Js сортировка сложной таблицы. Установка режима обтекания текстом. Описание класса Column

Принципы построения и компоненты сети X.25

Главной особенностью сети X.25 является использование аппарата виртуальных каналов для обеспечения информационного взаимодействия между компонентами сети. Виртуальные каналы предназначены для организации вызова и непосредственной передачи данных между абонентами сети. Информационный обмен в сети X.25 во многом похож на аналогичный процесс в сетях ISDN и состоит из трех обязательных фаз:

  • Установление вызова (виртуального канала)
  • Информационный обмен по виртуальному каналу
  • Разрывание вызова (виртуального канала)

Информационное взаимодействие в сети X.25 осуществляется на физическом, канальном и сетевом уровнях. На физическом уровне могут быть использованы любые универсальные или специализированные интерфейсы. Компонентами сети являются устройства трех основных категорий:

  • Устройства DTE (Data Terminal Equipment)
  • Устройства DCE (Data Circuit-Terminating Equipment)
  • Устройства PSE (Packet Switching Exchange)

Устройство PAD (packet assembler/ disassembler) является специфическим устройством сети X.25. PAD предназначен для обеспечения взаимодействия неспециализированных терминалов с сетью, для преобразования потока символов, который поступает от неспециализированного терминала в пакеты X.25 и выполнения обратного преобразования.

Взаимодействие на канальном уровне сети X.25

Протоколы канального уровня HDLC/SDLC, были разработаны для того, чтобы решать следующие задачи:

  • Обеспечение передачи сообщений, которые могут содержать любое количество бит и любые возможные комбинации бит - требование кодовой прозрачности.
  • При передаче потока бит должны выполняться процедуры, которые позволяют обнаружить ошибки на приемной стороне.
  • Возникновение ошибки при передаче не должно приводить к потере или дублированию компонентов сообщения, т.е. к его искажению.
  • Протокол канального уровня должен был обеспечивать работу как двухточечных, так и многоточечных физических цепей
  • Протокол должен обеспечивать подключение дуплексных и полудуплексных линий
  • Протокол должен обеспечивать информационный обмен при значительных вариациях времени распространения сигнала

Протоколы семейства HDLC

Протоколы осуществляют передачу данных в виде кадров переменной длины. Начало и конец кадра помечается специальной последовательностью битов, которая называется флагом . Для обеспечения дисциплины управления процессом передачи данных, одна из станций, которые обеспечивают информационный обмен, может быть обозначена, как первичная , а другая (или другие) станции могут быть обозначены, как вторичные . Кадр, который посылает первичная станция, называется командой (command). Кадр, который формирует и передает вторичная станция, называется ответ (response).

Режимы организации взаимодействия на канальном уровне

Вторичная станция сегмента может работать в двух режимах: режиме нормального ответа или в режиме асинхронного ответа . Вторичния станция, которая находится в режиме нормального ответа, начинает передачу данных только в том случае, если она получила разрешающую команду от первичной станции. Вторичная станция, которая находится в режиме асинхронного ответа, может по своей инициативе начать передачу кадра или группы кадров. Станции, которые сочетают в себе функции первичных и вторичных станций и называются комбинированными .Симметричный режим взаимодействия комбинированных станций называется сбалансированным режимом.

Процедура LAPB

Процедура LAPB (Link Access Procedure Balanced) используется в сетях X.25 в качестве протокола канального уровня.

Флаг

Протокол LAPB использует в качестве флага комбинацию из 8 бит, которая состоит из 6-ти единиц и двух нулей, которые обрамляют эту последовательность спереди и сзади (01111110). Процесс приема кадра завершается при получении следующего флага. В том случае, если к моменту получения завершающего флага приемник получил менее 32 бит, принятый кадр считается ошибочным и уничтожается. Для предотвращения появления флаговой комбинации в теле кадра используется специальная процедура.

Структура кадра LAPB

Рекомендация X.25 определяет два основных типа процедуры LAPB - основной тип (modulo 8, basic) и расширенный тип (modulo 128, extended). Эти режимы отличаются разрядностью счетчиков, которые используются для управления потоком кадров. Кадр протокола LAPB содержит 4 поля: ADRESS, CONROL, Data, FCS . Поле DATA в кадре LAPB может отсутствовать.

Поле ADRESS

Поле ADRESS занимает в кадре один байт. В этом поле располагается бит признака C/R (Command /Response) В поле ADDRESS кадра управляющей команды размещается физический адрес принимающей станции. В поле ADRESS кадра ответа на команду размещается физический адрес передающей станции.

Поле CONTROL

Содержимое этого поля поля определяет тип кадра.

  • Информационные кадры (Information Frames, I-кадры). В битах поля CONTROL размещаются 3-х разрядный номер передаваемого кадра и 3-х разрядный номер кадра, который ожидается для приема для обеспечения управления потоком.
  • Управляющие кадры (Supervisory Frames, S-кадры). В поле CONTROL размещается 3-х разрядный номер информационного кадра, который ожидается для приема и два бита, которые определяют тип передаваемого управляющего кадра.
    Обозначение Тип кадра Бит №3 Бит №4
    RR Приемник готов (Receiver Ready) 0 0
    RNR Приемник не готов (Receiver Not Ready) 1 0
    REJ Отказ/переспрос (Reject) 0 1

    Наиболее часто в процессе информационного взаимодействия используются управляющие кадры типа RR . Кадры данного типа передает получатель данных для того, чтобы обозначить готовность к приему очередного кадра, в том случае, когда он сам не имеет информации для передачи. Кадры RNR используются устройствами DCE и DTE для того, чтобы сообщить абоненту о возникновении аварийной ситуации, в которой дальнейший прием информационных кадров невозможен. Кадры REJ используются устройствами DCE и DTE для того, чтобы сигнализировать абоненту о разрешении аварийной ситуации, в которой был невозможен прием информационных кадров. Кадр REJ передается после кадра RNR и подтверждает факт перехода линии в нормальный режим работы.

  • Ненумерованные кадры (Unnumbered Frames, U - кадры). Предназначены для организации и разрывания логического соединения, согласования параметров линии и формирования сигналов о возникновении неустранимых ошибок в процессе передачи данных I-кадрами.
    Обозначение Тип Признак
    SABM(E) Set Asynchronous Balanced Mode Команда
    DISC Disconnect Команда
    DM Disconnect Mode Ответ
    UA Unnumbered Acknowledgement Ответ
    FRMR Frame Reject Ответ
  • Кадр FRMR передается вторичной станцией для того, чтобы указать на возникновение аварийной ситуации, которая не может быть разрешена путем повторной передачи аварийного кадра.

Сетевой уровень X.25

Для передачи по сети пакеты X.25 инкапсулируются в кадры LAPB. Протокол LAPB обеспечивает надежную доставку этих пакетов по каналу, который связывает один компонент сети с другим. Один физический канал в сети Х.25 может быть использован для того, чтобы передавать пакеты которые относятся к нескольким различным процессам сетевого уровня. В отличие от принципа статического временного разделения, который используется в сетях ISDN, в сети X.25 для распределения канальных ресурсов используется принцип динамического разделения.

