Модели данных в бд. Виды моделей данных бд. мощные языки программирования

План


База данных (БД)

СУБД



Модель данных

Иерархическая модель базы данных

Сетевая модель базы данных

Строка таблицы - это запись, которая содержит информацию об отдельном объекте таблицы (один ученик).

Структура записей одинакова; совокупность элементов данных, из которых состоит запись, называется полем. Информация записи находится в полях. Поле таблицы - это колонка таблицы.

Одинаковые записи в таблице не допускаются, поскольку во всех записях поля им предоставляют уникальные имена, фамилия СУБД Access позволяет:

Поле должно быть однородным по типу по всем записям в колонке (или текстовые данные, числовые и т.д).

Реляционная модель базы данных, как правило, содержит несколько таблиц, связь между которыми осуществляется с помощью специального поля - ключа .

Примеры реляционных СУБД: dBASE, FoxBase, FoxPro и Access.

Приложение MS Access является системой управления базами данных, которая входит в состав пакета Microsoft Office и предназначена для работы за персональным компьютером или в сети под управлением операционной системы Windows.

База данных СУБД Access является реляционной базой данных, которая состоит из взаимосвязанных двумерных таблиц.

СУБД Access дает возможность:

· Проектировать табличные объекты базы данных;

· Устанавливать связи между таблицами;

· Вводить, хранить, просматривать, сортировать, изменять данные таблицы с использованием аппарата алгебры логики и индексирования;

· Создавать и использовать объекты БД.

Объекты СУБД Access:

Базы данных - файл, который содержит различные объекты сохранения данных.

Таблицы (tables ) - организация хранения данных в виде двумерного массива. Она является основным объектом БД. Остальные - производные от таблицы.

Формы - объекты для отображения данных из таблицы на экране в удобном для просмотра и обработки виде.

Запросы - объекты для выбора и фильтрации данных таблицы по определенным критериям.

Отчет - формирование документа данных из таблицы для печати.

Макросы - описание действий в виде последовательности команд и их автоматического выполнения.

Модули - программы на Visual Basic, которые разрабатывает пользователь для реализации нестандартных процедур.

Обзор реляционной модели данных. Модель «сущность-связь». Понятие отношения, атрибута, ключа, связи. Классификация связей с множественностью и полнотой. Правила построения модели данных предметной области.

Модель "сущность-связь" (ER-модель) (англ. Entity-relationship model или entity-relationship diagram) - модель данных, позволяющая описывать концептуальные схемы с помощью обобщенных конструкций блоков. ER-модель - это метамодель данных, то есть средство описания моделей данных.

ER-модель удобна при проектировании информационных систем, баз данных, архитектур компьютерных приложений и других систем (моделей). С помощью такой модели выделяют существенные элементы (узлы, блоки) модели и устанавливают связи между ними.

Существует ряд моделей для представления знаний. Одним из наиболее удобных инструментов унифицированного представления данных, независимого от реализующего его программного обеспечения, является модель "сущность-связь" (entity - relationship model, ER - model ).

Модель "сущность-связь" основывается на какой-то важной семантической информации о реальном мире и предназначена для логического представления данных. Она определяет значения данных в контексте их взаимосвязи с другими данными. Важным для нас является тот факт, что из модели "сущность-связь" могут быть порождены все существующие модели данных (иерархическая, сетевая, реляционная, объектная), поэтому она является наиболее общей. Любой фрагмент предметной области может быть представлен как множество сущностей, между которыми существует некоторое множество связей.

ER-модель - это одна из наиболее простых визуальных моделей. Она позволяет постичь структуру объекта «крупными мазками», в общих чертах. Такое общее описание структуры называется ER-диаграммой или онтологией выбранной предметной области (area of interest).

Типичные примеры использования ER-модели данных IDEF1x (ICAM DEFinition Language) и dimensional modelling.

Отношение реляционных баз данных .

