

Медиаконверторы их еще называют преобразователей среды можно разделить на два вида:



Смотрим видео подключение ip-камеры на дистанции свыше ста метров.

30.07.2018, 22:05

Мальцев Владимир Владимирович, ведущий инженер поддержки проектировщиков компании «Видеомакс»

Вопрос, которому посвящена статья, регулярно возникает при проектировании линий связи для систем IP-видеонаблюдения. Особенно он актуален при подключении уличных IP-камер.

Сразу уточним, что речь идет не просто о каких-то расстояниях между оборудованием, а о конкретной задаче подключения IP-камеры к порту коммутатора при удалении ее свыше 100 м.

Вопрос о максимальном расстоянии такого подключения возникает при проектировании уличного видеонаблюдения, когда требуется разместить камеры на фасадах зданий, вдоль периметра и т.д. Размеры объектов и, соответственно, расстояния от серверного оборудования до камер могут достигать нескольких км - максимальная же длина «медной» линии связи не может быть более 100 м. Естественно, встает вопрос - как спроектировать подключение к камере, удаленной от коммутатора более чем на 100 м?

Существует немало способов решения это задачи. Далее мы рассмотрим их по порядку, постараемся выявить «плюсы» и «минусы» и попробовать очертить границы применимости. Еще раз уточним, что мы говорим не о построении какого-то фрагмента локальной сети, а конкретно о соединении IP-камер с коммутатором.

Экскурс в историю

Откуда вообще взялись эти пресловутые «100 метров»? Дело в том, что все существующие на сегодняшний день IP-камеры могут работать только в сетях стандарта Ethernet. В частности, порты подключения IP-камер поддерживают на канальном уровне модели OSI стандарты IEEE 802.3i (10Base-Т) и IEEE 802.3u (100Base-Т/100Base-ТХ). И, согласно спецификациям этих стандартов, максимальная длина одной линии - кабеля между двумя активными устройствами - не должна превышать 100 м (включая патч-корды). Это объясняется, прежде всего, разного рода неизбежными ухудшениями сигнала, возрастающими по мере увеличения длины кабеля: затухание сигнала в кабеле, перекрестные наводки, внешние наводки, фазовые дрожания и т.д. Ну а теперь давайте представим себя на месте проектировщика, вычерчивающего очередную линию от коммутатора до IP-камеры и обнаружившего, что расстояние по старому доброму «медному» Ethernet-кабелю превышает 100 м. И что теперь с этим делать?

Подключение с нарушением стандарта

А почему бы и нет? Найдется немало монтажников, которые расскажут о подключении камеры кабелем на 100, 120, 150 и т.д. метров, после чего «все нормально было». И, в общем, ничего удивительного в этом нет - характеристики любого серийно выпускаемого оборудования колеблются в некоторых, разрешенных стандартами и ТУ производителя допусках и при счастливом стечении обстоятельств могут «приподнять» электрические параметры получившейся линии связи. Ограничение в 100 м вообще-то является довольно искусственным - с точки зрения теории ничто не мешает идеально изготовленному оборудованию (камера, коммутатор, кабели) работать на длине кабеля в несколько сотен метров. Но тут нужно понимать, что примеры такой «нормальной» работы - не более чем случайность. И при возникновении любых проблем первое, на что укажут вендоры или аудиторы - несоблюдение стандартов.

Так что такой вариант годен для обсуждения в «курилках», для домашних экспериментов, но не более того.

«Дальнобойные» коммутаторы

Вариант одновременно и простой, и не очень. Простота заключается в том, что у производителя IP-камер могут быть в ассортименте коммутаторы, у которых заявлено подключение камер по кабелям длиною более 100 м (рис. 1).


Рис. 1. Коммутатор с расширенной дальностью подключения

И получается, что в проект достаточно заложить соответствующие коммутаторы и камеры, после чего вопрос с расстоянием считать решенным. Преимущество налицо:

  • увеличение дальности до 250 м.

Недостатки же в том, что:

Обращаем внимание: увеличение длины линии свыше 100 м не является каким-то новым стандартом или новой технологией! Нередко это всего лишь результат опыта по подключению оборудования высококачественным кабелем при ограничении скорости в 10 Мбит/с (напомним, что изначально 10BASE-T разрабатывался для кабеля т.н. 3 категории - Cat.3).

В результате имеем весьма узкую область применения таких изделий: с камерами либо небольшой разрешающей способности (порядка 1 Мпикс), либо невысокой скорости передачи видео (1–2 к/с). Что ж, может быть, кому-то достаточно и этого. И если поставщик гарантирует работоспособность такого варианта и готов помогать с настройкой и эксплуатацией, то можно применить для задач наблюдения со «скромными» требованиями к изображению.

«Станции пересадки» (промежуточные коммутаторы)

Идея проста: если нельзя использовать один длинный кабель, то используем несколько коротких, соединенных через промежуточные коммутаторы. В таких случаях иногда используют термин «цепочка».

Перечислим преимущества и недостатки. Начнем с преимуществ:

  • пропускная способность не зависит от расстояния;
  • допустимо большое количество промежуточных коммутаторов.

И недостатки такого подхода:

  • требуется организовать питание каждого из промежуточных коммутаторов;
  • требуется место для установки каждого промежуточного коммутатора (что не всегда возможно);
  • увеличивается стоимость решения пропорционально количеству дополнительных коммутаторов, необходимых для формирования линии связи;
  • ухудшается надежность системы - любое активное оборудование имеет свойство время от времени выходить из строя.