Виртуальные каналы X.25

Процесс сетевого уровня получает в свое распоряжение часть полосы пропускания физического канала в виде виртуального канала. Полная полоса пропускания канала делится в равных пропорциях между виртуальными каналами, которые активны в текущий момент. В сети X.25 существует два типа виртуальных каналов: коммутируемые (SVC) и постоянные (PVC).

Формат пакета X.25

Пакет X.25 состоит как минимум из трех байтов, которые определяют заголовок пакета. Первый байт содержит 4 бит идентификатора общего формата и 4 бита номера группы логического канала . Второй байт содержит номер логического канала , а третий — идентификатор типа пакета . Пакеты в сети бывают двух типов — управляющие пакеты и пакеты данных . Тип пакета определяется значением младшего бита идентификатора типа пакета.

Идентификатор общего формата

Поле идентификатора общего формата содержит признак, который устанавливает тип процедуры управления потоком пакетов (modulo 8 или modulo 128).

Номер логического канала

Номер логического канала задается содержимым двух полей — номер группы логического канала от 0 до 15 и номер канала в группе от 0 до 255. Таким образом, максимальное число логических каналов может достигать значения 4095. Номер логического канала определяет виртуальный порт, с которым ассоциируется конкретный пользовательский процесс.

Идентификатор типа пакета

DCE " width="11" height="9"> DTE DTE " width="11" height="9"> DCE Код (16)
Incoming Call Call Request 0B
Call Connected Call Accepted 0F
Clear Indication Clear Request 13
Clear Confirmation Clear Confirmation 17
Interrupt Interrupt 23
Interrupt Confirmation Interrupt Confirmation 27
Receiver Ready (RR) Receiver Ready (RR) X1
Receiver Not Ready (RNR) Receiver Not Ready (RNR) X5
— Reject (REJ) X9

Cетевые адреса получателя и отправителя пакета размещаются в поле "данные", и предназначены для управления вызовами.

Формат сетевого адреса X.25

Сетевой адрес состоит из двух частей

  • Data Network ID Code (DNIC)
  • Network Terminal Number

Поле DNIC содержит 4 десятичных цифры и определяет код страны и номер провайдера. Содержимое поля Network Terminal Number содержит 10 или 11 десятичных цифр, которые определяет провайдер и предназначено для определения конкретного пользователя.

Управление потоком кадров

Для управления потоком пакетов на сетевом уровне X.25 используются такие же процедуры и механизмы, какие используются для управления потоком кадров на канальном уровне сети X.25.

Для того, чтобы обеспечить возможность подключения к сети X.25 терминалов различного типа, используются специальные алгоритмы и параметры, которые управляют процессом сборки и разборки пакетов.

Данная рекомендация определяет наименования и назначения основных параметров, с помощью которых осуществляется настройка PAD. Параметры X.3 обозначаются символами P1 — P32.Параметр P1 определяет, возможен ли выход из режима передачи в режим команд по инициативе оператора терминала.

Для управления потоком используются специальные кодовые комбинации XON и XOFF. В том случае, если терминал по каким-либо причинам временно не способен принимать символы от PAD, он передает символ XOFF (^S). PAD должен прекратить передачу данных этому терминалу до получения от него разрешающего символа XON(^Q). Значения этих символов могут быть переопределены с помощью параметров Р28 и Р29.

Эта рекомендация определяет процедуры, в соответствии с которыми, пользователь может прочитать или изменить текущие значения параметров X.3 PAD. Для изменения установленных параметров X.3 PAD пользователь должен использовать команду SET. Для того, чтобы прочитать текущие значения параметров X.3 PAD пользователь должен использовать команду PAR.

Сети Х.25 являются первой сетью с коммутацией пакетов и на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Принципы построения и компоненты сети X.25

Главной особенностью сети X.25 является использование аппарата виртуальных каналов для обеспечения информационного взаимодействия между компонентами сети. Виртуальные каналы предназначены для организации вызова и непосредственной передачи данных между абонентами сети. Информационный обмен в сети X.25 во многом похож на аналогичный процесс в сетях ISDN и состоит из трех обязательных фаз:

Установление вызова (виртуального канала)

Информационный обмен по виртуальному каналу

Разрывание вызова (виртуального канала)

Информационное взаимодействие в сети X.25 осуществляется на физическом, канальном и сетевом уровнях. На физическом уровне могут быть использованы любые универсальные или специализированные интерфейсы.На рисунке представлена структурная схема сети X.25, где изображены основные элементы:

Устройства DTE (Data Terminal Equipment)

Устройства DCE (Data Circuit-Terminating Equipment)

Устройства PSE (Packet Switching Exchange)

Устройство PAD (packet assembler/ disassembler) является специфическим устройством сети X.25. PAD предназначен для обеспечения взаимодействия неспециализированных терминалов с сетью, для преобразования потока символов, который поступает от неспециализированного терминала в пакеты X.25 и выполнения обратного преобразования.

Интерфейс Х.25 обеспечивает:

1) доступ удаленному пользователю к главному компьютеру;

2) доступ удаленному ПК к локальной сети;

3) связь удаленной сети с другой удаленной сетью.

Интерфейс Х.25

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

Физический уровень На физическом уровне Х.25 используются аналоговые выделенные линии, которые обеспечивают двухточечное соединение. Могут использоваться аналоговые телефонные линии, а также цифровые выделенные линии. На сетевом уровне нет контроля достоверности и управления потоком. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis.

Канальный уровень На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры. Контроль ошибок производится во всех узлах сети. При обнаружении ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B, который работает только с двухточечными каналами связи, поэтому адресация не требуется.

Протоколы канального уровня HDLC/SDLC, были разработаны для того, чтобы решать следующие задачи:

Обеспечение передачи сообщений, которые могут содержать любое количество бит и любые возможные комбинации бит - требование кодовой прозрачности.

При передаче потока бит должны выполняться процедуры, которые позволяют обнаружить ошибки на приемной стороне.

Возникновение ошибки при передаче не должно приводить к потере или дублированию компонентов сообщения, т.е. к его искажению.

Протокол канального уровня должен был обеспечивать работу как двухточечных, так и многоточечных физических цепей

Протокол должен обеспечивать подключение дуплексных и полудуплексных линий

Протокол должен обеспечивать информационный обмен при значительных вариациях времени распространения сигнала

Протоколы семейства HDLC Протоколы осуществляют передачу данных в виде кадров переменной длины. Начало и конец кадра помечается специальной последовательностью битов, которая называется флагом. Для обеспечения дисциплины управления процессом передачи данных, одна из станций, которые обеспечивают информационный обмен, может быть обозначена, как первичная, а другая (или другие) станции могут быть обозначены, как вторичные. Кадр, который посылает первичная станция, называется командой (command). Кадр, который формирует и передает вторичная станция, называется ответ (response).

Режимы организации взаимодействия на канальном уровне

Вторичная станция сегмента может работать в двух режимах: режиме нормального ответа или в режиме асинхронного ответа. Вторичния станция, которая находится в режиме нормального ответа, начинает передачу данных только в том случае, если она получила разрешающую команду от первичной станции. Вторичная станция, которая находится в режиме асинхронного ответа, может по своей инициативе начать передачу кадра или группы кадров. Станции, которые сочетают в себе функции первичных и вторичных станций и называются комбинированными.Симметричный режим взаимодействия комбинированных станций называется сбалансированным режимом.