Отношения реляционной базы данных делятся на два класса: объектные и связные. Объектное отношение хранит данные объекты (экземпляры сущности). В объектном отношении один (или несколько) из атрибутов, однозначно идентифицирующих объект. Такой ключевой атрибут называется (единичным или множественным) ключом отношений или первичным атрибутом. Ключ, как правило, находится в первом столбце. Остальные атрибуты функционально зависят от данного ключа. Ключ может включать несколько атрибутов (сложный ключ). В объектном отношении атрибуты не должны дублироваться. Это основное ограничение в реляционной базе данных для сохранения целостности данных. Связное отношение хранит ключи двух или более объектных отношений, то есть по ключам устанавливаются связи между объектами отношений. Связное отношение может иметь и другие атрибуты, которые функционально зависят от этой связи. Ключи в связных отношениях называются внешними (сторонними) ключами, поскольку они являются первичными ключами других отношений.

Условия и ограничения, которые накладываются на отношения реляционных баз данных на табличном уровне представления, можно сформулировать следующим образом:

· не может быть одинаковых первичных ключей, то есть все строки (записи) должны быть уникальными;

· все строки должны иметь одинаковую типовую структуру;

· имена столбцов таблицы должны быть различны, а значения столбцов должны быть однотиповыми;

· значения столбцов должны быть атомарными, т.е. не могут быть компонентами других отношений;

· должна сохраняться целостность внешних ключей;

· порядок размещения строк в таблице несущественный - он влияет только на скорость доступа к нужной строки.

Обеспечивается поддержка таких типов связей между записями: один ко многим; многие к одному, многие ко многим .

Основные этапы работы с базами данных:

Проектирование таблицы.

После создания нового банка данных с помощью директивы File/New Database (Создать новый банк) или открытие существующего банка с помощью File/Open Database (Открыть банк) на экране в рамках окна Access появляется окно банка данных.

В меню File выберите директиву New (Создать новый объект), а в подменю - опцию Table (Таблица).

Назначение имен полей

Каждая строка спецификации определяет характеристики одного поля записи. В колонку Fіeld Name задается имя поля. Оно может иметь длину до 64 символов и может содержать кириллицу, пробелы и специальные символы, за исключением точек, восклицательного знака и угловых скобок. Естественным ограничением является запрет на наличие в одной таблице двух полей с одинаковыми именами.

Установка типа данного поля

Тип данных вносится в столбец Data Type, причем его можно выбрать из списка доступных типов.

Text. Текстовые поля содержат текст, длина которого не может быть больше 255 символов. Реальная длина поля устанавливается с помощью параметра Fіeld Size (Размер поля)

Memo. В Memo-полях текст длиной до 32000 символов. Поля этого типа данных не могут индексироваться.

Number. Числовые поля содержат произвольные числовые значения. Диапазон допустимых значений определяется параметром Fіeld Size (Размер поля).

Date/Time. Поля даты/времени содержат значения даты и времени в диапазоне от 100 до 9999 года.

Currency. В денежных полях можно хранить числа с точностью до 15 разрядов слева от запятой и четырех десятичных разрядов (обычно достаточно двух) справа от запятой.

Counter. Поле счетчика, содержит число, которое автоматически увеличиваются Access на 1, когда в таблицу добавляется новый блок данных.

Yes/No. В таких полях хранятся значения Yes (Да) или No (Нет). Поля данного типа не могут индексироваться.

OLE Object. В OLE-полях содержатся объекты, такие как, например, Excel-таблица или Microsoft Draw-графика, обработанные OLE-сервером. Размер поля может быть до 128 МБ.

Определение размера поля. Для числовых полей параметр Fіeld Size может иметь одно из следующих значений:

Byte . Хранит числа от 0 до 255 (только целые). Занимает 1 байт.

Іnteger . Хранит числа от -32768 до 32767 (только целые). Занимает 2 байта.

Long Іnteger . Хранит числа от -2147483648 до 2147483647 (только целые). Занимает 4 байта.

Sіngle . Хранит числа с шестиразрядной точностью от 3,402823Е38 до 3.402823Е38. Занимает 4 байта.