Да, таким образом действительно можно обеспечить надежную передачу данных, но придется потратиться на дополнительные коммутаторы, их установку, подведение питания к каждому из них и пр. Это наглядно видно из рисунка 2. Такой вариант может быть применим в небольших системах видеонаблюдения, с небольшим трафиком, при условии, что уже есть места, где можно расположить коммутаторы и без особых усилий подать на них питание. И если в помещении чаще всего нет сложностей с подводом питания, то вне помещений это может стать большой проблемой. Специально рекомендовать вариант с промежуточными коммутаторами мы не станем, т.к. есть более удобное, более простое, ну и более красивое решение, о котором идет речь дальше.



Рис. 2. Подключение IP-камеры через промежуточные коммутаторы

«Удлинители» (экстендеры)

Можно сказать, что это предыдущий вариант, оптимизированный и предназначенный для подключения одного достаточно далеко расположенного устройства. Экстендер (от англ. «extender»), по сути, является этаким сильно упрощенным коммутатором - только с одним входом и одним выходом (рис. 3). Питание может требоваться от внешнего источника питания (т.е. к месту установки экстендера нужно подводить линию питания), но большинство экстендеров работают по PoE. Фактически использование экстендеров с внешним питанием ничем не отличается от варианта с промежуточными коммутаторами - и далее говорим только об экстендерах, питающихся по PoE.

Заметим, что экстендеры можно подключать друг за другом (рис. 4). Как и коммутаторы.

Как видно из рисунков 4 и 5, экстендер размещается не реже чем через каждые 100 м «медного» Ethernet (причины этого - в начале статьи): проектировщику достаточно выбрать место установки и герметичную коробку для размещения экстендера внутри (в случае уличной установки).



Рис. 3. Подключение IP-камеры через экстендер



Рис. 4. Подключение IP-камеры через несколько экстендеров



Рис. 5. Увеличение длины линии на специализированном оборудовании (правый столбец)

В итоге имеем неоспоримые «плюсы»:

  • увеличение расстояния без потери пропускной способности;
  • передача не только данных, но и питания;
  • простота подключения и использования.

«Минусы» такого решения тоже есть:

  • использование части передаваемой по PoE энергии для питания самого экстендера. Камера требует 15 Ватт? Значит, коммутатор должен отдавать все 30, т.к. часть заберет экстендер;
  • количество экстендеров в «цепочке» ограничено отдаваемой на порт по PoE мощностью, потреблением питания экстендерами и требованиями к питанию со стороны камеры.

Соотнесение потребляемой мощности камеры и экстендеров в данном варианте подключения является ключевым вопросом для проектировщиков.

Обратим внимание, что некоторые IP-камеры (большей частью - поворотные управляемые) потребляют мощность до 60 Ватт, т.е. максимум, что могут отдавать современные PoE-коммутаторы и PoE-инжекторы. Использовать экстендеры с такими камерами невозможно.

Ряд производителей IP-камер имеют в линейке не только экстендеры, но и PoE-инжекторы, специально спроектированные выдавать в линию PoE с «запасом» для возможного подключения экстендера (рис. 5). Это может помочь в случаях, когда мощность стандартного PoE-коммутатора или инжектора недостаточна для питания и камеры, и экстендера.

В общем, неплохой вариант для не самых «прожорливых» камер в случае, когда дальность линии ненамного превышает границу в 100 м - и его смело можно рекомендовать к применению.

Приемники- передатчики, преобразователи, модуляторы, …

Такого рода оборудование начало применяться еще в эпоху господства аналогового видеонаблюдения. Специалисты помнят надежные и недорогие преобразователи коаксиала в витую пару. В наши дни производители переориентировались на IP-технологии, Ethernet и PoE, общий же подход остался прежним… Итак, берется пара устройств - передатчик и приемник. Передатчик ставится рядом с камерой, приемник - рядом с коммутатором. Линия связи между передатчиком и приемником может быть как «витая пара», так и коаксиальный кабель (рис. 6).



Рис. 6. Подключение IP-камеры через приемник и передатчик с поддержкой PoE

Отдельные модели приемников-передатчиков поддерживают питание по PoE и передачу питания на камеру. Именно такие устройства нас интересуют для систем видеонаблюдения

Существует немало оборудования такого рода: с разной максимальной дальностью, для разного типа кабеля и т.д. Наиболее широко декларируемое применение - это использование существующей кабельной инфраструктуры в случае замены аналоговой системы видеонаблюдения на IP, т.к. может использовать уже проложенные аналоговые кабели. Но на практике же состояние уже имеющихся кабелей не позволяет применять такого типа приемники-передатчики: за годы эксплуатации в кабелях могут появиться внутренние изломы, может нарушиться изоляция, да и сам кабель изначально может не отвечать как требуемым (со стороны приемников-передатчиков), так и заявленным электрическим характеристикам (быть бракованным, проще говоря). Так что считаем, что линию все равно надо прокладывать заново и переходим к «плюсам» и «минусам».

Преимущества такого способа:

  • возможность использования имеющейся кабельной структуры;
  • меньшее (по сравнению с экстендерами) потребление передаваемой по PoE мощности;
  • реально использовать кабель длиной в несколько сотен метров;
  • передача как сигнала, так и питания.

Недостатков, к сожалению, тоже хватает:

  • несовместимость между собой устройств разных марок в паре «приемник - передатчик» (нет единых стандартов);
  • пропускная способность зависит от расстояния;
  • максимальная передаваемая мощность питания зависит от расстояния.

И еще один момент, который является следствием большой длины кабеля, - влияние помех, наводок, статического электричества гораздо более ощутимо, чем при разделении линии на 100-метровые сегменты. Как минимум, стоит задуматься о защищенности линии связи.

