Классификация и способы нейтрализации вредоносных программ. Способ обезвреживания вредоносных программ, блокирующих работу пк, с использованием отдельного устройства для активации пользователем процедуры противодействия вредоносному программному обеспечен

Проблему защиты от вирусов необходимо рассматривать в общем контексте проблемы защиты информации от несанкционированного доступа и технологической и эксплуатационной безопасности ПО в целом. Основной принцип, который должен быть положен в основу разработки технологии защиты от вирусов, состоит в создании многоуровневой распределенной системы защиты, включающей:

    регламентацию проведения работ на ПЭВМ;

    применение программных средств защиты;

    использование специальных аппаратных средств защиты.

При этом количество уровней защиты зависит от ценности информации, которая обрабатывается на ПЭВМ.

Для защиты от компьютерных вирусов в настоящее время используются следующие методы.

Архивирование. Заключается в копировании системных областей магнитных дисков и ежедневном ведении архивов измененных файлов. Архивирование является одним из основных методов защиты от вирусов. Остальные методы защиты дополняют его, но не могут заменить полностью.

Входной контроль. Проверка всех поступающих программ детекторами, а также проверка длин и контрольных сумм вновь поступающих программ на соответствие значениям, указанным в документации. Большинство известных файловых и бутовых вирусов можно выявить на этапе входного контроля. Для этой цели используетсябатарея детекторов (несколько последовательно запускаемых программ). Набор детекторов достаточно широк, и постоянно пополняется по мере появления новых вирусов. Однако при этом могут быть обнаружены не все вирусы, а только распознаваемые детектором. Следующим элементом входного контроля является контекстный поиск в файлах слов и сообщений, которые могут принадлежать вирусу (например,Virus,COMMAND.COM,Killи т.д.). Подозрительным является отсутствие в последних 2-3 килобайтах файла текстовых строк - это может быть признаком вируса, который шифрует свое тело.

Рассмотренный контроль может быть выполнен с помощью специальной программы, которая работает с базой данных «подозрительных» слов и сообщений, и формирует список файлов для дальнейшего анализа. После проведенного анализа новые программы рекомендуется несколько дней эксплуатировать в карантинном режиме. При этом целесообразно использовать ускорение календаря, т.е. изменять текущую дату при повторных запусках программы. Это позволяет обнаружить вирусы, срабатывающие в определенные дни недели (пятница, 13 число месяца, воскресенье и т.д.).

Профилактика. Для профилактики заражения необходимо организовать раздельное хранение (на разных магнитных носителях) вновь поступающих и ранее эксплуатировавшихся программ, минимизация периодов доступности дискет для записи, разделение общих магнитных носителей между конкретными пользователями.

Ревизия. Анализ вновь полученных программ специальными средствами (детекторами), контроль целостности перед считыванием информации, а также периодический контроль состояния системных файлов.

Карантин. Каждая новая программа проверяется на известные типы вирусов в течение определенного промежутка времени. Для этих целей целесообразно выделить специальную ПЭВМ, на которой не проводятся другие работы. В случае невозможности выделения ПЭВМ для карантина программного обеспечения, для этой цели используется машина, отключенная от локальной сети и не содержащая особо ценной информации.

Сегментация . Предполагает разбиение магнитного диска на ряд логических томов (разделов), часть из которых имеет статус READ_ONLY (только чтение). В данных разделах хранятся выполняемые программы и системные файлы. Базы данных должны храниться в других секторах, отдельно от выполняемых программ. Важным профилактическим средством в борьбе с файловыми вирусами является исключение значительной части загрузочных модулей из сферы их досягаемости. Этот метод называется сегментацией и основан на разделении магнитного диска (винчестера) с помощью специального драйвера, обеспечивающего присвоение отдельным логическим томам атрибута READ_ONLY (только чтение), а также поддерживающего схемы парольного доступа. При этом в защищенные от записи разделы диска помещаются исполняемые программы и системные утилиты, а также системы управления базами данных и трансляторы, т.е. компоненты ПО, наиболее подверженные опасности заражения. В качестве такого драйвера целесообразно использовать программы типаADVANCEDDISKMANAGER(программа для форматирования и подготовки жесткого диска), которая не только позволяет разбить диск на разделы, но и организовать доступ к ним с помощью паролей. Количество используемых логических томов и их размеры зависят от решаемых задач и объема винчестера. Рекомендуется использовать 3 - 4 логических тома, причем на системном диске, с которого выполняется загрузка, следует оставить минимальное количество файлов (системные файлы, командный процессор, а также программы - ловушки).

Фильтрация. Заключается в использовании программ - сторожей, для обнаружения попыток выполнить несанкционированные действия.

Вакцинация. Специальная обработка файлов и дисков, имитирующая сочетание условий, которые используются некоторым типом вируса для определения, заражена уже программа или нет.

Автоконтроль целостности. Заключается в использовании специальных алгоритмов, позволяющих после запуска программы определить, были ли внесены изменения в ее файл.

Терапия. Предполагает дезактивацию конкретного вируса в зараженных программах специальными программами (фагами). Программы-фаги «выкусывают» вирус из зараженной программы и пытаются восстановить ее код в исходное состояние (состояние до момента заражения). В общем случае технологическая схема защиты может состоять из следующих этапов:

    входной контроль новых программ;

    сегментация информации на магнитном диске;

    защита операционной системы от заражения;

    систематический контроль целостности информации.

Необходимо отметить, что не следует стремиться обеспечить глобальную защиту всех файлов, имеющихся на диске. Это существенно затрудняет работу, снижает производительность системы и, в конечном счете, ухудшает защиту из-за частой работы в открытом режиме. Анализ показывает, что только 20-30% файлов должно быть защищено от записи.

При защите операционной системы от вирусов необходимо правильное размещение ее и ряда утилит, которое может гарантировать, что после начальной загрузки операционная система еще не заражена резидентным файловым вирусом. Это обеспечивается при размещении командного процессора на защищенном от записи диске, с которого после начальной загрузки выполняется копирование на виртуальный (электронный) диск. В этом случае при вирусной атаке будет заражен дубль командного процессора на виртуальном диске. При повторной загрузке информация на виртуальном диске уничтожается, поэтому распространение вируса через командный процессор становится невозможным.

Кроме того, для защиты операционной системы может применяться нестандартный командный процессор (например, командный процессор 4DOS, разработанный фирмой J.P.Software), который более устойчив к заражению. Размещение рабочей копии командного процессора на виртуальном диске позволяет использовать его в качестве программы-ловушки. Для этого может использоваться специальная программа, которая периодически контролирует целостность командного процессора, и информирует о ее нарушении. Это позволяет организовать раннее обнаружение факта вирусной атаки.

В качестве альтернативы MS DOS было разработано несколько операционных систем, которые являются более устойчивыми к заражению. Из них следует отметить DR DOS и Hi DOS. Любая из этих систем более «вирусоустойчива», чем MS DOS. При этом, чем сложнее и опаснее вирус, тем меньше вероятность, что он будет работать на альтернативной операционной системе.

Анализ рассмотренных методов и средств защиты показывает, что эффективная защита может быть обеспечена при комплексном использовании различных средств в рамках единой операционной среды. Для этого необходимо разработать интегрированный программный комплекс, поддерживающий рассмотренную технологию защиты. В состав программного комплекса должны входить следующие компоненты.

    Семейство (батарея) детекторов . Детекторы, включенные в семейство, должны запускаться из операционной среды комплекса. При этом должна быть обеспечена возможность подключения к семейству новых детекторов, а также указание параметров их запуска из диалоговой среды. С помощью данной компоненты может быть организована проверка ПО на этапе входного контроля.

    Программа-ловушка вирусов . Данная программа порождается в процессе функционирования комплекса, т.е. не хранится на диске, поэтому оригинал не может быть заражен. В процессе тестирования ПЭВМ программа - ловушка неоднократно выполняется, изменяя при этом текущую дату и время (организует ускоренный календарь). Наряду с этим программа-ловушка при каждом запуске контролирует свою целостность (размер, контрольную сумму, дату и время создания). В случае обнаружения заражения программный комплекс переходит в режим анализа зараженной программы - ловушки и пытается определить тип вируса.

    Программа для вакцинации . Предназначена для изменения среды функционирования вирусов таким образом, чтобы они теряли способность к размножению. Известно, что ряд вирусов помечает зараженные файлы для предотвращения повторного заражения. Используя это свойство возможно создание программы, которая обрабатывала бы файлы таким образом, чтобы вирус считал, что они уже заражены.

    База данных о вирусах и их характеристиках. Предполагается, что в базе данных будет храниться информация о существующих вирусах, их особенностях и сигнатурах, а также рекомендуемая стратегия лечения. Информация из БД может использоваться при анализе зараженной программы-ловушки, а также на этапе входного контроля ПО. Кроме того, на основе информации, хранящейся в БД, можно выработать рекомендации по использованию наиболее эффективных детекторов и фагов для лечения от конкретного типа вируса.

    Резидентные средства защиты. Эти средства могут резидентно разместиться в памяти и постоянно контролировать целостность системных файлов и командного процессора. Проверка может выполняться по прерываниям от таймера или при выполнении операций чтения и записи в файл.

Классификация

Ныне существует немало разновидностей вирусов, различающихся по основному способу распространения и функциональности. Если изначально вирусы распространялись на дискетах и других носителях, то сейчас доминируют вирусы, распространяющиеся через Интернет. Растёт и функциональность вирусов, которую они перенимают от других видов программ.

В настоящее время не существует единой системы классификации и именования вирусов.

Классификация по поражаемым объектам:

1. Загрузочные (boot) вирусы – запускаются при загрузке компьютера и заражают программу начальной загрузки, хранящуюся в загрузочном секторе дискеты или винчестера.