Процедура LAPB

Процедура LAPB (Link Access Procedure Balanced) используется в сетях X.25 в качестве протокола канального уровня.

Протокол LAPB использует в качестве флага комбинацию из 8 бит, которая состоит из 6-ти единиц и двух нулей, которые обрамляют эту последовательность спереди и сзади (01111110). Процесс приема кадра завершается при получении следующего флага. В том случае, если к моменту получения завершающего флага приемник получил менее 32 бит, принятый кадр считается ошибочным и уничтожается. Для предотвращения появления флаговой комбинации в теле кадра используется специальная процедура.

Структура кадра LAPB

Рекомендация X.25 определяет два основных типа процедуры LAPB - основной тип (modulo 8, basic) и расширенный тип (modulo 128, extended). Эти режимы отличаются разрядностью счетчиков, которые используются для управления потоком кадров. Кадр протокола LAPB содержит 4 поля: ADRESS, CONROL, Data, FCS. Поле DATA в кадре LAPB может отсутствовать.

Поле ADRESS занимает в кадре один байт. В этом поле располагается бит признака C/R (Command /Response) В поле ADDRESS кадра управляющей команды размещается физический адрес принимающей станции. В поле ADRESS кадра ответа на команду размещается физический адрес передающей станции.

Поле CONTROL

Содержимое этого поля поля определяет тип кадра.

Информационные кадры (Information Frames, I-кадры). В битах поля CONTROL размещаются 3-х разрядный номер передаваемого кадра и 3-х разрядный номер кадра, который ожидается для приема для обеспечения управления потоком.

Управляющие кадры (Supervisory Frames, S-кадры). В поле CONTROL размещается 3-х разрядный номер информационного кадра, который ожидается для приема и два бита, которые определяют тип передаваемого управляющего кадра.

Наиболее часто в процессе информационного взаимодействия используются управляющие кадры типа RR. Кадры данного типа передает получатель данных для того, чтобы обозначить готовность к приему очередного кадра, в том случае, когда он сам не имеет информации для передачи. Кадры RNR используются устройствами DCE и DTE для того, чтобы сообщить абоненту о возникновении аварийной ситуации, в которой дальнейший прием информационных кадров невозможен. Кадры REJ используются устройствами DCE и DTE для того, чтобы сигнализировать абоненту о разрешении аварийной ситуации, в которой был невозможен прием информационных кадров. Кадр REJ передается после кадра RNR и подтверждает факт перехода линии в нормальный режим работы.

Ненумерованные кадры (Unnumbered Frames, U - кадры). Предназначены для организации и разрывания логического соединения, согласования параметров линии и формирования сигналов о возникновении неустранимых ошибок в процессе передачи данных I-кадрами.

Кадр FRMR передается вторичной станцией для того, чтобы указать на возникновение аварийной ситуации, которая не может быть разрешена путем повторной передачи аварийного кадра.

Сетевой уровень Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, а общий поток разбивается на пакеты. Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации. Сеанс может быть завершен по инициативе любого DTE, после чего для последующего обмена снова потребуется установление соединения.

Протокол PLP определяет следующие режимы: Установление соединения используется для организации коммутируемой виртуальной цепи между DTE. Соединение устанавливается следующим образом. DTE вызывающей стороны посылает запрос своему локальному устройству DCE, которое включает в запрос адрес вызывающей стороны и неиспользованный адрес логического канала для использования его соединением. DCE определяет PSE, который может быть использован для данной передачи. Пакет, передаваемый по цепочке PSE, достигает конечного удаленного DCE, где определяется DTE узла назначения, к которому пакет и доставляется. Вызывающий DTE дает ответ своему DCE, а тот передает ответ удаленному DCE для удаленного DTE. Таким образом, создается коммутируемый виртуальный канал. Режим передачи данных, который используется при обмене данными через виртуальные цепи. В этом режиме выполняется контроль ошибок и управление потоком. Режим ожидания используется, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит. Сброс соединения используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Виртуальные каналы X.25

Процесс сетевого уровня получает в свое распоряжение часть полосы пропускания физического канала в виде виртуального канала. Полная полоса пропускания канала делится в равных пропорциях между виртуальными каналами, которые активны в текущий момент. В сети X.25 существует два типа виртуальных каналов: коммутируемые (SVC) и постоянные (PVC).

Формат пакета X.25

Пакет X.25 состоит как минимум из трех байтов, которые определяют заголовок пакета. Первый байт содержит 4 бит идентификатора общего формата и 4 бита номера группы логического канала. Второй байт содержит номер логического канала, а третий - идентификатор типа пакета. Пакеты в сети бывают двух типов - управляющие пакеты и пакеты данных. Тип пакета определяется значением младшего бита идентификатора типа пакета.

Идентификатор общего формата

Поле идентификатора общего формата содержит признак, который устанавливает тип процедуры управления потоком пакетов (modulo 8 или modulo 128).

Номер логического канала

Номер логического канала задается содержимым двух полей - номер группы логического канала от 0 до 15 и номер канала в группе от 0 до 255. Таким образом, максимальное число логических каналов может достигать значения 4095. Номер логического канала определяет виртуальный порт, с которым ассоциируется конкретный пользовательский процесс.

Идентификатор типа пакета Cетевые адреса получателя и отправителя пакета размещаются в поле "данные", и предназначены для управления вызовами.

Формат сетевого адреса X.25

Сетевой адрес состоит из двух частей Data Network ID Code (DNIC) Network Terminal Number

Поле DNIC содержит 4 десятичных цифры и определяет код страны и номер провайдера. Содержимое поля Network Terminal Number содержит 10 или 11 десятичных цифр, которые определяет провайдер и предназначено для определения конкретного пользователя.

Управление потоком кадров

Для управления потоком пакетов на сетевом уровне X.25 используются такие же процедуры и механизмы, какие используются для управления потоком кадров на канальном уровне сети X.25.

Для того, чтобы обеспечить возможность подключения к сети X.25 терминалов различного типа, используются специальные алгоритмы и параметры, которые управляют процессом сборки и разборки пакетов.

Данная рекомендация определяет наименования и назначения основных параметров, с помощью которых осуществляется настройка PAD. Параметры X.3 обозначаются символами P1 - P32.Параметр P1 определяет, возможен ли выход из режима передачи в режим команд по инициативе оператора терминала.

Для управления потоком используются специальные кодовые комбинации XON и XOFF. В том случае, если терминал по каким-либо причинам временно не способен принимать символы от PAD, он передает символ XOFF (^S). PAD должен прекратить передачу данных этому терминалу до получения от него разрешающего символа XON(^Q). Значения этих символов могут быть переопределены с помощью параметров Р28 и Р29.

Эта рекомендация определяет процедуры, в соответствии с которыми, пользователь может прочитать или изменить текущие значения параметров X.3 PAD. Для изменения установленных параметров X.3 PAD пользователь должен использовать команду SET. Для того, чтобы прочитать текущие значения параметров X.3 PAD пользователь должен использовать команду PAR.