Обращаем внимание: большинство производителей комплектов «приемник и передатчик» настоятельно рекомендуют дополнительно устанавливать устройства грозозащиты, специально разработанные для работы с такими комплектами (подробнее о грозозащите - в статье «Грозозащита Ethernet для IP-видеонаблюдения» на нашем сайте).

В итоге мы имеем вариант, который действительно позволяет преодолеть 100-метровое ограничение и может быть рекомендован в случаях, когда оборудования можно установить только непосредственно рядом с коммутатором и IP-камерой (и невозможно установить где-то «на линии»). Однако проектировщику обязательно нужно будет уточнить пропускную способность и передаваемую приемо-передатчиками мощность на камеру (PoE) для каждого конкретного случая применения - для конкретной длины кабеля.

В принципе, на этом «медную» часть статьи можно и закончить. Да! Мы не рассказали про передачу через RS-422/RS-485, про использование SHDSL- и VDSL-оборудования, про передачу данных по силовым линиям и прочую экзотику, так как считаем, что принципиально такие виды связи мало чем отличаются от использования комплектов «приемник-передатчик». Ну, разве что применением стандартизированных протоколов, что позволяет не привязываться к конкретной марке оборудования, уменьшить влияние помех и зависимость от качества кабельной инфраструктуры.

Казалось бы - раз есть проблемы с «медью», так переходи на другие среды! Наиболее очевидными решениями будут «оптика» и «радиоканал».

Оптические линии связи

Этот способ пользуется все большей популярностью. Оборудование, работающее с оптическими линиями связи, может обеспечить длину линии связи в несколько десятков километров! Способ же построения линии связи показан на рисунке 7.



Рис. 7. Подключение IP-камеры по оптоволокну

Наверняка сразу вспоминается вариант с приемниками/передатчиками по «меди». Да, медиаконвертер можно считать разновидностью таких устройств. Вместо медиаконвертера можно использовать коммутатор с SFP-модулем, и даже найти камеру с возможностью установки SFP-модуля и подключать «оптику» напрямую.

Преимущества очевидны:

  • высокая пропуская способность, не зависящая от расстояния;
  • нечувствителен к помехам и наводкам от электромагнитного воздействия;
  • огромный ассортимент оборудования, кабельной продукции и аксессуаров.

Недостатки тоже есть, однако их критичность снижается со временем в связи с широким распространением оптоволоконных технологий:

  • требуется специализированное оборудование для монтажа и тестирования;
  • требуется более высокий уровень квалификации проектировщика и инсталлятора;
  • невозможно передать питание.

На ценовую сторону вопроса, думаем, можно не обращать особого внимания. Да, сами по себе кабели дороже «медных», но итоговая стоимость «оптической» системы может быть даже ниже стоимости системы, построенной целиком на «меди» (с учетом стоимости экстендеров, передатчиков, промежуточных коммутаторов и аксессуаров к ним), особенно если сравнивать линии одинаковой пропускной способности.

Радиоканал

Помимо сопоставимой с «оптикой» дальностью этот вариант обладает еще одним преимуществом - для передачи сигнала вообще никакие кабели не нужны (рис. 8). Нередко, кстати, радиоканальный вариант является единственным, безальтернативным вариантом. Пропускная способность при этом составляет от 11 до 54 Мбит/с, что вполне позволяет пропустить «живое» мегапиксельное видео.



Рис. 8. Подключение IP-камеры по радиоканалу

Перейдем к преимуществам и недостаткам.

Итак, преимущества:

  • длина линии до нескольких десятков километров;
  • оборудование стандартизировано;
  • не требуется прокладка магистрального кабеля.

И, соответственно, недостатки:

  • требуется прямая видимость между антеннами;
  • пропускная способность ниже, чем у «медного» Ethernet;
  • высокая чувствительность к помехам и наличию других сетей радиосвязи (работающих в этом же диапазоне).

Как видим, задача построения длинной линии связи с камерой, отстоящей от коммутатора на большом расстоянии, может успешно решаться разными способами. Какой же способ выбрать? Думаем, что выбор зависит, прежде всего, от требуемой дальности (при этом не забываем про питание камеры и размер потока). Отсюда советы:

1. Если от коммутатора до камеры от 200 до 300 м, то сначала рассмотреть вариант с PoE-экстендерами.

2. Если от коммутатора до камеры расстояние от 300 до 600 м, то начать стоит с поиска подходящей пары приемника и передатчика по «витой паре» или коаксиальному кабелю.

3. Если же расстояние более 600 м, то прежде всего следует изучить вариант с «оптикой».

4. Если кабель вообще невозможно проложить - смотрим радиоканальное оборудование.

И еще раз скажем: всегда! В любом случае! В любом варианте! Обязательно уточнить пропускную способность получающейся линии и (для PoE-оборудования) получение/потребление питания камерой, коммутатором и выбранным оборудованием связи.

    Тушение распыленной водой горючих материалов с произвольным начальным распределением температуры / Совершенствование нормативных правовых актов для оперативного реагирования сил и средств МЧС России на пожары и чрезвычайные ситуации / Оценка целесообразности применения и проблемы создания образцов автономных беспилотных воздушных судов для проведения мониторинга и разведки в зонах ЧС

    С вступлением новых межгосударственных стандартов на приборы пожарные, а потом, как следствие, новых сводов правил, вся практика проектирования изменится. ЗКПС будет точкой отсчета во всей логике работы систем противопожарной защиты. И теперь эти ЗКПС необходимо каким-то образом увязать с зонами противопожарной защиты, к которым относятся зоны оповещения, пожаротушения и/или противодымной вентиляции. Необходимо в своде правил по проектированию предусмотреть обязательность отражения в проектной документации не только алгоритмов этого взаимодействия, но и условия активации исполнительных устройств.