2. Файловые вирусы – прикрепляют себя к файлу или программе, и активизируются при каждом использовании файла. Могут распространяться через файлы документов (Microsoft Office Word, Excel и т.п.), не модифицировать их, а лишь иметь к ним какое-то отношение.
Классификация файловых вирусов по способу заражения:

o Перезаписывающие вирусы – вирусы данного типа записывают своё тело вместо кода программы, не изменяя названия исполняемого файла, вследствие чего исходная программа перестаёт запускаться. При запуске программы выполняется код вируса, а не сама программа.

o Вирусы-компаньоны – как и перезаписывающие вирусы, создают свою копию на месте заражаемой программы, но в отличие от перезаписываемых не уничтожают оригинальный файл, а переименовывают или перемещают его. При запуске программы вначале выполняется код вируса, а затем управление передаётся оригинальной программе.

o Файловые черви – создают собственные копии с привлекательными для пользователя названиями (например, Game.exe, install.exe и др.) в надежде на то, что пользователь их запустит.

o Вирусы-звенья – не изменяют код программы, а заставляют операционную систему выполнить собственный код, изменяя адрес местоположения на диске заражённой программы на собственный адрес. После выполнения кода вируса управление обычно передаётся вызываемой пользователем программе.

o Вирусы, поражающие исходный код программ – вирусы данного типа поражают исходный код программы или её компоненты (.OBJ, .LIB, .DCU), а также VCL и ActiveX-компоненты. После компиляции программы оказываются встроенными в неё.

o Вирусы без точки входа – к ним относятся вирусы, не записывающие команд передачи управления в заголовок COM-файлов (JMP) и не изменяющие адрес точки старта в заголовке EXE-файлов. Такие вирусы записывают команду перехода на свой код в какое-либо место в середину файла и получают управление не непосредственно при запуске зараженного файла, а при вызове процедуры, содержащей код передачи управления на тело вируса. Причем выполняться эта процедура может крайне редко (например, при выводе сообщения о какой-либо специфической ошибке).

3. Скриптовые вирусы – написаны на различных скриптовых языках – BATCH, PHP, JS, VBS. Существует как безобидные виды, так и опасные. Опасные могут обладать задачей (при отсутствии антивирусной программы) уничтожить всю информацию на жёстком диске. Данные вирусы могут размещаться как на интернет-сайтах, так и в документах (есть даже сходность с сетевыми червями).

4. Макро-вирусы – являются программами на языках, встроенных во многие системы обработки данных (текстовые редакторы, электронные таблицы и т. Д.). Для своего размножения такие вирусы используют возможности макро-языков и при их помощи переносят себя из одного зараженного файла (документа или таблицы) в другие. Наибольшее распространение получили макро-вирусы для Microsoft Word, Excel и Office97. Существуют также макро-вирусы, заражающие документы Ami Pro и базы данных Microsoft Access.

5. Сетевые черви – распространяется в локальных и глобальных компьютерных сетях целиком, не подкачивая по сети свои части. Зачастую черви даже безо всякой полезной нагрузки перегружают и временно выводят из строя сети только за счёт интенсивного распространения.

Классификация по поражаемым операционным системам и платформам:

1. DOS вирусы

2. Microsoft Windows

Классификация по технологиям, используемым вирусом:

1. Полиморфные вирусы – вирусы, использующие технику, позволяющую затруднить обнаружение компьютерного вируса с помощью скан-строк и, возможно, эвристики. Полиморфизм заключается в формировании кода вируса во время исполнения, при этом сама процедура, формирующая код также не должна быть постоянной и видоизменяется при каждом новом заражении.

2. Стелс-вирусы – вирус, полностью или частично скрывающий свое присутствие в системе, путем перехвата обращений к операционной системе, осуществляющих чтение, запись, чтение дополнительной информации о зараженных объектах (загрузочных секторах, элементах файловой системы, памяти и т. д.).

Классификация по языку, на котором написан вирус:

1. Ассемблер

2. Высокоуровневый язык

3. Скриптовый

Классификация по деструктивным возможностям:

1. Безвредные вирусы – вирусы никак не влияющие на работу компьютера (кроме уменьшения свободной памяти на диске в результате своего распространения).

2. Неопасные вирусы – вирусы влияние которых ограничивается уменьшением свободной памяти на диске и графическими, звуковыми и пр. эффектами.

3. Опасные вирусы – вирусы, которые могут привести к серьезным сбоям в работе компьютера.

4. Очень опасные вирусы – вирусы в алгоритм работы которых заведомо заложены процедуры, которые могут привести к потере программ, уничтожить данные, стереть необходимую для работы компьютера информацию, записанную в системных областях памяти.

Прочие «вредные программы»:

1. Троянские кони – вредоносная программа, проникающая на компьютер под видом безвредной - кодека, скринсейвера, хакерского ПО и т. д. . «Троянские кони» не имеют собственного механизма распространения, и этим отличаются от вирусов, которые распространяются, прикрепляя себя к безобидному ПО или документам, и «червей», которые копируют себя по сети, но троянская программа может нести вирусное тело - тогда запустивший троянца превращается в очаг «заразы».

2. Утилиты скрытого администрирования – троянские кони этого класса по своей сути является достаточно мощными утилитами удаленного администрирования компьютеров в сети. По своей функциональности они во многом напоминают различные системы администрирования, разрабатываемые и распространяемые различными фирмами-производителями программных продуктов. Будучи установленными на компьютер, утилиты скрытого управления позволяют делать с компьютером все, что в них заложил их автор: принимать/отсылать файлы, запускать и уничтожать их, выводить сообщения, стирать информацию, перезагружать компьютер и т.д. В результате эти троянцы могут быть использованы для обнаружения и передачи конфиденциальной информации, для запуска вирусов, уничтожения данных и т.п. – пораженные компьютеры оказываются открытыми для злоумышленных действий хакеров.

3. Intended-вирусы – к таким вирусам относятся программы, которые на первый взгляд являются стопроцентными вирусами, но не способны размножаться по причине ошибок. Например, вирус, который при заражении «забывает» поместить в начало файлов команду передачи управления на код вируса, либо записывает в нее неверный адрес своего кода, либо неправильно устанавливает адрес перехватываемого прерывания и т.д.

Механизм распространения

Вирусы распространяются, копируя свое тело и обеспечивая его последующее исполнение: внедряя себя в исполняемый код других программ, заменяя собой другие программы, прописываясь в автозапуск и другое. Вирусом или его носителем могут быть не только программы, содержащие машинный код, но и любая информация, содержащая автоматически исполняемые команды - например, пакетные файлы и документы Microsoft Word и Excel, содержащие макросы. Кроме того, для проникновения на компьютер вирус может использовать уязвимости в популярном программном обеспечении (например, Adobe Flash, Internet Explorer, Outlook), для чего распространители внедряют его в обычные данные (картинки, тексты и т. д.) вместе с эксплоитом, использующим уязвимость.

Эксплойт , эксплоит , сплоит (англ. exploit , эксплуатировать) - это компьютерная программа, фрагмент программного кода или последовательность команд, использующие уязвимости в программном обеспечении и применяемые для проведения атаки на вычислительную систему. Целью атаки может быть как захват контроля над системой (повышение привилегий), так и нарушение её функционирования (DoS-атака).

Каналы

  • Дискеты. Самый распространённый канал заражения в 1980-1990-е годы. Сейчас практически отсутствует из-за появления более распространённых и эффективных каналов и отсутствия флоппи-дисководов на многих современных компьютерах.
  • Флеш-накопители (флешки). В настоящее время USB-флешки заменяют дискеты и повторяют их судьбу - большое количество вирусов распространяется через съёмные накопители, включая цифровые фотоаппараты, цифровые видеокамеры, цифровые плееры (MP3-плееры), а с 2000-х годов всё большую роль играют мобильные телефоны , особенно смартфоны . Использование этого канала ранее было преимущественно обусловлено возможностью создания на накопителе специального файла autorun.inf, в котором можно указать программу, запускаемую Проводником Windows при открытии такого накопителя. В Windows 7 возможность автозапуска файлов с переносных носителей была отключена.
  • Электронная почта. Обычно вирусы в письмах электронной почты маскируются под безобидные вложения: картинки, документы, музыку, ссылки на сайты. В некоторых письмах могут содержаться действительно только ссылки, то есть в самих письмах может и не быть вредоносного кода, но если открыть такую ссылку, то можно попасть на специально созданный веб-сайт, содержащий вирусный код. Многие почтовые вирусы, попав на компьютер пользователя, затем используют адресную книгу из установленных почтовых клиентов типа Outlook для рассылки самого себя дальше.
  • Системы обмена мгновенными сообщениями. Здесь также распространена рассылка ссылок на якобы фото, музыку либо программы, в действительности являющиеся вирусами, по ICQ и через другие программы мгновенного обмена сообщениями.
  • Веб-страницы. Возможно также заражение через страницы Интернета ввиду наличия на страницах всемирной паутины различного «активного» содержимого: скриптов, ActiveX-компонент. В этом случае используются уязвимости программного обеспечения, установленного на компьютере пользователя, либо уязвимости в ПО владельца сайта (что опаснее, так как заражению подвергаются добропорядочные сайты с большим потоком посетителей), а ничего не подозревающие пользователи, зайдя на такой сайт, рискуют заразить свой компьютер.
  • Интернет и локальные сети (черви). Черви - вид вирусов, которые проникают на компьютер-жертву без участия пользователя. Черви используют так называемые «дыры» (уязвимости) в программном обеспечении операционных систем, чтобы проникнуть на компьютер. Уязвимости - это ошибки и недоработки в программном обеспечении, которые позволяют удаленно загрузить и выполнить машинный код, в результате чего вирус-червь попадает в операционную систему и, как правило, начинает действия по заражению других компьютеров через локальную сеть или Интернет. Злоумышленники используют заражённые компьютеры пользователей для рассылки спама или для DDoS-атак.

Противодействие обнаружению

Во времена MS-DOS были распространены стелс-вирусы, перехватывающие прерывания для обращения к операционной системе. Вирус таким образом мог скрывать свои файлы из дерева каталогов или подставлять вместо зараженного файла исходную копию.

С широким распространением антивирусных сканеров, проверяющих перед запуском любой код на наличие сигнатур или выполнение подозрительных действий, этой технологии стало недостаточно. Сокрытие вируса из списка процессов или дерева каталогов для того, чтобы не привлекать лишнее внимание пользователя, является базовым приемом, однако для борьбы с вирусами требуются более изощренные методы. Для противодействия сканированию на наличие сигнатур применяется шифрование кода и полиморфизм. Эти техники часто применяются вместе, поскольку для расшифрования зашифрованной части вируса необходимо оставлять расшифровщик незашифрованным, что позволяет обнаруживать его по сигнатуре. Поэтому для изменения расшифровщика применяют полиморфизм - модификацию последовательности команд, не изменяющую выполняемых действий. Это возможно благодаря весьма разнообразной и гибкой системе команд процессоров Intel, в которой одно и то же элементарное действие, например сложение двух чисел, может быть выполнено несколькими последовательностями команд.