Достоинства и недостатки.

Достоинства сети Х.25:

высокая надежность, сеть с гарантированной доставкой информации;

могут быть использованы как аналоговые, так и цифровые каналы передачи данных (выделенные и коммутируемые линии связи).

Недостатки сети:

значительные задержки передачи пакетов, поэтому ее невозможно использовать для передачи голоса и видеоинформации.

Литература.

Новиков Ю.В., Кондратенко С.В. Основы локальных сетей, 2005

Если сеть Х.25 не связана с внешним миром, то она может использовать адрес любой длины (в пределах формата поля адреса) и давать адресам произвольные значения. Максимальная длина поля адреса в пакете Х.25 составляет 16 байт.

Рекомендация Х.121 CCITT определяет международную систему нумерации адресов для сетей передачи данных общего пользования. Если сеть Х.25 хочет обмениваться данными с другими сетями Х.25, то в ней нужно придерживаться адресации стандарта Х.121.

Адреса Х.121 (называемые также International Data Numbers, IDN) имеют разную длину, которая может доходить до 14 десятичных знаков. Первые четыре цифры IDN называюткодом идентификации сети (Data Network Identification Code, DNIC) . DNIC поделен на две части; первая часть (3 цифры) определяет страну, в которой находится сеть, а вторая - номер сети Х.25 в данной стране. Таким образом, внутри каждой страны можно организовать только 10 сетей Х.25. Если же требуется перенумеровать больше, чем 10 сетей для одной страны, проблема решается тем, что одной стране дается несколько кодов. Например, Россия имела до 1995 года один код - 250, а в 1995 году ей был выделен еще один код - 251. Остальные цифры называютсяномером национального терминала (National Terminal Numbe, NTN) . Эти цифры позволяют идентифицировать определенный DTE в сети Х.25.

Международные сети Х.25 могут также использовать международный стандарт нумерации абонентов ISO 7498, описанный выше.

По стандарту ISO 7498 для нумерации сетей Х.25 к адресу в формате Х.121 добавляется только один байт префикса, несущий код 36 (использование в адресе только кодов десятичных цифр) или 37 (использование произвольных двоичных комбинаций). Этот код позволяет универсальным коммутаторам, например коммутаторам сети ISDN, поддерживающим также и коммутацию пакетов Х.25, автоматически распознавать тип адреса и правильно выполнять маршрутизацию запроса на установление соединения.

Стек протоколов сети х.25

Стандарты сетей Х.25 описывают 3 уровня протоколов (рис. 6.23).

Рис. 6.23. Стек протоколов сети X.25

    На физическом уровне определены синхронные интерфейсы Х.21 и Х.21 bis к оборудованию передачи данных - либо DSU/CSU, если выделенный канал является цифровым, либо к синхронному модему, если канал выделенный.

    На канальном уровне используется подмножество протокола HDLC, обеспечивающее возможность автоматической передачи в случае возникновения ошибок в линии. Предусмотрен выбор из двух процедур доступа к каналу: LAP или LAP-B.

    На сетевом уровне определен протокол Х.25/3 обмена пакетами между оконечным оборудованием и сетью передачи данных.

Транспортный уровень может быть реализован в конечных узлах, но он стандартом не определяется.

Протокол физического уровня канала связи не оговорен, и это дает возможность использовать каналы разных стандартов.

На канальном уровне обычно используется протокол LAP-B. Этот протокол обеспечивает сбалансированный режим работы, то есть оба узла, участвующих в соединении, равноправны. По протоколу LAP-B устанавливается соединение между пользовательским оборудованием DTE (компьютером, IP- или IPX-маршрутизатором) и коммутатором сети. Хотя стандарт это и не оговаривает, но по протоколу LAP-B возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами. Протокол LAP-B почти во всех отношениях идентичен протоколу LLC2, описанному в главе 3, кроме адресации. Кадр LAP-B содержит одно однобайтовое адресное поле (а не два - DSAP и SSAP), в котором указывается не адрес службы верхнего уровня, а направление передачи кадра - 0х01 для направления команд от DTE к DCE (в сеть) или ответов от DCE к DTE (из сети) и 0х03 для направления ответов от DTE к DCE или команд от DCE к DTE. Поддерживается как нормальный режим (с максимальным окном в 8 кадров и однобайтовым полем управления), так и расширенный режим (с максимальным окном в 128 кадров и двухбайтовым полем управления).

Сетевой уровень Х.25/3 (в стандарте он назван не сетевым, а пакетным уровнем) реализуется с использованием 14 различных типов пакетов, по назначению аналогичных типам кадров протокола LAP-B. Так как надежную передачу данных обеспечивает протокол LAP-B, протокол Х.25/3 выполняет функции маршрутизации пакетов, установления и разрыва виртуального канала между конечными абонентами сети и управления потоком пакетов.

После установления соединения на канальном уровне конечный узел должен установить виртуальное соединение с другим конечным узлом сети. Для этого он в кадрах LAP-B посылает пакет Call Request протокола X.25. Формат пакета Call Request показан на рис. 6.24.

Рис. 6.24. Формат пакета Call Request

Поля, расположенные в первых трех байтах заголовка пакета, используются во всех типах кадров протокола Х.25. Признаки Q и D и Modulo расположены в старшей части первого байта заголовка. Признак Q предназначен для распознавания на сетевом уровне типа информации в поле данных пакета. При получении пакета информация, расположенная в поле данных, а также значение бита Q передается верхним уровням пользовательского стека протоколов (непосредственно транспортному уровню этого стека). Значение Q=1 означает управляющую пользовательскую информацию, а Q=0 - данные. Признак D означает подтверждение приема пакета узлом назначения. Обычный механизм подтверждения принятия пакетов с помощью квитанций имеет для протокола Х.25 только локальный смысл - прием пакета подтверждает ближайший коммутатор сети, через который конечный узел запросил и установил виртуальное соединение. Если же узел-источник запросил подтверждение приема конечным узлом, то это подтверждение индицируется установкой бита D (delivery confirmation) в пакетах, идущих от узла назначения.

Признак Modulo говорит о том, по какому модулю - 8 или 128 - ведется нумерация пакетов. Значение 10 означает модуль 128, а 01 - модуль 8.

Поле Номер логической группы (Lodical Group Number, LGN) содержит значениеномера логической группы виртуального канала. Каналы образуют логические группы по функциональному признаку, например:

    постоянный виртуальный канал;

    коммутируемый виртуальный канал только для входящих сообщений (симплексный);

    коммутируемый виртуальный канал только для исходящих сообщений (симплексный);

    коммутируемый дуплексный виртуальный канал.

Максимальное количество логических групп - 12, хотя в конкретной сети допустимо и меньшее количество.

Поле Номер логического канала (Logical Channel Number, LCN) содержит номер виртуального канала, назначаемый узлом-источником (для коммутируемых виртуальных каналов) или администратором сети (для постоянных виртуальных каналов). Максимальное количество виртуальных каналов, проходящих через один порт, равно 256.