Double . Хранит числа с десятиразрядной точностью от -1.79769313486232Е308 до 1,79769313486232Е308. Занимает 8 байтов (стандартная установка).

Определение параметров поля

Характеристики каждого поля определяются рядом параметров. Эти параметры регламентируют способы обработки, хранения и индикации данных.

Fіeld Sіze (Размер поля). Устанавливает максимальную длину текстового поля или способ представления чисел в поле типа Number.

Format (Формат). Определяет способ представления данных. Наряду с определенными форматами допускается использование собственных форматов пользователя.

Decіmal Places (Десятичные разряды). Устанавливает количество разрядов справа от десятичной запятой.

Captіon (Надпись). Определяет надпись, которая будет использоваться в качестве наименования поля в формуляре или отчете. Если для этого параметра не будет задано никакое значение, то, как надпись, будет по умолчанию использовано имя поля.

Default Value (Значение по умолчанию). Устанавливает значение, которое будет автоматически введено в поле при генерации блока данных.

Valіdatіon Rule (Ограничения введения). Правило, которое ограничивает допустимые для ввода в поле данные.

Valіdatіon Text (Сообщение о нарушении). При попытке ввести в поле данные, не удовлетворяющие правилу, сформулированному в Valіdatіon Rule.

Іndexed (Индексированное поле). Признак индексирования.

Добавление и удаление полей

В готовую спецификацию можно вносить изменения. В частности, можно изменять параметры отдельных полей, добавлять поля в запись в нужных местах и удалять лишние. Но при этом стоит постараться внести все исправления в спецификацию до начала заполнения банка данных, потому что попытка изменить параметры полей заполненной базы может вызвать потерю или искажение данных.

1. Если удалить поле, которое содержит данные, то появится предупреждающее сообщение с вопросом о том, действительно ли пользователь хочет выполнить удаление, нажмите на кнопку Cancel.

2. В меню Edit выберите директиву Undo Delete (Отменить удаление). Однако отменить операцию удаления и восстановить исходное состояние таблицы можно только в случае, если после удаления не были сделаны никакие другие изменения в структуре или содержании банка. Access гарантирует возможность отмены, но только для последней выполненной операции.

3. Закройте окно таблицы и нажмите командную кнопку No (Нет) в диалоговом окне запроса о необходимости сохранения изменений. Однако в этом случае будут проигнорированы и все другие изменения, выполненные за этот сеанс работы с таблицей.

Установка первичного ключа

После того как дано определение всем полям, стоит выбрать минимум одно поле для использования как первичный ключ. Объявления первичного ключа препятствует введению повторяющихся блоков данных, поскольку поле таблицы, используемое в качестве первичного ключа, содержит однозначный идентификатор для каждого блока данных. Это поле не может содержать одинаковую величину в двух разных записях.

Первичный ключ может быть определен только в режиме проектирования таблицы. Маркируйте поле, что должно стать полем первичного ключа и вызовите директиву Set Ргімагу Key (Установить ключ) в меню Edit. Маркированная поле немедленно обозначается значком ключа в селекторном столбике (это и есть признак того, что поле объявлено первичным ключом) и соответственно индексируется.

Если к моменту выхода из режима проектирования первичный ключ для создаваемой таблицы не будет объявлен, то Access спросит, стоит ли включить в таблицу поле первичного ключа. Если пользователь ответит положительно (Yes), то Access создаст особое поле с именем ID, в которое для каждого блока данных будет вводиться.

Понятие таблицы, поля, записи. Основные этапы работы с базами данных в среде системы управления базами данных. Отображение модели «сущность-связь» базы данных. Свойства полей, типы данных. Ввод данных в таблицы. Сортировка, поиск и фильтрация данных.

Таблица - это набор именованных полей, в которых описываются свойства объектов.

Таблица предусматривает отражение данных в виде строк и столбцов. Столбец содержит характеристику объектов; строка - совокупность характеристик об одном экземпляре объекта. Записью является строка таблицы базы данных

Поле - столбец таблицы, предназначенный для хранения значений определенного свойства (параметра) объекта.