Также применяется перемешивание кода, когда отдельные команды случайным образом разупорядочиваются и соединяются безусловными переходами. Передовым фронтом вирусных технологий считается метаморфизм, который часто путают с полиморфизмом. Расшифровщик полиморфного вируса относительно прост, его функция - расшифровать основное тело вируса после внедрения, то есть после того как его код будет проверен антивирусом и запущен. Он не содержит самого полиморфного движка, который находится в зашифрованной части вируса и генерирует расшифровщик. В отличие от этого, метаморфный вирус может вообще не применять шифрование, поскольку сам при каждой репликации переписывает весь свой код.

Профилактика и лечение

В настоящий момент существует множество антивирусных программ, используемые для предотвращения попадания вирусов в ПК. Однако нет гарантии, что они смогут справиться с новейшими разработками. Поэтому следует придерживаться некоторых мер предосторожности, в частности:

  1. Не заходить на незнакомые сайты
  2. Пользоваться только лицензионными дистрибутивами
  3. Постоянно обновлять вирусные базы
  4. Стараться ограничиться от приемов незнакомых файлов

Экономика

Некоторые производители антивирусов утверждают, что сейчас создание вирусов превратилось из одиночного хулиганского занятия в серьёзный бизнес, имеющий тесные связи с бизнесом спама и другими видами противозаконной деятельности.

Также называются миллионные и даже миллиардные суммы ущерба от действий вирусов и червей. К подобным утверждениям и оценкам следует относиться осторожно: суммы ущерба по оценкам различных аналитиков различаются (иногда на три-четыре порядка), а методики подсчёта не приводятся.

История

Основы теории самовоспроизводящихся механизмов заложил американец венгерского происхождения Джон фон Нейман, который в 1951 году предложил метод создания таких механизмов. С 1961 года известны рабочие примеры таких программ.

Первыми известными собственно вирусами являются Virus 1,2,3 и Elk Cloner для ПК Apple II, появившиеся в 1981 году. Зимой 1984 года появились первые антивирусные утилиты - CHK4BOMB и BOMBSQAD авторства Анди Хопкинса (англ. Andy Hopkins ). В начале 1985 года Ги Вонг (англ. Gee Wong ) написал программу DPROTECT - первый резидентный антивирус.

Первые вирусные эпидемии относятся к 1987-1989 годам: Brain (более 18 тысяч зараженных компьютеров, по данным McAfee), Jerusalem (проявился в пятницу 13 мая 1988 г., уничтожая программы при их запуске), червь Морриса (свыше 6200 компьютеров, большинство сетей вышло из строя на срок до пяти суток), DATACRIME (около 100 тысяч зараженных ПЭВМ только в Нидерландах).

Тогда же оформились основные классы двоичных вирусов: сетевые черви (червь Морриса, 1987), «троянские кони» (AIDS, 1989), полиморфные вирусы (Chameleon, 1990), стелс-вирусы (Frodo, Whale, 2-я половина 1990).

Параллельно оформляются организованные движения как про-, так и антивирусной направленности: в 1990 году появляются специализированная BBS Virus Exchange, «Маленькая чёрная книжка о компьютерных вирусах» Марка Людвига, первый коммерческий антивирус Symantec Norton Antivirus.

В 1992 году появились первый конструктор вирусов для PC - VCL (для Amiga конструкторы существовали и ранее), а также готовые полиморфные модули (MtE, DAME и TPE) и модули шифрования для встраивания в новые вирусы.

В несколько последующих лет были окончательно отточены стелс- и полиморфные технологии (SMEG.Pathogen, SMEG.Queeg, OneHalf, 1994; NightFall, Nostradamus, Nutcracker, 1995), а также испробованы самые необычные способы проникновения в систему и заражения файлов (Dir II - 1991, PMBS, Shadowgard, Cruncher - 1993). Кроме того, появились вирусы, заражающие объектные файлы (Shifter, 1994) и исходные тексты программ (SrcVir, 1994). С распространением пакета Microsoft Office получили распространение макровирусы (Concept, 1995).

В 1996 году появился первый вирус для Windows 95 - Win95.Boza, а в декабре того же года - первый резидентный вирус для неё - Win95.Punch.

С распространением сетей и Интернета файловые вирусы всё больше ориентируются на них как на основной канал работы (ShareFun, 1997 - макровирус MS Word, использующий MS-Mail для распространения; Win32.HLLP.DeTroie, 1998 - семейство вирусов-шпионов; Melissa, 1999 - макровирус и сетевой червь, побивший все рекорды по скорости распространения). Эру расцвета «троянских коней» открывает утилита скрытого удаленного администрирования BackOrifice (1998) и последовавшие за ней аналоги (NetBus

Phase).

Вирус Win95.CIH достиг апогея в применении необычных методов, перезаписывая FlashBIOS зараженных машин (эпидемия в июне 1998 считается самой разрушительной за предшествующие годы).

В конце 1990-x - начале 2000-x годов с усложнением ПО и системного окружения, массовым переходом на сравнительно защищенные Windows семейства NT, закреплением сетей как основного канала обмена данными, а также успехами антивирусных технологий в обнаружении вирусов, построенных по сложным алгоритмам, последние стали всё больше заменять внедрение в файлы на внедрение в операционную систему (необычный автозапуск, руткиты) и подменять полиморфизм огромным количеством видов (число известных вирусов растет экспоненциально).

Руткит (англ. rootkit, т.е. «набор root"а») - программа или набор программ для скрытия следов присутствия злоумышленника или вредоносной программы в системе.

Вместе с тем, обнаружение в Windows и другом распространенном ПО многочисленных уязвимостей открыло дорогу червям-эксплоитам. В 2004 г. беспрецедентные по масштабам эпидемии вызывают MsBlast (более 16 млн систем по данным Microsoft), Sasser и Mydoom (оценочные ущербы 500 млн $ и 4 млрд $, соответственно).

Кроме того, монолитные вирусы в значительной мере уступают место комплексам вредоносного ПО с разделением ролей и вспомогательными средствами (троянские программы, загрузчики/дропперы, фишинговые сайты, спам-боты и пауки). Также расцветают социальные технологии - спам и фишинг - как средство заражения в обход механизмов защиты ПО.

Найдите значения слов: «эксплоит», «дропперы», «спам-боты», «фишинг», «ботнеры»

Вначале на основе троянских программ, а с развитием технологий p2p-сетей - и самостоятельно - набирает обороты самый современный вид вирусов - черви-ботнеты

(Rustock, 2006, ок. 150 тыс. ботов; Conficker, 2008-2009, более 7 млн ботов; Kraken, 2009, ок. 500 тыс. ботов). Вирусы в числе прочего вредоносного ПО окончательно оформляются как средство киберпреступности.

Найдите значение технологии «р2р-сети»

Этимология названия

Компьютерный вирус был назван по аналогии с биологическими вирусами за сходный механизм распространения. По всей видимости, впервые слово «вирус» по отношению к программе было употреблено Грегори Бенфордом (Gregory Benford) в фантастическом рассказе «Человек в шрамах», опубликованном в журнале Venture в мае 1970 года. Термин «компьютерный вирус» впоследствии не раз открывался и переоткрывался - так, переменная в программе PERVADE (1975), от значения которой зависело, будет ли программа ANIMAL распространяться по диску, называлась VIRUS. Также, вирусом назвал свои программы Джо Деллинджер и, вероятно, - это и был первый вирус, названный собственно «вирусом».

Вредоносная программа (на жаргоне антивирусных служб «зловред », англ. malware , malicious software - «злонамеренное программное обеспечение) - любое программное обеспечение, предназначенное для получения несанкционированного доступа к вычислительным ресурсам самой ЭВМ или к информации, хранимой на ЭВМ, с целью несанкционированного владельцем использования ресурсов ЭВМ или причинения вреда (нанесения ущерба) владельцу информации, и/или владельцу ЭВМ, и/или владельцу сети ЭВМ, путем копирования, искажения, удаления или подмены информации.

Терминология

По основному определению, вредоносные программы предназначены для получения несанкционированного доступа к информации, в обход существующих правил разграничения доступа. Федеральная Служба по Техническому и Экспортному Контролю (ФСТЭК России) определяет данные понятия следующим образом:

  • Санкционированный доступ к информации (англ. authorized access to information) - доступ к информации, не нарушающий правила разграничения доступа.
  • Несанкционированный доступ к информации (англ. unauthorized access to information) - доступ к информации, нарушающий правила разграничения доступа с использованием штатных средств, предоставляемых средствами вычислительной техники или автоматизированными системами. Под штатными средствами понимается совокупность программного, микропрограммного и технического обеспечения средств вычислительной техники или автоматизированных систем.
  • Правила разграничения доступа (англ. access mediation rules) - совокупность правил, регламентирующих права доступа субъектов доступа к объектам доступа

Согласно статье 273 Уголовного Кодекса Российской Федерации («Создание, использование и распространение вредоносных программ для ЭВМ») определение вредоносных программ выглядит следующим образом: «… программы для ЭВМ или внесение изменений в существующие программы, заведомо приводящие к несанкционированному уничтожению, блокированию, модификации либо копированию информации, нарушению работы ЭВМ, системы ЭВМ или их сети…»

Надо отметить, что действующая формулировка статьи 273 трактует понятие вредоносности чрезвычайно широко. Когда обсуждалось внесение этой статьи в УК, подразумевалось, что «несанкционированными» будут считаться действия программы, не одобренные явным образом пользователем этой программы. Однако, нынешняя судебная практика относит к вредоносным также и программы, модифицирующие (с санкции пользователя) исполняемые файлы и/или базы данных других программ, если такая модификация не разрешена их правообладателями. При этом, в ряде случаев , при наличии принципиальной позиции защиты и грамотно проведенной экспертизе, широкая трактовка статьи 273 была признана судом незаконной.

Классификация вредоносных программ

У каждой компании-разработчика антивирусного программного обеспечения существует собственная корпоративная классификация и номенклатура вредоносных программ. Приведённая в этой статье классификация основана на номенклатуре «Лаборатории Касперского».