Поле Тип (Type) указывает тип пакета. Например, для пакета Call Request отведено значение типа, равное 0х0В. Младший бит этого поля определяет, является ли пакет управляющим (бит равен 1) или пакетом данных (бит равен 0). Значение 0х0В содержит 1 в младшем бите, поэтому это управляющий пакет, а остальные биты в этом случае определяют подтип пакета. В пакете данных остальные биты поляType используются для переноса номеров квитанций N(S) и N(R).

Следующие два поля определяют длину адресов назначения и источника (DA и SA) в пакете. Запрос на установление виртуального канала указывает оба адреса. Первый адрес нужен для маршрутизации пакета Call Request, а второй - для принятия решения узлом назначения о возможности установления виртуального соединения с данным узлом-источником. Если узел назначения решает принять запрос, то он должен отправить пакет Call Accepted - «Запрос принят», в котором также указать оба адреса, поменяв их, естественно, местами. Адреса могут иметь произвольный формат или же соответствовать требованиям стандарта Х.121 или ISO 7498.

Сами адреса назначения и источника занимают отведенное им количество байт в следующих двух полях.

Поля Длина поля услуг (Facilities length) иУслуги (Facilities) нужны для согласования дополнительных услуг, которые оказывает сеть абоненту. Например, услуга «Идентификатор пользователя сети» позволяет задать идентификатор пользователя (отличный от его сетевого адреса), на основании которого могут оплачиваться счета за пользование сетью. Пользователь с помощью услуги «Согласование параметров управления потоком» может попросить сеть использовать нестандартные значения параметров протокола - размера окна, максимального размера поля данных пакета и т. п. Протокол Х.25 допускает следующие максимальные значения длины поля данных: 16,32, 64,128, 256,512 и 1024 байт. Предпочтительной является длина 128 байт.

Пакет Call Request принимается коммутатором сети и маршрутизируется на основании таблицы маршрутизации, прокладывая при этом виртуальный канал. Начальное значение номера виртуального канала задает пользователь в этом пакете в поле LCN (аналог поля VCI, упоминавшегося при объяснении принципа установления виртуальных каналов). Протокол маршрутизации для сетей Х.25 не определен.

Для сокращения размера адресных таблиц в коммутаторах в сетях Х.25 реализуется принцип агрегирования адресов. Все терминалы, имеющие общий префикс в адресе, подключаются при этом к общему входному коммутатору подсети, соответствующей значению префикса. Например, если путь ко всем терминалам, имеющим адреса с префиксом 250 720, пролегает через общий коммутатор К1, то в таблице маршрутизации коммутаторов, через которые проходит путь к коммутатору К1, помещается единственная запись - 250 720, которая соответствует как конечному узлу 250 720 11, так и конечному узлу 250 720 26. Маски в коммутаторах не используются, а младшие разряды адреса, которые не нужны при маршрутизации, просто опускаются.

После установления виртуального канала конечные узлы обмениваются пакетами другого формата - формата пакетов данных (пакет Data). Этот формат похож на описанный формат пакета Call Request - первые три байта в нем имеют те же поля, а адресные поля и поля услуг отсутствуют. Пакет данных не имеет поля, которое бы определяло тип переносимых в пакете данных, то есть поля, аналогичного полю Protocol в IP-пакете. Для устранения этого недостатка первый байт в поле данных всегда интерпретируется как признак типа данных.

Коммутаторы (ЦКП) сетей Х.25 представляют собой гораздо более простые и дешевые устройства по сравнению с маршрутизаторами сетей TCP/IP. Это объясняется тем, что они не поддерживают процедур обмена маршрутной информацией и нахождения оптимальных маршрутов, а также не выполняют преобразований форматов кадров канальных протоколов. По принципу работы они ближе к коммутаторам локальных сетей, чем к маршрутизаторам. Однако работа, которую выполняют коммутаторы Х.25 над пришедшими кадрами, включает больше этапов, чем при продвижении кадров коммутаторами локальных сетей. Коммутатор Х.25 должен принять кадр LAP-B и ответить на него другим кадром LAP-B, в котором подтвердить получение кадра с конкретным номером. При утере или искажении кадра коммутатор должен организовать повторную передачу кадра. Если же с кадром LAP-B все в порядке, то коммутатор должен извлечь пакет Х.25, на основании номера виртуального канала определить выходной порт, а затем сформировать новый кадр LAP-B для дальнейшего продвижения пакета. Коммутаторы локальных сетей такой работой не занимаются и просто передают кадр в том виде, в котором он пришел, на выходной порт.

В результате производительность коммутаторов Х.25 оказывается обычно невысокой - несколько тысяч пакетов в секунду. Для низкоскоростных каналов доступа, которыми много лет пользовались абоненты этой сети (1200-9600 бит/с), такой производительности коммутаторов хватало для работы сети.

Гарантий пропускной способности сеть Х.25 не дает. Максимум, что может сделать сеть, - это приоритезировать трафик отдельных виртуальных каналов. Приоритет канала указывается в запросе на установление соединения в поле услуг.

Протоколы сетей Х.25 были специально разработаны для низкоскоростных линий с высоким уровнем помех. Именно такие линии составляют пока большую часть телекоммуникационной структуры нашей страны, поэтому сети Х.25 будут по-прежнему еще долго являться наиболее рациональным выбором для многих регионов.

Фраза, вынесенная в заголовок данной статьи, в двух словах отображает сегодняшнюю ситуацию с технологией X.25. В западной прессе теперь очень трудно встретить рассмотрение проблем, связанных с использованием протокола X.25; более горячими темами сегодня в области территориальных сетей являются, например, технологии frame relay и ATM. Несмотря на это, даже в странах Запада самые передовые компании, выпускавшие ранее только высокоскоростное оборудование, дополняют свой спектр устройств оборудованием X.25. Пример тому - появление в нынешнем году в ассортименте оборудования фирмы StrataCom узлов X.25.

Особенно актуально рассмотрение решений технологий X.25 для России и сопредельных стран с аналогичной инфраструктурой каналов.

В этой статье мы обсудим протокол X.25 и связанный с ним стек протоколов, а также сети, базирующиеся на данной технологии. Наша задача показать, что представляют собой сети X.25 и почему широкому кругу пользователей выгодно использовать уже функционирующие магистральные сети X.25, а некоторым из них, представляющим крупные организации, даже строить свои собственные сети.

Мы будем называть сетями X.25, или сетями пакетной коммутации сети, доступ к которым производится в соответствии с рекомендациями МККТТ X.25 (в соответствии с X.3/X.28 в случае асинхронного доступа).

Итак, почему именно сети X.25? Дело в том, что на сегодняшний день, несмотря на появление новых, интегральных технологий сетей передачи данных/сетей связи, рассчитанных на высокоскоростные каналы связи, сети X.25 по-прежнему наиболее распространены.

Если рассматривать все имеющиеся сегодня сети передачи данных общего пользования, то окажется, что именно сети X.25 с наибольшим основанием могут быть уподоблены телефонным сетям. Точно так же, как подняв трубку телефонного аппарата, подключенного к ближайшей АТС, вы можете связаться с абонентом практически в любой точке мира, так и установив соединение вашего компьютера с ближайшим узлом сети X.25, вы сможете осуществить связь с любым из миллиона пользователей сетей X.25 по всему миру. Для этого вам надо лишь знать его сетевой адрес.