  • Все объекты, подлежащие оснащению системами противопожарной защиты (СПЗ), проходят три стадии: проектирование, реализация (монтажные и пуско-наладочные работы), обслуживание. Есть очень плохой вариант для заказчика - эти три стадии выполняются разными компаниями. Такое бывает очень часто, так как заказчик сам выбирает проектировщика, чтобы быстрее получить спецификации и оценить затраты на СПЗ в том числе. С точки зрения реализации - заказчик выбирает генерального подрядчика, который в свою очередь, выбирает себе подрядчика на СПЗ. Ну а обслуживать это все приходится компании, которая, к примеру, обслуживает данный бизнес-центр. Автор в статье показал основные минусы при данном подходе на всех стадиях: проектирования, монтажа и обслуживания систем СПЗ. И дал свои рекомендации.

И вспомогательные аксессуары. Не стоит забывать о проводах, по которым передается сигнал. Обычно в дешевых наборах ими являются . Для работы с видео материалами такой тип провода подходит идеально. Объясняется это тем, что сигнал при его эксплуатации не рассеивается из-за специфического сечения в виде экранированной обмотки. В результате потерь в качестве передаваемой картинки не бывает вообще.

Для небольших объектов такие системы полностью подходят, ведь стоят они сравнительно дешево и предоставляют хорошую функциональность. Но при увеличении масштабов объекта возникают серьезные проблемы. В первую очередь речь идет о процессе передачи сигнала, ведь при расстоянии более 200 метров стандартное оборудование перестает быть эффективным. На помощь приходят специфические устройства, такие как передатчики, приемники, усилители и видеотрансмиттеры.

Передача данных на большое расстояние

Когда расстояние переваливает за 120 метров обычный коаксиальный кабель уже не подходит , поэтому на смену ему приходит . Посредством такого типа провода можно беспрепятственно осуществлять передачу информации, в том числе видеофайлов. Витая пара подойдет и для онлайн трансляции происходящего , а значит, с ее помощью можно создать полноценную систему безопасности.

Ярким преимуществом такого типа кабеля также является низкая стоимость его прокладки. Как показывает практика, установка коаксиального провода на большие расстояния очень дорого обходится, а с витой парой проблем данного рода не возникает. Некоторые люди убеждены, что идеальным вариантом является отладка связи посредством радиоканала. Этот метод действительно хорош, ведь он не требует вообще никаких коммуникационных сетей, но люди забывают о том, что максимальная дальность передачи информации в таких системах не превышает 100 метров. И то цифра указана с учетом установки антенн повышенной мощности.


Рис.2 Коаксиальный кабель F690Bx0.75 power

Типы приемо-передатчиков сигнала

Как мы уже поняли, работоспособность на большом расстоянии напрямую зависит от приемо-передатчиков сигнала. Основная их классификация сводится к активности или пассивности функционирования. Мощность, дальность передачи и другие характеристики отходят на второй план.

Пассивные приемо-передатчики считаются простым и дешевым оборудованием. Они устанавливаются в цепи как рез между камерой и монитором, на который выводится картинка. Если длина кабеля превышает 200-250 метров, эффективность использования пассивных устройств начинает резко падать. Объясняется это снижением амплитуды сигнала по мере его прохождения по проводу. Соответственно возникает необходимость в усилителях, которые и называются активными. Кстати, техника подобного типа строго разделяется на приемную и передающую.

Активные устройства делают возможной передачу видеоматериалов на расстояние 2000 метров и больше. Также бывают системы, в которых принимает сигнал пассивное оборудование, а передает активное. Дальность функционирования их не превышает 1000 метров, но для большинства задача этого хватает. Смысл такого тандема сводится к удешевлению техники и прокладки проводов.

Активная аппаратура имеет ряд преимуществ в сравнении с пассивной. Среди них стоит выделить отличную помехоустойчивость, возможность использования оптоволоконного кабеля, высококачественных аналоговых видеокамер, защита от скачков напряжения, быстрая настройка, возможность со временем перейти на прогрессивную IP-систему.


Рис.3 Кабель витая пара UTP 5e

Характеристики передатчиков

Передатчики имеют ряд характеристик, определяющих возможности их применения. В первую очередь это количество поддерживаемых каналов . Стандартные устройства пропускают только один видео и один аудио сигнал. В то же время есть модели, которые поддерживают до четырех и больше каналов. Если по периметру объекта расположено много камер, то подобное оборудование становится действительно полезным.

Для многих определяющим фактором выбора техники будет дальность передачи информации . Большинство современных устройств смогут обеспечить нормальное функционирование системы на расстоянии до 2500 метров, но при условии отсутствия помех. Кстати, всегда стоит обращать внимание на зависимость качества сигнала от дальности его передачи. Некоторые производители амбициозно указывают заоблачные цифры в документации к аппарату, забывая сказать, что разобрать что-либо на экране монитора при этом будет невозможно.

Остальные характеристики уже не столь важны, хотя, конечно, возможность подключения к квадратору или DVR лишней не будет. Также полезна регулировка уровня передачи. Если оборудование будет использоваться на улице, с особым вниманием нужно изучить допустимые температуры и влажность, при которых передатчик будет нормально работать. Не лишней будет возможность настройки яркости и резкости. Габаритные размеры особой роли не играют.