По вредоносной нагрузке

  • Помехи в работе заражённого компьютера: начиная от открытия-закрытия поддона CD-ROM и заканчивая уничтожением данных и поломкой аппаратного обеспечения.
    • Блокировка антивирусных сайтов, антивирусного ПО и административных функций ОС с целью усложнить лечение.
    • Саботирование промышленных процессов, управляемых компьютером.
  • Инсталляция другого вредоносного ПО.
  • ).
  • Распаковка другой вредоносной программы, уже содержащейся внутри файла (dropper ).
  • Кража, мошенничество, вымогательство и шпионаж за пользователем. Для кражи может применяться сканирование жёсткого диска, регистрация нажатий клавиш (Keylogger
  • ) и перенаправление пользователя на поддельные сайты, в точности повторяющие исходные ресурсы.
    • Похищение данных, представляющих ценность или тайну.
    • Кража аккаунтов различных служб (электронной почты, мессенджеров, игровых серверов…). Аккаунты применяются для рассылки спама. Также через электронную почту зачастую можно заполучить пароли от других аккаунтов.
    • Кража аккаунтов платёжных систем.
    • Блокировка компьютера, шифрование файлов пользователя с целью шантажа и вымогательства денежных средств. В большинстве случаев после оплаты компьютер или не разблокируется, или вскоре блокируется второй раз.
    • Использование телефонного модема для совершения дорогостоящих звонков, что влечёт за собой значительные суммы в телефонных счетах.
    • Платное ПО, имитирующее, например, антивирус, но ничего полезного не делающее.
  • Прочая незаконная деятельность:
    • Получение несанкционированного (и/или дарового) доступа к ресурсам самого компьютера или третьим ресурсам, доступным через него, в том числе прямое управление компьютером (так называемый backdoor ).
    • Организация на компьютере открытых релеев (найти значение слова ) и общедоступных прокси-серверов .
    • Заражённый компьютер (в составе ботнета ) может быть использован для проведения DDoS-атак .
    • Сбор адресов электронной почты и распространение спама , в том числе в составе ботнета .
    • Накрутка электронных голосований , щелчков по рекламным баннерам .
    • Генерация монет платёжной системы Bitcoin .
    • Причинение вреда здоровью человека. Например:
      • Показ на экране компьютера изображений, опасных для слабонервных людей. Например, если человек страдает от светочувствительной эпилепсии, мерцание света и большой контраст могут вызывать припадки.
  • Файлы, не являющиеся истинно вредоносными, но в большинстве случаев нежелательные:
    • Шуточное ПО, делающее какие-либо беспокоящие пользователя вещи.
    • Adware - программное обеспечение, показывающее рекламу .
    • Spyware - программное обеспечение, посылающее через интернет не санкционированную пользователем информацию.
    • «Отравленные» документы, дестабилизирующие ПО, открывающее их (например, архив размером меньше мегабайта может содержать гигабайты данных и надолго «завесить» архиватор).
    • Программы удалённого администрирования могут применяться как для того, чтобы дистанционно решать проблемы с компьютером, так и для неблаговидных целей.
    • Руткит (найти значение слова ) нужен, чтобы скрывать другое вредоносное ПО от посторонних глаз.
    • Иногда вредоносное ПО для собственного «жизнеобеспечения» устанавливает дополнительные утилиты : IRC-клиенты , программные маршрутизаторы , открытые библиотеки перехвата клавиатуры… Такое ПО вредоносным не является, но из-за того, что за ним часто стоит истинно вредоносная программа, детектируется антивирусами. Бывает даже, что вредоносным является только скрипт из одной строчки, а остальные программы вполне легитимны.

    По методу размножения

    Симптомы заражения

    • автоматическое открытие окон с незнакомым содержимым при запуске компьютера;
    • блокировка доступа к официальным сайтам антивирусных компаний, или же к сайтам, оказывающим услуги по «лечению» компьютеров от вредоносных программ;
    • появление новых неизвестных процессов в окне «Процессы» диспетчера задач Windows;
    • появление в ветках реестра, отвечающих за автозапуск, новых записей;
    • запрет на изменение настроек компьютера в учётной записи администратора;
    • невозможность запустить исполняемый файл (выдаётся сообщение об ошибке);
    • появление всплывающих окон или системных сообщений с непривычным текстом, в том числе содержащих неизвестные веб-адреса и названия;
    • перезапуск компьютера во время старта какой-либо программы;
    • случайное и/или беспорядочное отключение компьютера;
    • случайное аварийное завершение программ.

    Однако, следует учитывать, что несмотря на отсутствие симптомов, компьютер может быть заражен вредоносными программами.

    Одних только типов вредоносных программ известно великое множество. Но каждый тип состоит из огромного количества образцов, также отличающихся друг от друга. Для борьбы со всеми ними нужно уметь однозначно классифицировать любую вредоносную программу и легко отличить ее от других вредоносных программ.

    «Лаборатория Касперского» классифицирует все виды вредоносного программного обеспечения и потенциально нежелательных объектов в соответствии с их активностью на компьютерах пользователей. Предложенная система лежит и в основе классификации многих других поставщиков антивирусных программ .

    Дерево классификации вредоносных программ

    Система классификации «Лаборатории Касперского» четко описывает каждый обнаруженный объект и назначает конкретное местоположение в дереве классификации, показанном ниже на диаграмме «Дерево классификации»:

    • типы поведения, представляющие наименьшую опасность, показаны внижней области диаграммы;
    • типы поведения с максимальной опасностью отображаются в верхней части диаграммы.

    Многофункциональные вредоносные программы

    Отдельные вредоносные программы часто выполняют несколько вредоносных функций и используют несколько способов распространения, без некоторых дополнительных правил классификации это могло бы привести к путанице.

    Например. Существует вредоносная программа, которая занимается сбором адресов электронной почты на зараженном компьютере без ведома пользователя. При этом она распространяется как в виде вложений электронной почты, так и в виде файлов через сети P2P. Тогда программу можно классифицировать и как Email-Worm , и как P2P-Worm или Trojan-Mailfinder . Чтобы избежать такой путаницы применяется набор правил, которые позволяют однозначно классифицировать вредоносную программу по конкретному поведению, независимо от второстепенных свойств. Правила применяются только к вредоносным программам и не учитывают Adware, Riskware, Pornware и другие объекты, обнаруживаемые проактивной защитой (которые обозначаются префиксом PDM:) или эвристическим анализатором (в этом случае используется префикс HEUR:).

    На диаграмме «Дерево классификации» видно, что каждому поведению назначен свой уровень опасности. Виды поведения, представляющие собой большую опасность, расположены выше тех видов, которые представляют меньшую опасность. И поскольку в нашем примере поведение Email-Worm представляет более высокий уровень опасности, чем поведение P2P-Worm или Trojan-Mailfinder, вредоносную программу из нашего примера можно классифицировать как Email-Worm.

    Правило, согласно которому выбирается поведение с максимальным уровнем опасности, применяется только ктроянским программам , вирусам и червям . К вредоносным утилитам оно не применяется.

    Несколько функций с одинаковым уровнем опасности

    Если вредоносная программа имеет несколько функций с одинаковым уровнем опасности (таких как Trojan-Ransom, Trojan-ArcBomb, Trojan-Clicker, Trojan-DDoS, Trojan-Downloader, Trojan-Dropper, Trojan-IM, Trojan-Notifier, Trojan-Proxy, Trojan-SMS, Trojan-Spy, Trojan-Mailfinder, Trojan-GameThief, Trojan-PSW или Trojan-Banker), она классифицируется как троянская программа.

    Если у вредоносной программы есть несколько функций с одинаковым уровнем опасности, таких как IM-Worm, P2P-Worm или IRC-Worm, она классифицируется как червь.

    Защитите свои устройства и данные от всех видов вредоносных программ.

    По материалам сайта kaspersky.ru

    Классификация вирусов

    Поскольку теоретическая задача обнаружения вирусов неразрешима, на практике приходится решать частные задачи по борьбе с частными случаями вредоносных программ.

    В зависимости от характерных свойств вирусов для их обнаружения и нейтрализации могут применяться различные методы. В связи с этим возникает вопрос о классификации вредоносных программ, чему и посвящена эта глава.

    Необходимо отметить, что на практике классификации, принятые различными производителями антивирусных продуктов, отличаются, хотя и построены на близких принципах. Поэтому в ходе изложения будут формулироваться в первую очередь принципы и уже потом примеры из классификации, используемой в Лаборатории Касперского.

    Определение компьютерного вируса – исторически проблемный вопрос, поскольку достаточно сложно дать чёткое определение вируса, очертив при этом свойства, присущие только вирусам и не касающиеся других программных систем. Наоборот, давая жёсткое определение вируса как программы, обладающей определёнными свойствами, практически сразу же можно найти пример вируса, таковыми свойствами не обладающего.

    Обязательным (необходимым) свойством компьютерного вируса является возможность создавать свои дубликаты (не обязательно совпадающие с оригиналом) и внедрять их в вычислительные сети и(или) файлы, системные области компьютера и прочие выполняемые объекты. При этом дубликаты сохраняют способность к дальнейшему распространению.

    Вирус (по ГОСТ Р 51188–98)– программа, способная создавать свои копии (необязательно совпадающие с оригиналом) и внедрять их в файлы, системные области компьютера, компьютерных сетей, а также осуществлять иные деструктивные действия. При этом копии сохраняют способность дальнейшего распространения. Компьютерный вирус относится к вредоносным программам.

    Легко заметить, что определение в ГОСТ практически полностью повторяет определение Е. Касперского.

    Эти два определения в большой степени повторяют определение Ф. Коэна или уточнение, предложенное Д. Чессом и С. Вайтом, что позволяет распространить на них (определения) вывод о невозможности создать алгоритм, обнаруживающий все такие программы или даже все «инкарнации» одного из вирусов. Тем не менее, на практике оказывается, что все известные вирусы могут быть обнаружены антивирусными программами. Результат достигается, в частности, ещё и за счёт того, что повреждённые или неудачные экземпляры вирусов, неспособные к созданию и внедрению своих копий, обнаруживаются и классифицируются наравне со всеми остальными «полноценными» вирусами. Следовательно, с практической точки зрения, т.е. с точки зрения алгоритмов поиска, способность к размножению вовсе не является обязательной для причисления программы к вирусам.