Что же такое сети X.25? Для чего они нужны? На базе какого оборудования и какой теории они строятся?

ПРОТОКОЛЫ СЕТЕЙ X.25

Сети X.25 получили свое название по имени рекомендации - "X.25", выпущенной МККТТ (Международный консультативный комитет по телефонии и телеграфии). Данная рекомендация описывает интерфейс доступа пользователя в сеть передачи данных и интерфейс взаимодействия с удаленным пользователем через сеть передачи данных.

Внутри же самой сети передача данных может происходить в соответствии с другими правилами. Ядро сети может быть построено и на более скоростных протоколах frame relay. Мы, однако, рассматривая вопросы построения сетей X.25 в рамках этой статьи, будем иметь в виду сети, передача данных внутри которых производится также по протоколам, описанным в рекомендации X.25. Именно таким образом и строится в настоящее время большинство корпоративных сетей X.25 в России.

Сегодня достигнут достаточно высокий уровень совместимости оборудования, выпускаемого различными фирмами, как в рамках одной сети, так и разнообразных сетей X.25. Наибольшие проблемы в области совместимости возникают в тех случаях, когда надо управлять из одного центра узлами сети, построенными на базе оборудования разных фирм. Однако, благодаря установке на оборудовании X.25 агентов SNMP, и эта проблема в ближайшем будущем будет, видимо, решена. Одновременно ведется работа по расширению возможностей протокола SNMP в части его соответствия задачам управления большими территориально-распределенными сетями.

Первый описывает уровни сигналов и логику взаимодействия в терминах физического интерфейса. (Те из читателей, которым приходилось, например, подключать модем к последовательному порту персонального компьютера через интерфейс RS-232/V.24, имеют представление об этом уровне.)

Второй (протокол доступа к каналу/процедура сбалансированного доступа к каналу, LAP/LAPB), с теми или иными модификациями, достаточно широко представлен сейчас в оборудовании массового спроса - например в модемах - протоколами типа сетевого протокола MNP компании Microcom, отвечающими за коррекцию ошибок при передаче информации по каналу связи, а также в локальных сетях на уровне управления логическим каналом LLC.

Этот уровень протоколов отвечает за эффективную и надежную передачу данных по соединению "точка-точка", т.е. между соседними узлами сети X.25. Данным протоколом обеспечивается коррекция ошибок при передаче между соседними узлами и управление потоком данных (если принимающая сторона не готова к получению данных, она извещает об этом передающую сторону, и та приостанавливает передачу). Кроме того, он определяет параметры, меняя значения которых, режим передачи можно оптимизировать по скорости в зависимости от протяженности канала между двумя точками (времени задержки в канале) и его качества (вероятности искажения информации при передаче).

Для реализации всех указанных выше функций в протоколах второго уровня вводится понятие "кадра" (frame). Кадром называется порция информации (битов), организованная определенным образом. Начинает кадр флаг, т.е. последовательность битов строго определенного вида, являющаяся разделителем между кадрами. Затем идет поле адреса, которое в случае двухточечного соединения представляет собой адрес А или адрес B. Далее следует поле типа кадра, указывающее на то, несет ли кадр в себе информацию или является чисто служебным (например тормозит поток информации или извещает передающую сторону о приеме/неприеме предыдущего кадра). В кадре имеется также поле номера кадра. Кадры нумеруются циклически. Это означает, что при достижении заданного порогового значения нумерация опять начинается с нуля. И наконец, заканчивается кадр контрольной последовательностью, подсчитываемой при передаче кадра по определенным правилам. По этой последовательности на приеме происходит проверка на предмет искажения информации при передаче кадра.

Длину кадра можно менять при настройке параметров протокола к физическим характеристикам линии. Чем короче кадр, тем меньше вероятность того, что он будет искажен при передаче. Однако если линия хорошего качества, то лучше работать с более длинными информационными кадрами, т.к. уменьшается процент избыточной информации, передаваемой по каналу (флаг, служебные поля кадра). Кроме того, число кадров, посылаемое передающей стороне без подтверждения от принимающей стороны, тоже можно менять. Данный параметр связан с так называемым "модулем нумерации", т.е. со значением порога, достигнув которого нумерация снова начинается с нуля. Это поле может быть задано равным в пределах от 8 (для тех каналов, задержка передачи информации в которых не слишком велика) до 128 (для спутниковых каналов, например, когда задержка при передаче информации по каналу велика).

И, наконец, третий уровень протоколов - сетевой. Он наиболее интересен в контексте обсуждения сетей X.25, так как их специфику, в первую очередь, определяет именно он.

Функционально данный протокол отвечает прежде всего за маршрутизацию в сети передачи данных X.25, т. е. за доведение информации от "точки входа" в сеть до "точки выхода" из нее. Со своей стороны протокол третьего уровня также структурирует информацию, иными словами, разбивает ее на "порции". На третьем уровне порция информации называется "пакетом" (packet). Структура пакета во многом аналогична структуре кадра. В пакете имеется свой модуль нумерации, собственные поля адреса, тип пакета, контрольная последовательность. При передаче пакет помещается в поле данных информационных кадров (кадров второго уровня). Функционально поля пакета отличаются от соответствующих полей кадра. Главным образом это касается поля адреса, которое в пакете состоит из 15 цифр; поле пакета должно обеспечивать идентификацию абонентов в рамках всех сетей пакетной коммутации по всему миру. Структуру сетевого адреса определяет рекомендация X.121.

Введя термин "пакет", мы можем перейти к следующему вопросу, а именно: как же происходит доставка информации от одного абонента до другого через сеть X.25? Для этого используется так называемый метод "коммутации пакетов" (packet switching), в связи с чем сети X.25 еще именуют сетями пакетной коммутации. Данный метод реализуется посредством установления между абонентами виртуальных, т.е. логических (в отличие от физических) соединений (virtual circuits). Для того чтобы передать информацию от абонента A к абоненту B, между ними прежде устанавливается виртуальное соединение, иначе - происходит обмен пакетами "запрос вызова" ("call request") - "вызов принят" ("call accept"). Только после этого между двумя абонентами может производиться обмен информацией.

Виртуальные соединения могут быть как постоянными (permanent), так и коммутируемыми (switched). Коммутируемое соединение, в отличие от постоянного виртуального соединения, устанавливается в каждом сеансе обмена информацией. Тут можно привести прямые аналогии из области телефонии. Действительно, если вы имеете выделенный ("постоянный") телефонный канал между двумя абонентами, то не надо каждый раз набирать номер вашего абонента, - достаточно лишь снять трубку телефона. Количество виртуальных соединений, одновременно поддерживаемых на базе одного физического канала, зависит от конкретного типа оборудования, используемого для обеспечения таких соединений. Что вполне понятно, т.к. для поддержки каждого соединения на этом оборудовании должен резервироваться определенный ресурс (например оперативная память).