Выводы

Передача видеосигнала на большие расстояния вполне реальна. Для этого потребуется сменить коаксиальный кабель на витую пару, а также внедрить в систему приемо-передатчики. Эти небольшие и сравнительно недорогие устройства позволят транслировать сигнал на расстояние до 2500 метров. Самому осуществить прокладку таких цепей может быть трудно, поэтому лучше обратиться за помощью к специалистам. После этого контроль периметра даже особо крупных объектов не будет проблемой.

Однако если требуется передать wifi на 500 метров, 1 или несколько километров - тут уж подручными средствами, нужна серьезная беспроводная сеть в профессиональной среде именуемая «точка-точка».

Передача wifi на большие расстояния: топология беспроводной сети и основные моменты

Существует два основных типа топологии беспроводной сети:

  • Точка – точка (PtP)
  • Точка – многоточка (PtMP)
  • На рисунке зеленым цветом изображен тип соединения точка-точка (PtP).
  • Голубым цветом обозначены соединения типа точка-многоточка (PtMP).

Мы более подробно разберем настройку PtP варианта и оборудования, которое используется в таком случае.

Рассмотрим два варианта настройки беспроводного соединения на большом расстоянии.

Вариант 1 - настройка беспроводного моста на расстояние 1 - 3 км

Вариант 2 - настройка беспроводного моста на расстояние 10 км и более

Зачем делить, а не объединить в общую тему? Все просто – тип, стоимость и интерфейсы оборудования отличаются существенно. Если расстояние, на которое вам нужно передать трафик до 1 км – нет смысла брать оборудование на 10 км и переплачивать за него.

Перед настройкой Wi-Fi моста хочется обратить внимание на то, что между точкой «А» (где находится антенна передатчик) и точкой «Б» (где находится антенна приемник) обязательно должна быть прямая видимость! Кроме того, должны соблюдаться некие требования для зоны Френеля. Что такое зона Френеля?

Представим себе воображаемую прямую цилиндрическую трубу (на рисунке закрашено серым), в центрах отверстий которой с обеих сторон установлены антенна «А» и антенна «Б». Внутреннее пространство трубы - это и есть зона Френеля. Для хорошего сигнала и стабильного соединения в этой «трубе» не должно быть никаких сторонних объектов, таких как: дома, деревья, линии электропередач и прочие сооружения.

Радиус зоны Френеля (параметр R на картинке) зависит от расстояния между антеннами (параметр S+D на картинке) и радиочастоты на которой они работают (в основном используется оборудование 2,4 ГГц и 5 ГГц диапазонов). Чем больше расстояние, тем больше радиус. Рассчитывается зона Френеля по формуле:

  • R – Радиус зоны Френеля, м
  • S и D – Расстояние от антенн до наивысшей точки, препятствия, км
  • f – Частота, ГГц

Но не пугайтесь. Существует масса интернет ресурсов, где эти расчёты автоматизированы, стоит ввести в любом поисковике запрос - онлайн калькулятор зоны Френеля и вы попадете на страничку, где только нужно будет ввести расстояние между пунктами «А» и «Б», а также частоту, на которой работает оборудование, нажать кнопку расчёт и калькулятор выдаст вам готовый результат.

Много текста? Переходим к практике.

Как передать wifi на расстоянии 1 км?

Вариант 1: радиомост на 1 - 7 км.

Для постройки моста нам понадобятся две самые простые беспроводные точки доступа. Хорошим вариантом будет TP-Link TL-WA5110G. Чем она так примечательна? Мощность передатчика у данной модели точки доступа (далее ТД) составляет 26 dBm, которая в разы превышает мощность любой другой ТД для домашнего использования. Оборудование снято с производства, но, если удастся найти рабочий б/у экземпляр – смело покупайте.

Для радиомоста нам понадобятся 2 ТД. Одну настраиваем как обычную точку доступа, а другую как клиент.

Пример настроек ТД передатчика

  • SSID. Название сети устанавливаем по желанию, можно не менять стандартное
  • Region. Регион особой роли не играет
  • Channel. Канал желательно выбирать от 6 и выше, так на «высоких» каналах d 2,4 ГГц эфир менее зашумлен
  • Power. Мощность передатчика для начала устанавливаем на максимум, т. е. 26 dBm и ставим галочку Enable High Power Mode.
  • Mode. Режим устанавливаем 54Mbps (802.11g), так как другой в списке имеет меньшую пропускную способность.

Пример настроек ТД приемника

Переводим ТД в режим клиента.

SSID прописываем то же что и на первом устройстве (можно так же нажать на кнопку Survey внизу страницы, там увидим список доступных для подключения устройств и нажимаем Connect).

Не забываем установить разные IP адреса на обеих ТД (Раздел Network)!

С штатными антеннами устройства уверенно соединяются на расстоянии 1 км по прямой видимости.

Если заменить штатную круговую антенну на направленную (см. рисунок ниже) – можно существенно увеличить дальность связи.

Но в этом случае придется применить переходник (пигтейл) c разъема N-type на RP-SMA, который установлен в ТД.

В такой комплектации с обеих сторон, точки покажут стабильную работу на расстоянии 7 км.

Минус этого варианта только один – в случае, если эфир сильно зашумлен, то антенна будет улавливать и усиливать все помехи в округе, что негативно скажется на качестве канала, возможны потери пакетов, а то и вовсе обрывы связи, но можно поэкспериментировать с другими антеннами, у которых диаграмма направленности имеет более узкий луч и меньше «боковых лепестков».