    Другая проблема, связанная с определением компьютерного вируса, кроется в том, что сегодня под вирусом чаще всего понимается не «традиционный» вирус, а практически любая вредоносная программа. Это приводит к путанице в терминологии, осложнённой ещё и тем, что практически все современные антивирусы способны выявлять указанные типы вредоносных программ, таким образом, ассоциация «вредоносная программа – вирус» становится всё более устойчивой.

    Исходя из этого, а также из назначения антивирусных средств, в дальнейшем, если это не будет оговорено отдельно, под вирусами будут подразумеваться именно вредоносные программы.

    Вредоносная программа – компьютерная программа или переносной код, предназначенный для реализации угроз информации, хранящейся в КС, либо для скрытого нецелевого использования ресурсов КС, либо иного воздействия, препятствующего нормальному функционированию КС. К вредоносным программам относятся компьютерные вирусы, трояны, сетевые черви и др.

    Компьютерные вирусы, трояны и черви являются основными типами вредоносных программ.

    5.1.1. Вирусы

    Поскольку отличительной особенностью вирусов в традиционном смысле является способность к размножению в рамках одного компьютера, деление вирусов на типы происходит в соответствии со способами размножения.

    Сам процесс размножения может быть условно разделён на несколько стадий:

    1. Проникновение на компьютер.

    2. Активация вируса.

    3. Поиск объектов для заражения.

    4. Подготовка вирусных копий.

    5. Внедрение вирусных копий.

    Особенности реализации каждой стадии порождают атрибуты, набор которых фактически и определяет класс вируса.

    Вирусы проникают на компьютер вместе с заражёнными файлами или другими объектами (загрузочными секторами дискет), никак, в отличие от червей, не влияя на процесс проникновения. Следовательно, возможности проникновения полностью определяются возможностями заражения, и классифицировать вирусы по этим стадиям жизненного цикла отдельно смысла нет.

    Для активации вируса необходимо, чтобы заражённый объект получил управление. На данной стадии деление вирусов происходит по типам объектов, которые могут быть заражены:

    1. Загрузочные вирусы – вирусы, заражающие загрузочные сектора постоянных и сменных носителей.

    Примеры. Вредоносная программа Virus.Boot.Snow.a записывает свой код в MBR жёсткого диска или в загрузочные сектора дискет. При этом оригинальные загрузочные сектора шифруются вирусом. После получения управления вирус остаётся в памяти компьютера (резидентность) и перехватывает прерывания INT 10h, 1Ch и 13h. Иногда вирус проявляет себя визуальным эффектом – на экране компьютера начинает падать снег.

    Другой загрузочный вирус Virus.Boot.DiskFiller также заражает MBR винчестеры или загрузочные сектора дискет, остаётся в памяти и перехватывает прерывания – INT 13h, 1Ch и 21h. При этом, заражая дискеты, вирус форматирует дополнительную дорожку с номером 40 или 80 (в зависимости от объёма дискеты он может иметь 40 либо 80 дорожек с номерами 0–39 или 0–79 соответственно). Именно на эту нестандартную дорожку вне поля обычной видимости вирус записывает свой код, добавляя в загрузочный сектор лишь небольшой фрагмент – головную часть вируса.

    При заражении винчестера Virus.Boot.DiskFiller располагает свой код непосредственно за MBR, а в самом MBR меняет ссылку на активный загрузочный сектор, указывая адрес сектора, где он расположен.

    2. Файловые вирусы – вирусы, заражающие файлы. Эта группа дополнительно делится на три в зависимости от среды, в которой выполняется код.

    Собственно файловые вирусы – те, которые непосредственно работают с ресурсами операционной системы.



    Примеры . Самый известный файловый вирус этой группы – Virus.Win9x.CIH, известный также как «Чернобыль». Имея небольшой размер – около 1 Кб, – вирус заражает PE-файлы (Portable Executable) на компьютерах под управлением операционных систем Windows 95/98 таким образом, что размер заражённых файлов не меняется. Для достижения этого эффекта вирус ищет в файлах «пустые» участки, возникающие из-за выравнивания начала каждой секции файла под кратные значения байт. После получения управления вирус перехватывает IFS API, отслеживая вызовы функции обращения к файлам и заражая исполняемые файлы. 26 апреля срабатывает деструктивная функция вируса, которая заключается в стирании Flash BIOS и начальных секторов жёстких дисков. Результатом является неспособность компьютера загружаться вообще (в случае успешной попытки стереть Flash BIOS) либо потеря данных на всех жёстких дисках компьютера.

    Из последних вредоносных программ, обладающих вирусной функциональностью, можно отметить Email-Worm.Win32.Bagle.p (а также его модификации.q и.r). Являясь в первую очередь червем с основным каналом распространения через электронную почту, Bagle.p содержит также функцию заражения EXE-файлов путём дописывания в их конец полиморфного кода вируса.

    Макровирусы – вирусы, написанные на языке макрокоманд и исполняемые в среде какого-либо приложения. В подавляющем большинстве случаев речь идёт о макросах в документах Microsoft Office .

    Примеры. Одними из наиболее разрушительных макровирусов являются представители семейства Macro.Word97.Thus. Эти вирусы содержат три процедуры Document_Open, Document_Close и Document_New, которыми подменяет стандартные макросы, выполняющиеся при открытии, закрытии и создании документа, тем самым обеспечивая заражение других документов. 13 декабря срабатывает деструктивная функция вируса – он удаляет все файлы на диске C:, включая каталоги и подкаталоги.

    Модификация Macro.Word97.Thus.aa, кроме указанных действий, при открытии каждого заражённого документа выбирает на локальном диске случайный файл и шифрует первые 32 байта этого файла, постепенно приводя систему в неработоспособное состояние.

    Макровирусы способны заражать не только документы Microsoft Word и Excel. Существуют вредоносные программы, ориентированные и на другие типы документов: Macro.Visio.Radiant заражает файлы известной программы для построения диаграмм – Visio, Virus.Acad.Pobresito – документы AutoCAD, Macro.AmiPro.Green – документы популярного раньше текстового процессора Ami Pro.

    Скрипт-вирусы – вирусы, исполняемые в среде определённой командной оболочки: раньше – bat -файлы в командной оболочке DOS , сейчас чаще VBS и JS -скрипты в командной оболочке Windows Scripting Host (WSH ).

    Примеры. Virus.VBS.Sling написан на языке VBScript (Visual Basic Script). При запуске он ищет файлы с расширениями.VBS или.VBE и заражает их. При наступлении 16 июня или июля вирус при запуске удаляет все файлы с расширениями.VBS и.VBE, включая самого себя.

    Virus.WinHLP.Pluma.a – вирус, заражающий файлы помощи Windows. При открытии заражённого файла помощи выполняется вирусный скрипт, который, используя нетривиальный метод (по сути, уязвимость в обработке скриптов), запускает на выполнение уже как обычный файл Windows определённую строку кода, содержащегося в скрипте. Запущенный код производит поиск файлов справки на диске и внедряет в их область System скрипт автозапуска.

    В эпоху вирусов для DOS часто встречались гибридные файлово-загрузочные вирусы. После массового перехода на операционные системы семейства Windows практически исчезли как сами загрузочные вирусы, так и упомянутые гибриды.

    Отдельно стоит отметить тот факт, что вирусы, рассчитанные для работы в среде определённой ОС или приложения, оказываются неработоспособными в среде других ОС и приложений. Поэтому как отдельный атрибут вируса выделяется среда, в которой он способен выполняться. Для файловых вирусов это DOS , Windows , Linux , MacOS , OS /2. Для макровирусов – Word , Excel , PowerPoint , Office . Иногда вирусу требуется для корректной работы какая-то определённая версия ОС или приложения, тогда атрибут указывается более узко: Win9x , Excel97 .

    На стадии поиска объектов для заражения встречается два способа поведения вирусов.

    1. Получив управление, вирус производит разовый поиск жертв, после чего передаёт управление ассоциированному с ним объекту (заражённому объекту).

    Пример. Обычно при освоении новой платформы сначала появляются вирусы именно этого типа. Так было при появлении вирусов под DOS , под Windows 9x, под Windows NT , под Linux .

    Например, таким вирусом является Virus.Multi.Pelf.2132 – один из немногих представителей мультиплатформенных вирусов. Этот вирус способен заражать как PE -файлы, так и файлы в формате ELF (формат исполняемых файлов под Linux ). При запуске вирус производит в текущем (под обеими операционными системами) и вышестоящих каталогах (под Windows ) файлов заражаемых форматов (PE и ELF ), определяя действительный формат файла по его структуре. После заражения найденных файлов вирус завершает работу и возвращает управление запущенному файлу.

    2. Получив управление, вирус так или иначе остаётся в памяти и производит поиск жертв непрерывно, до завершения работы среды, в которой он выполняется.

    Пример. Virus.DOS.Anarchy.6093 также является мультиплатформенным в том смысле, что он способен заражать DOS COM - и EXE -файлы, а также документы Microsoft Word 6/7. При этом вирус может активироваться при запуске как в среде DOS , так и в среде Windows 95. После запуска вирус перехватывает прерывание INT 21h, а в среде Windows дополнительно вносит изменения в драйвер VMM32.VXD (Virtual Memory Manager ) с целью перехвата обращений к файлам. При запуске или открытии COM -, EXE и DOC -файла вирус заражает его. Помимо этого, в файловом варианте вирус является полиморфным (см. ниже), и в любом варианте обладает stealth -функциональностью (см. ниже).

    Вирусы второго типа во времена однозадачной DOS было принято называть резидентными. С переходом на Windows проблема остаться в памяти перестала быть актуальной: практически все вирусы, исполняемые в среде Windows , равно как и в среде приложений MS Office , являются вирусами второго типа. И напротив, скрипт-вирусы являются вирусами первого типа. Соответственно, атрибут резидентный применим только к файловым DOS вирусам. Существование нерезидентных Windows вирусов возможно, но на практике они являются редким исключением.