ПРЕИМУЩЕСТВА СЕТЕЙ X.25

Метод коммутации пакетов, лежащий в основе сетей X.25, определяет основные преимущества таких сетей или, другими словами, их область применения. В чем же это преимущество? Рассматриваемые сети позволяют в режиме реального времени разделять один и тот же физический канал нескольким абонентам, в отличие, например, от случая использования пары модемов, соединенных через канал того или иного типа. На самом деле, если у вас и вашего абонента на компьютерах установлены модемы, вы можете обмениваться с ним информацией. Однако используемой телефонной линией одновременно с вами не сможет воспользоваться уже никто другой.

Благодаря реализованному в сетях X.25 механизму разделения канала сразу между несколькими пользователями, во многих случаях оказывается экономически выгодней производить оплату за каждый байт переданной или полученной информации, а не оплачивать время применения телефонной линии при передаче данных по сети X.25. Особенно ощутимо такое преимущество в случае международных соединений.

Метод разделения физического канала между абонентами в сетях X.25 называют еще мультиплексированием канала, точнее, "логическим" или "статистическим" мультиплексированием (Рис. 1). Термин "логическое мультиплексирование" вводится, чтобы отличить этот метод, например, от временного разделения канала. При временном разделении канала каждому из разделяющих его абонентов выделяется в каждую секунду строго определенное количество миллисекунд для передачи информации. При статистическом разделении канала нет строго регламентированной степени загрузки каждым из абонентов канала в данный момент времени.

Рисунок 1.
Мультиплексирование канала в сетях X.25.

Эффективность использования статистического мультиплексирования зависит от статистических или вероятностных характеристик мультиплексируемого потока информации. Означает ли это, что вам, прежде чем подключаться к уже действующей сети X.25 или начинать создавать свою сеть, необходимо проводить детальный анализ вероятностных характеристик потоков информации, циркулирующих в вашей системе? Конечно, нет. Такие расчеты уже проведены. Накоплен большой опыт использования сетей X.25. Известно, что использование сети X.25 эффективно для широкого спектра задач передачи данных. Среди них и обмен сообщениями между пользователями, и обращение большого количества пользователей к удаленной базе данных, а также к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 512 Кбит/с), объединение удаленных кассовых аппаратов и банкоматов. Иными словами, все приложения, в которых трафик в сети не является равномерным во времени.

Какие еще преимущества дает сеть X.25? Может быть, одно из самых важных достоинств сетей, построенных на протоколах, описанных в рекомендации X.25, состоит в том, что они позволяют передавать данные по каналам телефонной сети общего пользования (выделенным и коммутируемым) оптимальным образом. Под "оптимальностью" имеется в виду достижение максимально возможных на указанных каналах скорости и достоверности передачи данных.

Эффективный механизм оптимизации процесса передачи информации через сети X.25 - это механизм альтернативной маршрутизации. Возможность задания помимо основного маршрута альтернативных, т.е. резервных, имеется в оборудовании X.25, производимом практически всеми фирмами. Различные образцы оборудования отличаются алгоритмами перехода к альтернативному маршруту, а также допустимым количеством таких маршрутов. В некоторых типах оборудования, например, переход к альтернативному маршруту происходит только в случае полного отказа одного из звеньев основного маршрута. В других же переход от одного маршрута к другому происходит динамически в зависимости от загруженности маршрутов, и решение принимается на основании многопараметрической формулы (оборудование фирмы Motorola ISG, например). За счет альтернативной маршрутизации может быть значительно увеличена надежность работы сети, а это значит, что между любыми двумя точками подключения пользователя к сети должно быть, по крайней мере, два различных маршрута. В связи с этим построение сети по звездообразной схеме можно считать вырожденным случаем. Правда, там, где есть только один узел сети X.25, установленный в рамках той или иной сети общего пользования, такая топология сети все еще используется довольно часто.

ДОСТУП ПОЛЬЗОВАТЕЛЕЙ К СЕТЯМ X.25. СБОРЩИКИ-РАЗБОРЩИКИ ПАКЕТОВ

Рассмотрим теперь, каким образом на практике реализуется доступ разных типов пользователей к сети X.25. Прежде всего, возможна организация доступа в пакетном режиме (рекомендации X.25). Для осуществления доступа с компьютера в сеть в пакетном режиме можно, например, установить в компьютер специальную плату, обеспечивающую обмен данными в соответствии со стандартом X.25.

Для подключения локальной сети через сеть X.25 используются также платы компаний Microdyne, Newport Systems Solutions и др. Кроме того, доступ из локальной сети в сеть X.25 может быть организован еще и при помощи мостов/маршрутизаторов удаленного доступа, поддерживающих протокол X.25 и выполненных в виде автономных устройств. Преимущества таких устройств над встраиваемыми в компьютер платами, помимо большей производительности, заключается в том, что они не требуют установки специального программного обеспечения, а сопрягаются с локальной сетью по стандартному интерфейсу, что позволяет реализовать более гибкие и универсальные решения.

Вообще, подключение пользовательского оборудования к сети в пакетном режиме очень удобно, когда требуется многопользовательский доступ к этому оборудованию через сеть.

Если же вам надо подключить компьютер к сети в монопольном режиме, то тогда подключение производится по другим стандартам. Это стандарты X.3, X.28, X.29, определяющие функционирование специальных устройств доступа в сеть - сборщиков/разборщиков пакетов - СРП (packet assembler/dissasembler-PAD). На практике термин "СРП" малоупотребим, поэтому и мы в качестве русскоязычного воспользуемся термином "ПАД".

ПАДы используются для доступа в сеть абонентов при асинхронном режиме обмена информацией, т.е. через, например, последовательный порт компьютера (непосредственно или c применением модемов). ПАД обычно имеет несколько асинхронных портов и один синхронный (порт X.25). ПАД накапливает поступающие через асинхронные порты данные, упаковывает их в пакеты и передает через порт X.25 (Рис. 2).

(1x1)

Рисунок 2.
Пример сложной сети X.25 с подключением устройств различного типа: от компьютеров до банковского терминального оборудования.

Конфигурируемые параметры ПАДа определяются выполняемыми задачами. Эти параметры описываются стандартом X.3. Совокупность параметров носит название "профайла" (profile); стандартный набор состоит из 22 параметров. Функциональное назначение данных параметров одинаково для всех ПАДов. В профайл входят параметры, задающие скорость обмена по асинхронному порту, параметры, характерные для текстовых редакторов (символ удаления знака и строки, символ вывода на экран предыдущей строки и т.п.), параметры, включающие режим автоматической добивки строки незначащими символами (для синхронизации с медленными терминалами), а также параметр, определяющий условие, при выполнении которого формирование пакета заканчивается.

УЗЛЫ СЕТИ X.25. ЦЕНТРЫ КОММУТАЦИИ ПАКЕТОВ

Параметры, описывающие канал X.25, являются немаловажными и для узловых элементов собственно сети X.25, называемых Центрами Коммутации Пакетов - ЦКП (или коммутатор пакетов, packet switch), однако ими список параметров ЦКП, конечно, не исчерпывается. В процессе конфигурации ЦКП обязательно требуется заполнить таблицу маршрутизации (routing table), позволяющую определить, на какой из портов ЦКП направляются поступившие в них пакеты в зависимости от адресов, содержащихся в этих пакетах. В таблице задаются как основные, так и альтернативные маршруты. Кроме того, важная функция некоторых ЦКП - это функция стыковки сетей (шлюза между сетями).