Возможно так же использование конструкции на открытом воздухе, но нужно саму ТД поместить в герметический бокс. Пигтейл можно вывести через кабельный ввод, уплотнив отверстие сырой резиной или морозостойким силиконом.

Итог по комплекту «Вариант 1»

Конфигурация вполне работоспособная и имеет право на жизнь. Дешевизна компонентов (б/у вариант) позволяет отдать предпочтение именно ему, если к беспроводному мосту не предъявлено повышенных требований стабильности и пропускная способность в 8-12 Мбит/с устраивает. Полный такой б/у комплект оборудования для обеих сторон можно приобрести примерно за 50$. Особенно оправдано использование, когда некоторые компоненты уже есть в наличии или достались бесплатно. С внешними антеннами можно использовать не только TP-Link TL-WA5110G, а любые точки доступа со съемной внешней антенной и подходящим коннектором.

Из минусов – сложность монтажа и компоновки неподготовленному пользователю. Несколько разъёмных соединений, качество которых может существенно повлиять на уровень сигнала.

Как передать WiFi на 5 км. и более?

Вариант 2. Переходим к «тяжелой артиллерии»

Если вам нужен варианте посерьезней – следующая часть статьи именно для вас.

Компания Ubiquiti широко известна своей продукцией для постройки беспроводных соединений. Так же бренд выпускает оборудования для «умных» домов, камеры видеонаблюдения и многое другое, но первым что приходит на ум, когда слышишь Ubiquiti – это несомненно Wi-Fi оборудование.

Не будем рассказывать о всей линейке оборудования, а выберем лишь то что нам нужно.

Краткое описание оборудования

Строить мост будем на оборудовании NanoBrige M5 или NanoBeam M5.

  • NanoBrige M5 снят с производства, но его все еще можно найти у некоторых дилеров, а б/у варианта вообще полным полно.
  • NanoBeam M5 – это новая разработка, она схожа с предыдущей моделью, но в ней уже совсем другая начинка. Более быстрый процессор Atheros MIPS 74KC, больше оперативной памяти, теперь на борту уже 64 МБ ОЗУ. Коэффициент усиления внешней антенны увеличился. Форма излучателя изменилась. Так же в лучшую сторону изменилась сама конструкция. Монтаж производится еще проще и быстрее.

Оба девайса позиционируются дистрибьюторами как оборудование для расстояний на 5 км, но на практике запускались линки на 20 км и более с очень хорошими показателями стабильности и пропускной способностью на таком расстоянии свыше 120 Мбит/с по Wi-Fi.

Ниже представлены сами антенны для передачи wifi на большие расстояния.

Перейдем к настройке

Настроив сетевой интерфейс вашего ПК, ноутбука под сеть 192.168.1.0/24 и подключив оборудование по следующей схеме – можем приступать к настройке.

Если у вас оборудование новое, так сказать, «с коробки», то после ввода в адресной строке браузера 192.168.1.20 и нажав переход – мы должны попасть на страницу авторизации, она выглядит следующим образом:

Стандартный логин/пароль для входа ubnt/ubnt

Если по каким-то причинам вы не попадаете на страницу авторизации или стандартные логин/пароль не подходят – скорей всего у вас оборудование, которое было ранее кем-то настроено.

Его можно сбросить к заводским настройкам, нажав на кнопку Reset, которая находится на излучателе, возле разъема RJ-45

Здесь отображается вся основная информация о состоянии устройства.

Все нужные нам настройки находится на вкладках WIRELESS и NETWORK.

Настройка антенны в режим AP

На картинке отмечены важные пункты, которые необходимо настроить.

Коротко описание выделенных пунктов:

  • Wireless Mode – Режим работы. Выбираем в каком режиме работает устройство
  • Access Point – точка доступа (раздающая Wi-Fi)
  • Station – устройство, которое будет подключаться к Access Point
  • SSID – Название беспроводной сети. Будет отображаться при поиске сети
  • Channel Width – Ширина канала. Чем больше значение – тем больше пропускная способность, но тем ниже стабильность канала. Если расстояние небольшое и зона Френеля чистая – смело ставим 40 MHz
  • Frequency, MHz – Рабочая частота. Выбираем внимательно, так как при выборе частоты, которая занята другим устройством, находящимся в поле радио видимости – будем наблюдать ухудшение качества сигнала.
  • Output Power – Исходящая мощность. При расстоянии между AP и Client 10 км или менее – рекомендуется понизить мощность передатчика до 19 – 20 dBm
  • Security – Безопасность. Точно так же как и в настройках роутера – парольная защита беспроводного соединения. Может незначительно влиять на производительность сети, но рекомендуется включать, желательно WPA2-AES режим.

После изменения всех нужных параметров жмем кнопку Change внизу страницы, а после, в появившейся вверху строке, кнопку Apply. Только в таком случае настройки будут изменены!

Настройка антенны в режим Client

Здесь практически все то же самое, только отличается режим работы.

Важный момент! Если в поле Frequency Scan List, MHz поставить галочку и прописать частоту, настроенную на Access Point, соединение будет происходить намного быстрее, так как клиент не будет перебирать все каналы диапазона, а будет сканировать только указанную в скан листе частоту.

Как поймать wifi на большом расстоянии: настройка сети

Переходим на вкладку NETWORK. Тут все предельно понятно.

На что следует обратить внимание на этой вкладке – это пункт Network Mode. Если из выпадающего списка выбрать режим Router – появится возможность поднять DHCP сервер как на беспроводном, так и на проводном интерфейсе. Можно настроить PPPoE соединение, пробросить порты, включить/отключить NAT – то есть стандартный функционал роутера.