    Отдельно имеет смысл рассмотреть так называемые stealth -вирусы – вирусы, которые, находясь постоянно в памяти, перехватывают обращения к заражённому файлу и на ходу удаляют из него вирусный код, передавая в ответ на запрос неизменённую версию файла. Таким образом, эти вирусы маскируют своё присутствие в системе. Для их обнаружения антивирусным средствам требуется возможность прямого обращения к диску в обход средств операционной системы. Набольшее распространение stealth -виру-сы получили во времена DOS .

    Сигнатура вируса – в широком смысле, информация, позволяющая однозначно определить наличие данного вируса в файле или ином коде. Примерами сигнатур являются: уникальная последовательность байт, присутствующая в данном вирусе и не встречающаяся в других программах; контрольная сумма такой последовательности.

    Процесс подготовки копий для распространения может существенно отличаться от простого копирования. Авторы наиболее сложных в технологическом плане вирусов стараются сделать разные копии максимально непохожими для усложнения их обнаружения антивирусными средствами. Как следствие, составление сигнатуры для такого вируса крайне затруднено либо вовсе невозможно.

    При создании копий для маскировки могут применяться следующие технологии:

    - шифрование – вирус состоит из двух функциональных кусков: собственно вирус и шифратор. Каждая копия вируса состоит из шифратора, случайного ключа и собственно вируса, зашифрованного этим ключом;

    - метаморфизм – создание различных копий вируса путём замены блоков команд на эквивалентные, перестановки местами кусков кода, вставки между значащими кусками кода «мусорных» команд, которые практически ничего не делают.

    Сочетание этих двух технологий приводит к появлению следующих типов вирусов.

    - шифрованный вирус – вирус, использующий простое шифрование со случайным ключом и неизменный шифратор. Такие вирусы легко обнаруживаются по сигнатуре шифратора;

    - метаморфный вирус – вирус, применяющий метаморфизм ко всему своему телу для создания новых копий;

    - полиморфный вирус – вирус, использующий метаморфный шифратор для шифрования основного тела вируса со случайным ключом. При этом часть информации, используемой для получения новых копий шифратора, также может быть зашифрована. Например, вирус может реализовывать несколько алгоритмов шифрования и при создании новой копии менять не только команды шифратора, но и сам алгоритм.

    Полиморфные вирусы можно делить на классы по уровню полиморфизма.

    Пик популярности полиморфных вирусов пришёлся на времена DOS , тем не менее, и позднее полиморфизм использовался во множестве вирусов, продолжает использоваться полиморфизм и сегодня.

    Примеры. Упомянутый выше Email-Worm.Win32.Bagle.p является полиморфным вирусом.

    Одним из наиболее сложных и относительно поздних полиморфных вирусов является Virus.Win32.Etap . При заражении файла вирус перестраивает и шифрует собственный код, записывает его в одну из секций заражаемого файла, после чего ищет в коде файла вызов функции ExitProcess и заменяет его на вызов вирусного кода. Таким образом, вирус получает управление не перед выполнением исходного кода заражённого файла, а после него.

    Внедрение вирусных копий может осуществляться двумя принципиально разными методами:

    Внедрение вирусного кода непосредственно в заражаемый объект;

    Замена объекта на вирусную копию. Замещаемый объект, как правило, переименовывается.

    Для вирусов характерным является преимущественно первый метод. Второй метод намного чаще используется червями и троянами, а точнее троянскими компонентами червей, поскольку трояны сами по себе не распространяются.

    Пример. Один из немногих почтовых червей, распространяющихся по почтовой книге The Bat ! – Email-Worm.Win32.Stator.a , помимо всего прочего заражает некоторые файлы Windows по принципу вируса-компаньона. В частности, к заражаемым файлам относятся: mplayer.exe , winhlp32.exe , notepad.exe , control.exe , scanregw.exe . При заражении файлы переименовываются в расширение.VXD , а вирус создаёт свои копии под оригинальными именами заражаемых файлов. После получения управления вирус запускает соответствующий переименованный оригинальный файл.

    В качестве варианта второго метода во времена DOS применялся следующий приём. При наборе имени исполняемого файла без указания расширения, DOS ищет по порядку сперва BAT , затем COM и в конце концов EXE -файл. Соответственно, вирусная копия создавалась в одном каталоге с EXE -файлом, дублируя его имя и принимая расширение COM . Таким образом, при попытке запустить данный EXE -файл без явного указания расширения сначала запускался вирус.

    Аналогичный приём может использоваться и в Windows -системах, но поскольку основная масса пользователей Windows редко пользуется запуском файлов из командной строки, эффективность этого метода будет низкой.

    5.1.2. Черви

    К сожалению, определение червя отсутствует в государственных стандартах и распорядительных документах, поэтому здесь приведено лишь интуитивное определение, дающее представление о принципах работы и выполняемых функциях этого типа вредоносных программ.

    Червь (сетевой червь) – тип вредоносных программ, распространяющихся по сетевым каналам, способных к автономному преодолению систем защиты автоматизированных и компьютерных сетей, а также к созданию и дальнейшему распространению своих копий, не всегда совпадающих с оригиналом, и осуществлению иного вредоносного воздействия.

    Так же как для вирусов, жизненный цикл червей можно разделить на определённые стадии:

    1) проникновение в систему;

    2) активация;

    3) поиск «жертв»;

    4) подготовка копий;

    5) распространение копий.

    Стадии 1 и 5, вообще говоря, симметричны и характеризуются в первую очередь используемыми протоколами и приложениями.

    Стадия 4 – Подготовка копий – практически ничем не отличается от аналогичной стадии в процессе размножения вирусов. Сказанное о подготовке копий вирусов без изменений применимо и к червям.

    На этапе проникновения в систему черви делятся преимущественно по типам используемых протоколов:

    - сетевые черви – черви, использующие для распространения протоколы Интернета и локальных сетей. Обычно этот тип червей распространяется с использованием неправильной обработки некоторыми приложениями базовых пакетов стека протоколов tcp /ip;

    - почтовые черви – черви, распространяющиеся в формате сообщений электронной почты;

    - IRC-черви – черви, распространяющиеся по каналам IRC (Internet Relay Chat );

    - P2P-черви – черви, распространяющиеся при помощи пиринговых (peer-to-peer ) файлообменных сетей;

    - IM-черви – черви, использующие для распространения системы мгновенного обмена сообщениями (IM , Instant Messenger ICQ , MSN Messenger , AIM и др.).

    Примеры. Классическими сетевыми червями являются представители семейства Net-Worm.Win32.Sasser . Эти черви используют уязвимость в службе LSASS Microsoft Windows . При размножении червь запускает FTP -службу на TCP -порту 5554, после чего выбирает IP -адрес для атаки и отсылает запрос на порт 445 по этому адресу, проверяя, запущена ли служба LSASS . Если атакуемый компьютер отвечает на запрос, червь посылает на этот же порт эксплойт уязвимости в службе LSASS , в результате успешного выполнения которого на удалённом компьютере запускается командная оболочка на TCP -порту 9996. Через эту оболочку червь удалённо выполняет загрузку копии червя по протоколу FTP с запущенного ранее сервера и удалённо же запускает себя, завершая процесс проникновения и активации.

    В качестве примера почтового червя можно рассмотреть Email-Worm.Win32.Zafi.d . Заражённое сообщение включает в себя выбираемые из некоторого списка тему и текст, содержанием которых является поздравление с праздником (большая часть – с Рождеством) и предложение ознакомиться с поздравительной открыткой во вложении. Поздравления могут быть на разных языках. Имя находящегося во вложении файла червя состоит из слова postcard на языке, соответствующем поздравлению, и произвольного набора символов. Расширение файла червя случайным образом выбирается из списка.BAT , .COM , .EXE , .PIF , .ZIP . Для рассылки червь использует адреса электронной почты, найденные на заражённом компьютере. Чтобы получить управление, червь должен быть запущен пользователем.

    IRC-Worm.Win32.Golember.a является, как следует из названия, IRC -червем. При запуске он сохраняет себя в каталоге Windows под именем trlmsn.exe и добавляет в раздел автозапуска реестра Windows параметр со строкой запуска этого файла. Кроме этого, червь сохраняет на диск свою копию в виде архива Janey2002.zip и файл-изображение Janey.jpg . Затем червь подключается к произвольным IRC -каналам под различными именами и начинает слать определённые текстовые строки, имитируя активность обычного пользователя. Параллельно всем пользователям этих каналов отсылается заархивированная копия червя.

    Функциональностью распространения через P2P -каналы обладают многие сетевые и почтовые черви. Например, Email-Worm.Win32.Netsky.q для размножения через файлообменные сети ищет на локальном диске каталоги, содержащие названия наиболее популярных сетей или же слово «shared », после чего кладёт в эти каталоги свои копии под различными названиями.

    IM -черви редко пересылают зараженные файлы непосредственно между клиентами. Вместо этого они рассылают ссылки на заражённые веб-страницы. Так, червь IM-Worm.Win32.Kelvir.k посылает через MSN Messenger сообщения, содержащие текст «its you » и ссылку «http://www. malignancy.us//pictures.php?email= », по указанному в которой адресу расположен файл червя.

    Сегодня наиболее многочисленную группу составляют почтовые черви. Сетевые черви также являются заметным явлением, но не столько из-за количества, сколько из-за качества: эпидемии, вызванные сетевыми червями, зачастую отличаются высокой скоростью распространения и большими масштабами. IRC -, P2P - и IM -черви встречаются достаточно редко, чаще IRC , P2P и IM служат альтернативными каналами распространения для почтовых и сетевых червей.

    На этапе активации черви делятся на две большие группы, отличающиеся как по технологиям, так и по срокам жизни:

    1. Для активации необходимо активное участие пользователя.

    2. Для активации участие пользователя не требуется вовсе либо достаточно лишь пассивного участия.

    Под пассивным участием пользователя во второй группе понимается, например, просмотр писем в почтовом клиенте, при котором пользователь не открывает вложенные файлы, но его компьютер, тем не менее, оказывается заражённым.