Действительно, в мире существует великое множество сетей X.25 и общего пользования, и частных, или иначе - корпоративных, ведомственных. Естественно, в различных сетях могут быть установлены разные значения параметров передачи по каналам X.25 (длина кадра и пакета, величины пакетов, система адресования и т.д.). Для того чтобы все эти сети могли стыковаться друг с другом, была разработана рекомендация X.75, определяющая правила согласования параметров при переходе из сети в сеть. Сопряжение вашей и соседних сетей рекомендуется производить через ЦКП, в котором с достаточной полнотой реализована поддержка шлюзовых функций, - такой ЦКП, например, должен уметь "транслировать" адреса при переходе из одной сети в другую. Эта функция обычно реализуется с помощью конфигурации специальной таблицы трансляции адресов в шлюзовом ЦКП. Для ЦКП, несопрягающихся с узлами другой сети пакетной коммутации, наличие шлюзовых функций не является обязательным.

Технологии глобальных сетей X.25, Frame Relay, АТМ

Глобальная компьютерная сеть, ГКС (англ. Wide Area Network, WAN) - компьютерная сеть, охватывающая большие территории и включающая в себя большое число компьютеров. Глобальные сети отличаются от локальных тем, что рассчитаны на неограниченное число абонентов и используют, как правило, не слишком качественные каналы связи и сравнительно низкую скорость передачи, а механизм управления обменом, у них в принципе не может быть гарантировано скорым. Сегодня существует единственная мировая глобальная компьютерная сеть – Интернет.

В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов – Х.25. Сегодня выбор стал гораздо шире, помимо сетей Х.25 он включает такие технологии, как Frame relay и АТМ.

Таблица 3.1

Сравнительные характеристики глобальных сетей

Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Стандарт Х.25 определяет интерфейс "пользователь – сеть" в сетях передачи данных общего пользования или “интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования”. Другими словами Х.25 определяет двухточечный интерфейс (выделенную линию) между пакетным терминальным оборудованием DTE и оконечным оборудованием передачи данных DCE.

На рисунке 3.1 представлена структурная схема сети X.25, где изображены основные элементы: DTE – аппаратура передачи данных (кассовые аппараты, банкоматов, терминалы бронирования билетов, ПК, т. е. конечное оборудование пользователей); DCE – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети); PSE – коммутаторы пакетов.

Интерфейс Х.25 обеспечивает: доступ удаленному пользователю к главному компьютеру; доступ удаленному ПК к локальной сети; связь удаленной сети с другой удаленной сетью.

Рисунок 3.1 – Структурная схема сети X.25

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

Сеть Frame Relay является сетью с коммутацией кадров или сетью с ретрансляцией кадров, ориентированной на использование цифровых линий связи. Первоначально технология Frame Relay была стандартизирована как служба в сетях ISDN со скоростью передачи данных до 2 Мбит/с.

Frame Relay поддерживает физический и канальный уровни OSI. Технология Frame Relay использует для передачи данных технику виртуальных соединений (коммутируемых и постоянных).

Стек протоколов Frame Relay передает кадры при установленном виртуальном соединении по протоколам физического и канального уровней. В Frame Relay функции сетевого уровня перемещены на канальный уровень, поэтому необходимость в сетевом уровне отпала. На канальном уровне в Frame Relay выполняется мультиплексирование потока данных в кадры.

Frame Relay осуществляет мультиплексирование в одном канале связи нескольких потоков данных. Кадры при передаче через коммутатор не подвергаются преобразованиям, поэтому сеть получила название ретрансляции кадров. Таким образом, сеть коммутирует кадры, а не пакеты. Скорость передачи данных до 44 Мбит/с, но без гарантии целостности данных и достоверности их доставки.

Frame Relay ориентирована на цифровые каналы передачи данных хорошего качества, поэтому в ней отсутствует проверка выполнения соединения между узлами и контроль достоверности данных на канальном уровне. За счет этого сети Frame Relay обладают высокой производительностью.

Технология Frame Relay в основном используется для маршрутизации протоколов локальных сетей через общие (публичные) коммуникационные сети. Frame Relay обеспечивает передачу данных с коммутацией пакетов через интерфейс между оконечными устройствами пользователя DTE (маршрутизаторами, мостами, ПК) и оконечным оборудованием канала передачи данных DCE (коммутаторами сети типа «облако»).

Коммутаторы Frame Relay используют технологию сквозной коммутации, т. е. кадры передаются с коммутатора на коммутатор сразу после прочтения адреса назначения, что обеспечивает высокую скорость передачи данных.

На рисунке 3.2 представлена структурная схема сети Frame Relay, где изображены основные элементы: DTE – аппаратура передачи данных (маршрутизаторы, мосты, ПК); DCE – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети).

Рисунок 3.2 – Cтруктурная схема сети Frame Relay

Технология АТМ. Решающее значение при выборе АТМ имело то, что большинство источников информации работают в прерывистом режиме. Например, коэффициент активности речи составляет 0,3 – 0,4, еще меньше он в интерактивных системах передачи данных, весьма разнообразна видеоинформация и т. д. Поэтому применение синхронного режима переноса (STM), при котором выделяется постоянная полоса пропускания, соответствующая наивысшей мгновенной скорости передачи информации, оказывается весьма неэффективным. В то же время асинхронный режим переноса, основанный на статистических (пакетных) методах, позволяет гибко распределять полосу пропускания, обеспечивая совместную работу разнообразных служб в условиях изменения параметров служб и нагрузки.



В соответствии с определениями рекомендаций I.113 и I.121 термин АТМ обозначает специфический пакетно-ориентированный режим переноса информации, использующий метод асинхронного временного разделения, при котором поток информации организуется в блоки фиксированной длины, называемые ячейками. Ячейка (cell) имеет длину 53 байта, из которых 48 байтов – информация пользователя и 5 байт – заголовок. Основное назначение заголовка – идентификация ячеек, принадлежащих одному и тому же виртуальному каналу.

АТМ является методом, ориентированным на установление соединений. До начала передачи информации между пользователями должен быть организован виртуальный канал. Сигнальная и пользовательская информация передаются по отдельным виртуальным каналам. Группа виртуальных каналов, проходящих на некоторых участках сети по одному и тому же направлению, может объединяться в виртуальный тракт. Поскольку АТМ предполагает использование высокоскоростных и обладающих высокой помехозащи- щенностью цифровых систем передачи (как правило, на основе волоконно-оптических линий), повышение верности осуществляется только в оборудовании пользователей. Отказ от повышения верности в узлах коммутации значительно упрощает алгоритм их функционирования и позволяет применять в них аппаратные средства, имеющие значительно более высокое быстродействие, чем программируемые микропроцессоры. Высокая пропускная способность трактов передачи, быстродействие коммутационных устройств и короткая длина ячеек обеспечивают, как правило, быструю доставку ячеек по сети. Контроль за их доставкой осуществляется в оконечном оборудовании пользователей.