Ура! Беспроводный мост настроен

Остается смонтировать антенны на свои места. Излучатели антенн должны смотреть четко друг в друга. Далее дожидаться, пока на вкладке MAIN появится шкала уровня сигнала. Смотрите пункты AirMax Quality и AirMax Capacity чем их значение больше – тем лучше.

Показательными являются параметры Noise Floor и Transmit CCQ.

Noise Floor – Показывает на сколько зашумлен эфир. Чем больше числовое значение с знаком минус – тем меньше помех собирает антенна.

Transmit CCQ – Качество передачи. Значение должно стремиться к 100%. Чем больше – тем лучше.

После юстировки антенн, когда мы добились наилучших показателей, можно пользоваться сетью.

Различные вспомогательные утилиты можно найти в правом верхнем углу интерфейса – это выпадающее меню с названием Tools.

С помощью находящейся там утилиты Speed Test можно протестировать скорость беспроводной линии

Итог по комплекту «Вариант 2»

Вариант бесспорно лучший. Антенны NanoBridge M5 можно смонтировать на трубостойку имея при себе из инструмента только гаечный ключ на 10. В сравнении с Вариантом 1 – намного большая пропускная способность, стабильная связь и помехозащищенный протокол.
Из минусов – тоже один – цена. Две ТД NanoBeam M5 стоят на сегодняшний день порядка 180 -190$. Цена двух б/у NanoBridge M5 – около 100 - 120$

Думайте сами, решайте сами…. Иметь или не иметь….

Процесс передачи электрической энергии уже давно не вызывает у нас удивления. Электричество настолько прочно вошло в нашу жизнь, что представить себе ситуацию, когда его нет, для большинства из нас почти не возможно. За последние десятилетия были проложены миллионы километров проводов. Стоимость работ по вводу их в работу и эксплуатации составляет триллионы рублей. Но зачем строить протяженные ЛЭП, когда можно у каждого потребителя поставить генератор? Есть ли зависимость между длиной ЛЭП и качеством передаваемой электроэнергии? На эти и другие вопросы я и попытаюсь ответить.

Провода и генераторы

Сторонники распределенной генерации полагают, что будущее энергетики состоит в использовании небольших генерирующих устройств каждым потребителем. Можно подумать, что столь привычные нам опоры ЛЭП доживают свои последние деньки. Попробую встать на защиту «старушек» ЛЭП и рассмотреть те плюсы, которые получает энергосистема при строительстве протяженных линий электропередачи.

Во-первых, транспорт электрической энергии напрямую конкурирует с транспортом топлива по железной дороге, нефте- и газопроводам. При их удаленности или отсутствии строительство линий электропередачи является единственным оптимальным решением для энергоснабжения.

Во-вторых, в электротехнике уделяется пристальное внимание резервированию мощности. Согласно правилам проектирования энергосистем, резерв должен обеспечивать работу энергосистемы при потере любого ее элемента. Сейчас этот принцип называется «N-1». Для двух изолированных систем суммарный резерв будет больше, чем для связанных, а меньший резерв — это меньшее количество денег, потраченных на дорогостоящее электрооборудование.

В-третьих, экономия достигается за счет более грамотного управления энергоресурсами. Атомные электростанции, гидроэлектростанции (за исключением малой генерации) по понятным причинам зачастую расположены в отдалении от крупных городов и поселений. Без линий электропередачи «мирный атом» и гидроэлектроэнергия не были бы использованы по их прямому назначению. Разветвленная энергосистема также позволяет оптимизировать загрузку и прочих видов электростанций. Ключ к оптимизации — управление очередью загрузки. Вначале загружаются электростанции с более дешевым производством каждого кВт*ч, затем уже электростанции с более дорогим. Не стоит забывать и о часовых поясах! Когда в Москве пик энергопотребления, в Якутске этот показатель невелик. Отдавая дешевую электроэнергию в разные часовые пояса, мы стабилизируем загрузку генераторов и сводим к минимуму издержки производства электричества.

Не стоит забывать и о конечном потребителе — чем больше у нас возможностей доставить до него электрическую энергию от разных источников, тем меньше вероятность, что когда-нибудь его энергоснабжение прервется.

К минусам построения разветвленной электросети можно отнести: сложное диспетчерское управление, трудную задачу автоматического управления и работы релейной защиты, появление необходимости дополнительного контроля и регулирования частоты передаваемой мощности.

Однако отмеченные недостатки не могут нивелировать положительный эффект от построения разветвленной энергосистемы. Развитие современных систем противоаварийного управления и компьютерных технологий постепенно упрощают процесс диспетчерского управления и увеличивают надежность электросетей.

Постоянный или переменный?

Существует два принципиальных подхода к передаче электроэнергии — использование переменного или постоянного тока. Не вдаваясь в подробности, отметим, что для небольших расстояний гораздо эффективнее использовать переменный ток. Но при передаче электроэнергии на расстояния свыше 300 км практичность использования переменного тока уже не так очевидна.

Связано это в первую очередь с волновыми характеристиками передаваемой электромагнитной волны. Для частоты 50 Гц длина волны составляет примерно 6000 км. Оказывается, что в зависимости от протяженности ЛЭП существуют физические ограничения на передаваемую мощность. Максимум мощности можно передать при длинах ЛЭП порядка 3000 км, что составляет половину длины передаваемой волны. К слову, этот же объем мощности передают по ЛЭП протяженностью в 10 раз меньше. При прочих размерах линий объем мощности может достигать всего лишь половины от данного значения.