    Отличие в этих подходах глубже, чем может показаться на первый взгляд. Активация сетевого червя без участия пользователя всегда означает, что червь использует бреши в безопасности программного обеспечения компьютера. Это приводит к очень быстрому распространению червя внутри корпоративной сети с большим числом станций, существенно увеличивает загрузку каналов связи и может полностью парализовать сеть. Именно этот метод активации использовали черви Lovesan и Sasser . В результате вызванной таким сетевым червем эпидемии используемая брешь закрывается администраторами либо пользователями, и по мере уменьшения компьютеров с открытой брешью эпидемия завершается. Для повторения эпидемии разработчикам вирусов приходится эксплуатировать другую брешь. В итоге эпидемии, вызванные активными червями, существеннее влияют на работу сети в целом, однако случаются значительно реже, чем эпидемии пассивных сетевых червей. Обязательной мерой защиты от таких эпидемий является своевременная установка заплат безопасности. Отметим также, что особенно уязвимыми для этого типа червей являются операционные системы с заложенными возможностями удалённого управления или запуска программ – это семейство Microsoft Windows NT /2000/XP /2003.

    Пример. Уязвимость в службе LSASS , впервые использованная в черве MyDoom в начале 2004 г., продолжала успешно применяться и спустя полтора года. Так, Net-Worm.Win32.Mytob.be, обнаруженный в июне 2005 г., всё ещё использовал эту уязвимость как один из способов распространения в дополнение к распространению через электронную почту.

    С другой стороны, активное участие пользователя в активации червя означает, что пользователь был введён в заблуждение методами социальной инженерии. В большинстве случаев основным фактором служит форма подачи инфицированного сообщения: оно может имитировать письмо от знакомого человека (включая электронный адрес, если знакомый уже заражён), служебное сообщение от почтовой системы или же что-либо подобное, столь же часто встречающееся в потоке обычной корреспонденции. Пользователь в суматохе просто не отличает обычное письмо от заражённого и производит запуск автоматически.

    Защититься заплатами от такого рода червей невозможно. Даже внесение сигнатуры сетевого червя в вирусную базу данных не решает проблему до конца. Разработчикам вируса достаточно изменить исполняемый файл так, чтобы антивирус его не обнаруживал, и незначительно поменять текст сообщения, в том числе используя и технологии спам-рассылок, применяемые для обхода фильтров.

    В результате эпидемии, вызванные пассивными сетевыми червями, могут быть гораздо продолжительнее и порождать целые семейства однотипных сетевых червей.

    В последнее время наметилась тенденция к совмещению в червях обоих способов распространения. Многие представители семейства Mytob обладают функциями распространения через электронную почту и через уязвимость в службе LSASS .

    Способ поиска компьютера-жертвы полностью базируется на используемых протоколах и приложениях. В частности, если речь идёт о почтовом черве, производится сканирование файлов компьютера на предмет наличия в них адресов электронной почты, по которым в результате и производится рассылка копий червя.

    Точно так же интернет-черви сканируют диапазон IP -адресов в поисках уязвимых компьютеров, а P2P черви кладут свои копии в общедоступные каталоги клиентов пиринговых сетей. Некоторые черви способны эксплуатировать списки контактов интернет-пейджеров, таких как ICQ , AIM , MSN Messenger , Yahoo ! Messenger и др.

    Сказанное ранее о подготовке копий для распространения вирусов применимо и для червей.

    Наиболее часто среди червей встречаются упрощённые реализации метаморфизма. Некоторые черви способны рассылать свои копии в письмах как с внедрением скрипта, приводящего к автоматической активации червя, так и без внедрения. Такое поведение червя обусловлено двумя факторами: скрипт автоматической активации повышает вероятность запуска червя на компьютере пользователя, но при этом уменьшает вероятность проскочить антивирусные фильтры на почтовых серверах.

    Аналогично, черви могут менять тему и текст инфицированного сообщения, имя, расширение и даже формат вложенного файла – исполняемый модуль может быть приложен как есть или в заархивированном виде. Всё это нельзя считать мета- или полиморфизмом, но определённой долей изменчивости черви, безусловно, обладают.

    5.1.3. Трояны

    Приведём интуитивное определение троянской программы, или трояна.

    Троян (троянский конь) – тип вредоносных программ, основной целью которых является вредоносное воздействие по отношению к компьютерной системе. Трояны отличаются отсутствием механизма создания собственных копий. Некоторые трояны способны к автономному преодолению систем защиты КС с целью проникновения и заражения системы. В общем случае троян попадает в систему вместе с вирусом либо червем в результате неосмотрительных действий пользователя или же активных действий злоумышленника.

    В силу отсутствия у троянов функций размножения и распространения их жизненный цикл крайне короток – всего три стадии:

    Проникновение на компьютер;

    Активация;

    Выполнение заложенных функций.

    Это, само собой, не означает малого времени жизни троянов. Напротив, троян может длительное время незаметно находиться в памяти компьютера, никак не выдавая своего присутствия, до тех пор пока не будет обнаружен антивирусными средствами.

    Задачу проникновения на компьютер пользователя трояны решают обычно одним из двух следующих методов.

    1. Маскировка – троян выдаёт себя за полезное приложение, которое пользователь самостоятельно загружает из Интернет и запускает. Иногда пользователь исключается из этого процесса за счёт размещения на web -странице специального скрипта, который, используя дыры в браузере, автоматически инициирует загрузку и запуск трояна.

    Пример. Trojan.SymbOS.Hobble.a является архивом для операционной системы Symbian (SIS -архивом). При этом он маскируется под антивирус Symantec и носит имя symantec.sis . После запуска на смартфоне троян подменяет оригинальный файл оболочки FExplorer.app на повреждённый. В результате при следующей загрузке операционной системы большинство функций смартфона оказываются недоступными.

    Одним из вариантов маскировки может быть также внедрение злоумышленником троянского кода в код другого приложения. В этом случае распознать троян ещё сложнее, так как заражённое приложение может открыто выполнять какие-либо полезные действия, но при этом тайком наносить ущерб за счёт троянских функций.

    Распространён также способ внедрения троянов на компьютеры пользователей через веб-сайты. При этом используется либо вредоносный скрипт, загружающий и запускающий троянскую программу на компьютере пользователя, используя уязвимость в веб-браузере, либо методы социальной инженерии – наполнение и оформление веб-сайта провоцирует пользователя к самостоятельной загрузке трояна. При таком методе внедрения может использоваться не одна копия трояна, а полиморфный генератор, создающий новую копию при каждой загрузке. Применяемые в таких генераторах технологии полиморфизма обычно не отличаются от вирусных полиморфных технологий.

    2. Кооперация с вирусами и червями – троян путешествует вместе с червями или, реже, с вирусами. В принципе, такие пары «червь-троян» можно рассматривать целиком как составного червя, но в сложившейся практике принято троянскую составляющую червей, если она реализована отдельным файлом, считать независимым трояном с собственным именем. Кроме того, троянская составляющая может попадать на компьютер позже, чем файл червя.

    Пример. Используя backdoor -функционал червей семейства Bagle , автор червя проводил скрытую инсталляцию трояна SpamTool.Win32. Small.b , который собирал и отсылал на определённый адрес электронной почты, имевшийся в файлах на заражённом компьютере.

    Нередко наблюдается кооперация червей с вирусами, когда червь обеспечивает транспортировку вируса между компьютерами, а вирус распространяется по компьютеру, заражая файлы.

    Пример. Известный в прошлом червь Email-Worm.Win32.Klez.h при заражении компьютера также запускал на нём вирус Virus.Win32.Elkern.c . Зачем это было сделано, сказать тяжело, поскольку вирус сам по себе, кроме заражения и связанных с ошибками в коде вредоносных проявлений (явно выраженных вредоносных процедур в нём нет), никаких действий не выполняет, т.е. не является «усилением» червя в каком бы то ни было смысле.

    Здесь приёмы те же, что и у червей: ожидание запуска файла пользователем либо использование уязвимостей для автоматического запуска.

    В отличие от вирусов и червей, деление которых на типы производится по способам размножения/распространения, трояны делятся на типы по характеру выполняемых ими вредоносных действий. Наиболее распространены следующие виды троянов.

    - Клавиатурные шпионы – трояны, постоянно находящиеся в памяти и сохраняющие все данные, поступающие от клавиатуры с целью последующей передачи этих данных злоумышленнику. Обычно таким образом злоумышленник пытается узнать пароли или другую конфиденциальную информацию.

    Пример. В прошлом, буквально пару лет назад ещё встречались клавиатурные шпионы, которые фиксировали все нажатия клавиш и записывали их в отдельный файл. Trojan-Spy.Win32.Small.b , например, в бесконечном цикле считывал коды нажимаемых клавиш и сохранял их в файле C:\SYS .

    Современные программы-шпионы оптимизированы для сбора информации, передаваемой пользователем в Интернет, поскольку среди этих данных могут встречаться логины и пароли к банковским счетам, PIN -коды кредитных карт и прочая конфиденциальная информация, относящаяся к финансовой деятельности пользователя. Trojan-Spy.Win32.Agent.fa отслеживает открытые окна Internet Explorer и сохраняет информацию с посещаемых пользователем сайтов, ввод клавиатуры в специально созданный файл servms.dll в системном каталоге Windows .

    - Похитители паролей – трояны, также предназначенные для получения паролей, но не использующие слежение за клавиатурой. В таких троянах реализованы способы извлечения паролей из файлов, в которых эти пароли хранятся различными приложениями.

    Пример. Trojan-PSW.Win32.LdPinch.kw собирает сведения о системе, а также логины и пароли для различных сервисов и прикладных программ – мессенджеров, почтовых клиентов, программ дозвона. Часто эти данные оказываются слабо защищены, что позволяет трояну их получить и отправить злоумышленнику по электронной почте.

    - Утилиты удалённого управления – трояны, обеспечивающие полный удалённый контроль над компьютером пользователя. Существуют легальные утилиты такого же свойства, но они отличаются тем, что сообщают о своём назначении при установке или же снабжены документацией, в которой описаны их функции. Троянские утилиты удалённого управления, напротив, никак не выдают своего реального назначения, так что пользователь и не подозревает о том, что его компьютер подконтролен злоумышленнику. Наиболее популярная утилита удалённого управления – Back Orifice .

    Пример. Backdoor.Win32.Netbus.170 предоставляет полный контроль над компьютером пользователя, включая выполнение любых файловых операций, загрузку и запуск других программ, получение снимков экрана и т.д.

    - Люки (backdoor) – трояны, предоставляющие злоумышленнику ограниченный контроль над компьютером пользователя. От утилит удалённого управления отличаются более простым устройством и, как следствие, небольшим количеством доступных действий. Тем не менее, обычно одними из действий являются возможность загрузки и запуска любых файлов по команде злоумышленника, что позволяет при необходимости превратить ограниченный контроль в полный.

    Пример. В последнее время backdoor -функционал стал характерной чертой червей. Например, Email-Worm.Win32.Bagle.at использует порт 81 для получения удалённых команд или загрузки троянов, расширяющих функционал червя.

    Есть и отдельные трояны типа backdoor . Троян Backdoor.win32. Wootbot.gen использует IRC -канал для получения команд от «хозяина». По команде троян может загружать и запускать на выполнение другие программы, сканировать другие компьютеры на наличие уязвимостей и устанавливать себя на компьютеры через обнаруженные уязвимости.

    - Анонимные smtp-сервера и прокси – трояны, выполняющие функции почтовых серверов или прокси и использующиеся в первом случае для спам-рассылок, а во втором – для заметания следов хакерами.

    Пример. Трояны из семейства Trojan-Proxy.Win32.Mitglieder распространяются с различными версиями червей Bagle . Троян запускается червем, открывает на компьютере порт и отправляет автору вируса информацию об IP -адресе заражённого компьютера. После этого компьютер может использоваться для рассылки спама.

    - утилиты дозвона – сравнительно новый тип троянов, представляющий собой утилиты dial-up доступа в Интернет через дорогие почтовые службы. Такие трояны прописываются в системе как утилиты дозвона по умолчанию и влекут за собой огромные счета за пользование Интернетом.

    Пример. Trojan.Win32.Dialer.a при запуске осуществляет дозвон в Интернет через платные почтовые службы. Никаких других действий не производит, в том числе не создаёт ключей в реестре, т.е. даже не регистрируется в качестве стандартной программы дозвона и не обеспечивает автозапуск.

    - Модификаторы настроек браузера – трояны, которые меняют стартовую страницу в браузере, страницу поиска или ещё какие-либо настройки, открывают дополнительные окна браузера, имитируют нажатия на баннеры и т.п.

    Пример. Trojan-Clicker.JS.Pretty обычно содержится в html -стра-ницах. Он открывает дополнительные окна с определёнными веб-стра-ницами и обновляет их с заданным интервалом.

    - Логические бомбы – чаще не столько трояны, сколько троянские составляющие червей и вирусов, суть работы которых состоит в том, чтобы при определённых условиях (дата, время суток, действия пользователя, команда извне) произвести определённое действие, например уничтожение данных.

    Пример. Virus.Win9x.CIH , Macro.Word97.Thus.

    Черви и вирусы могут осуществлять все те же действия, что и трояны (см. предыд. п.). На уровне реализации это могут быть как отдельные троянские компоненты, так и встроенные функции. Кроме этого, за счёт массовости для вирусов и червей характерны также другие формы вредоносных действий:

    - Перегрузка каналов связи – свойственный червям вид ущерба, связанный с тем, что во время масштабных эпидемий по интернет-каналам передаются огромные количества запросов, заражённых писем или непосредственно копий червя. В ряде случаев пользование услугами Интернета во время эпидемии становится затруднительным. Пример: Net-Worm.Win32.Slammer.

    - DDoS атаки – благодаря массовости, черви могут эффективно использоваться для реализации распределённых атак на отказ в обслуживании (DDoS атак). В разгар эпидемии, когда заражёнными являются миллионы и даже десятки миллионов компьютеров, обращение всех инфицированных систем к определённому интернет-ресурсу приводит к полному блокированию этого ресурса. Так, во время атаки червя MyDoom сайт компании SCO был недоступен в течение месяца. Примеры: Net-Worm.Win32.CodeRed.a – не совсем удачная атака на www.whitehouse.gov , Email-Worm.Win32.Mydoom.a – удачная атака на www.sco.com.

    - Потеря данных – более характерное для вирусов, чем для троянов и червей, поведение, связанное с намеренным уничтожением определённых данных на компьютере пользователя. Примеры: Virus.Win9x.CIH – удаление стартовых секторов дисков и содержимого Flash BIOS; Macro.Word97.Thus – удаление всех файлов на диске C :; Email-Worm.Win32.Mydoom.e – удаление файлов с определёнными расширениями в зависимости от показателя счётчика случайных чисел.

    - Нарушение работы ПО – также более свойственная вирусам черта. Из-за ошибок в коде вируса заражённые приложения могут работать с ошибками или не работать вовсе. Пример: Net-Worm.Win32.Sasser.a – перезагрузка заражённого компьютера.

    – интенсивное использование ресурсов компьютера вредоносными программами ведёт к снижению производительности как системы в целом, так и отдельных приложений. Пример: в разной степени – любые вредоносные программы.

    Наличие деструктивных действий вовсе не является обязательным критерием для классификации программного кода как вирусного. Следует также отметить, что одним только процессом саморазмножения вирус способен причинить колоссальный ущерб. Наиболее яркий пример – Net-Worm.Win32.Slammer .

    5.1.4. Угрозы безопасности информации

    Рассмотрим угрозы безопасности информации с точки зрения вирусов. Учитывая тот факт, что общее число вирусов по состоянию на сегодня превосходит 100 000, проанализировать угрозы со стороны каждого из них является слишком трудоёмкой и бесполезной задачей, поскольку ежедневно возрастает количество вирусов, а значит, необходимо ежедневно модифицировать полученный список. В этой работе мы будем считать, что вирус способен реализовать любую из угроз безопасности информации.

    Существует множество способов классификации угроз безопасности информации, которая обрабатывается в автоматизированной системе. Наиболее часто используется классификация угроз по результату их влияния на информацию, а именно – нарушение конфиденциальности, целостности и доступности.

    Для каждой угрозы существует несколько способов её реализации со стороны вирусов.

    Угроза нарушения конфиденциальности:

    Кража информации и её распространение с помощью штатных средств связи либо скрытых каналов передачи: Email-Worm.Win32.Sircam – рассылал вместе с вирусными копиями произвольные документы, найденные на заражённом компьютере;

    Кража паролей доступа, ключей шифрования и пр.: любые трояны, крадущие пароли, Trojan-PSW.Win32.LdPinch.gen ;

    Удалённое управление: Backdoor.Win32.NetBus , Email-Worm.Win32. Bagle (backdoor -функциональность).

    Угроза нарушения целостности:

    Модификация посредством уничтожения либо шифрации (удаление некоторых типов документов): Virus.DOS.OneHalf – шифрование содержимого диска, Virus.Win32.Gpcode.f – шифрует файлы с определёнными расширениями, после чего самоуничтожается, оставляя рядом с зашифрованными файлами координаты для связи по вопросам расшифровки файлов;

    Модификация путём низкоуровневого уничтожения носителя (форматирование носителя, уничтожение таблиц распределения файлов): Virus.MSWord.Melissa.w – 25 декабря форматирует диск C :.

    Угроза нарушения доступности:

    Любая деятельность, результатом которой является невозможность доступа к информации; различные звуковые и визуальные эффекты: Email-Worm.Win32.Bagle.p – блокирование доступа к сайтам антивирусных компаний;

    Вывод компьютера из строя путём уничтожения либо порчи критических составляющих (уничтожение Flash BIOS ): Virus.Win9x.CIH – порча Flash BIOS.

    Как несложно было убедиться, для каждого из приведённых выше способов реализации угроз можно привести конкретный пример вируса, реализующего один или одновременно несколько способов.

    Вредоносные программы отличаются условиями существования, применяемыми технологиями на различных этапах жизненного цикла, собственно вредоносным воздействием – все эти факторы и являются основой для классификации. В результате по основному (с исторической точки зрения) признаку – размножению – вредоносные программы делятся на три типа: собственно вирусы, черви и трояны.

    Независимо от типа вредоносные программы способны наносить значительный ущерб, реализуя любые угрозы информации – угрозы нарушения целостности, конфиденциальности, доступности. В связи с этим при проектировании комплексных систем антивирусной защиты и даже в более общем случае – комплексных систем защиты информации необходимо проводить градацию и классифицировать объекты сети по важности обрабатываемой на них информации и по вероятности заражения этих узлов вирусами.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    хорошую работу на сайт">

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    HTML-версии работы пока нет.
    Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

    Подобные документы

      История появления компьютерных вирусов как разновидности программ, особенностью которых является саморепликация. Классификация компьютерных вирусов, пути их распространения. Меры предосторожности от заражения компьютера. Сравнение антивирусных программ.

      курсовая работа , добавлен 06.08.2013

      Зарождение компьютерных вирусов. Пути проникновения вирусов в компьютер и механизм распределения вирусных программ. Признаки появления вирусов. Обезвреживание вирусов. Меры профилактики. Классификация вирусов по деструктивным возможностям.

      реферат , добавлен 01.12.2006

      Понятие, признаки, классификация и характеристика вредоносных программ. Разнообразие компьютерных вирусов и классификация антивирусных программ. Способы и общие признаки заражения компьютера вирусом. Коммерциализация индустрии написания вирусов.

      курсовая работа , добавлен 24.11.2014

      Понятие и классификация компьютерных вирусов. Методы защиты от вредоносных программ, их разновидности. Признаки заражения компьютера вирусом. Проблема защиты информации. Работа с приложениями пакета MS Office. Анализ файловых вирусов, хакерских утилит.

      курсовая работа , добавлен 12.01.2015

      Общие сведения, понятие и разновидности компьютерных вирусов. Создание компьютерных вирусов как вид преступления. Пути проникновения вирусов и признаки появления их в компьютере. Антивирусные средства. Сравнительный анализ антивирусных программ.

      курсовая работа , добавлен 03.06.2009

      Классификация и свойства компьютерных вирусов. Особенности действия троянских коней, программных закладок и сетевых червей. Пути их проникновения в компьютер и механизм распределения. Признаки заражения ими и методы защиты. Анализ антивирусных программ.

      курсовая работа , добавлен 08.03.2015

      Понятие компьютерных вирусов и причины, заставляющие программистов их создавать. Виды и особенности вредоносных программ, пути их распространения. Общие средства защиты информации, профилактические меры и специализированное ПО для борьбы с вирусами.

      контрольная работа , добавлен 06.08.2013