В 1968 году в СССР был осуществлен уникальный и пока единственный в мире эксперимент по передаче мощности на расстояние 2858 км. Была собрана искусственно схема передачи, включающая в себя участки Волгоград-Москва-Куйбышев (ныне Самара)-Челябинск-Свердловск (ныне Екатеринбург) на напряжении 500 кВ. Опытным путем были подтверждены теоретические исследования длинных линий.

Из рекордсменов по протяженности можно выделить проложенную в Китае ЛЭП в 2200 км от восточной провинции Хами до города Чженчжоу (столица провинции Хэнань). Стоит отметить, что полный ее ввод в эксплуатацию намечен на 2014 год.

Также не стоит забывать о напряжении линий. Со школы нам знаком закон Джоуля-Ленца P = I? R , который постулирует, что потери электрической энергии зависят от значения электрического тока в проводе и от материала, из которого он изготовлен. Мощность, передаваемая по линиям электропередачи, есть произведение тока на напряжение. Чем выше напряжение, тем меньше ток в проводе и тем самым меньше уровень потерь электроэнергии при передаче. Отсюда следствие: если мы хотим передавать электроэнергию на большие расстояния, необходимо выбирать как можно большее напряжение.

При использовании переменного тока в протяженных ЛЭП возникает ряд технологических проблем. Главная проблема связана с реактивными параметрами линий электропередачи. Емкостное и индуктивное сопротивление проводов оказывают существенное влияние на потери напряжения и мощности при передаче, возникает необходимость поддержания уровня напряжения на должном уровне и компенсации реактивной составляющей, что достаточно ощутимо увеличивает стоимость прокладки километра провода. Высокое напряжение заставляет использовать большее количество гирлянд изоляции, а также накладывает ограничение на сечение провода. Все вместе увеличивает суммарный вес всей конструкции и влечет за собой необходимость использовать более устойчивые и сложные по своей конструкции опоры ЛЭП.

Этих проблем можно избежать, используя линии постоянного тока. Провода, используемые в линиях постоянного тока, дешевле и дольше служат при эксплуатации в связи с отсутствием частичных разрядов в изоляции. Реактивные параметры электропередачи не оказывают существенного влияния на потери. По линиям постоянного тока наиболее эффективно передавать мощность от генераторов, так как возможен выбор оптимальной скорости вращения ротора генератора, что повышает КПД его использования. Минусами использования линий постоянного тока является высокая стоимость выпрямителей, инверторов и различных фильтров для компенсации неизбежно появляющихся высших гармоник при преобразовании переменного тока в постоянный.

Но чем выше длина линии электропередачи, тем эффективнее использовать линии постоянного тока. Существует некоторая критическая длина ЛЭП, которая позволяет оценить целесообразность использования постоянного тока при прочих равных условиях. По данным американских исследователей для кабельных линий эффект ощутим при длинах более 80 км, но величина эта все время уменьшается при развитии технологий и удешевлении необходимых комплектующих.

Самая длинная линия постоянного тока в мире опять же расположена в Китае. Соединяет она ГЭС Сянцзяба (Xiangjiaba Dam) с Шанхаем. Ее длина составляет почти 2000 км при напряжении 800 кВ. Достаточно много линий постоянного тока находится в Европе. В России можно выделить отдельно вставку постоянного тока Выборг, соединяющую Россию и Финляндию, и высоковольтную линию постоянного тока Волгоград-Донбасс протяженностью почти 500 км и напряжением 400 кВ.

Холодные провода

Принципиально новый подход к передаче электрической энергии открывает явление сверхпроводимости. Вспомним, что потери электрической энергии в проводе зависят помимо напряжения еще и от материала провода. Сверхпроводящие материалы обладают почти нулевым сопротивлением, что теоретически позволяет передавать электрическую энергию без потерь на большие расстояния. Минусом использования данной технологии является необходимость постоянного охлаждения линии, что иногда приводит к тому, что стоимость системы охлаждения значительно превышает потери электрической энергии при использовании обычного не сверхпроводимого материала. Типовая конструкция подобной ЛЭП состоит из нескольких контуров: провод, который заключен в кожух с жидким гелием, опоясывающий их кожух из жидкого азота и менее экзотичная тепловая изоляция снаружи. Проектирование таких линий ведется ежедневно, но до практической реализации доходит не всегда. Самым успешным проектом можно считать линию, построенную American Superconductor в Нью-Йорке, а самым амбициозным проектом — ЛЭП в Корее, протяженностью около 3000 км.

Прощайте, провода!

Идеи не использовать провода вообще для передачи электрической энергии возникли уже достаточно давно. Разве не могут вдохновлять опыты, которые проводил Никола Тесла в конце XIX — начале XX века? По свидетельствам его современников, в 1899 году в Колорадо-Спрингс Тесла смог заставить загореться две сотни лампочек без использования каких-либо проводов. К сожалению, записей о его работах почти не осталось, и повторить подобные успехи смогли лишь спустя сотню лет. Технология WiTricity, разработанная профессором MIT Марином Солячичем, позволяет передавать электрическую энергию без использования проводов. Идея заключается в синхронной работе генератора и приемника. При достижении резонанса возбуждаемое переменное магнитное поле излучателем в приемнике преобразуется в электрический ток. В 2007 году был успешно проведен эксперимент подобной передачи электроэнергии на расстояние в несколько метров.

К сожалению, современный уровень развития технологий не позволяет эффективно использовать сверхпроводящие материалы и технологию беспроводной передачи электрической энергии. Линии электропередачи в привычном для нас виде будут еще долго украшать поля и окраины городов, но даже их правильное использование позволяет принести существенную выгоду для развития всей мировой энергетики.