Запись - строка таблицы. Одна запись содержит данные про отдельный объект, который описывают в базах данных.

СУБД Access позволяет создавать объекты базы данных, в которых будет содержаться информация из различных таблиц. Для этого необходимо установить связь между таблицами. При создании связи будут объединены (связаны) записи в этих таблицах. При этом пользуются условными сроками, говорят о базовой и зависимой таблице. В обеих таблицах должны быть поля, которые имеют одинаковые значения. Тогда связью между таблицами будет эта пара полей (одно - в базовой таблице, второе - в зависимой). Связанные поля могут иметь разные имена, но тип значений этих полей обязательно должен совпадать.

Проектирование баз данных состоит из концептуального, логического и физического этапов. Каждый этап использует свою модель данных.

Существует несколько методов построения концептуальной модели базы данных. Один из наиболее распространенных методов основывается на модели, которая основана на предоставлении предметной области в виде двух типов объектов - сущностей и связей.

Сущность - это объект предметной области, который является множеством элементов. Примеры сущностей - ученики, предметы, кружки. Каждый элемент сущности - это конкретный экземпляр. Сущности представляются в базе данных в виде таблицы. Имя сущности - имя таблицы, характеристики - названия столбцов таблицы, а экземпляры - строки таблицы.

Существует понятие степени связи между сущностями, относящихся к связи.

Степень связи определяет, какое количество экземпляров одной сущности может быть связано с экземплярами другой сущности, принадлежащие к этой связи.

На этапе логического проектирования сущности и связи превращаются в логическую модель данных, построенную по законам логики. Как мы уже упоминали на первом уроке, существует несколько логических моделей данных. Среди них выделяют реляционную, иерархическую и сетевую. Наиболее широко сейчас используется реляционная модель. На английском «relation» - отношение, отсюда и название модели.
Отношение представляется в виде таблицы, состоящей из строк и столбцов. Каждый столбец отношения называют полем, а строку - записью. Названия полей - атрибутов. В отличие от обычной таблицы основное свойство отношения заключается в том, что в нем не должно быть одинаковых записей. Это связано с тем, что отношение отражает название определенного множества объектов, а каждая запись представляет элемент этого множества. Конечно, элементы множества должны быть разными.

Атрибуты (группы атрибутов) обеспечивают уникальность (неповторимость) каждой строки, которая называется ключом отношения. Ключей в отношении может быть несколько.

Существует несколько методов построения концептуальной модели базы данных. Один из наиболее распространенных методов основывается на ER-модели. Эта модель основана на представлении предметной области в виде двух типов объектов - сущностей и связей.

Сущность - это объект предметной области, который является множеством элементов. Примеры сущностей - ученики, предметы, кружки. Каждый элемент сущности - это конкретный экземпляр, например ученик Сидоров или предмет «математика». Как правило, сущности выражаются существительными. Сущности представляются в базе данных в виде таблицы. Имя сущности - имя таблицы, характеристики - названия столбцов таблицы, а экземпляры - строки таблицы. В табл. показано, как понимать основные термины сущности.

Сущность УЧЕНИК - имя сущности.

Мы привыкли, что в таблицу можно помещать любую информацию. Однако таблицы-сущности отличаются от обычных таблиц тем, что в них не может быть двух одинаковых строк.

Например, пусть сущность УЧЕНИК имеет характеристики ФАМИЛИЮ, ИМЯ, ОТЧЕСТВО, ДАТА РОЖДЕНИЯ, ДОМАШНИЙ АДРЕС. Будем записывать это в таком виде: УЧЕНИК (ФАМИЛИЯ, ИМЯ, ОТЧЕСТВО, ДАТА РОЖДЕНИЯ, ДОМАШНИЙ АДРЕС). Примеры экземпляров этой сущности - (Сидоров, Петр, Васильевич, 01.02.1985, ул. Цветочная 33), (Иванова, Ольга, Борисовна 12.05.1986, просп. Победы, 231, кв. 3).

Связи отражают важные для проектируемой базы данных отношения между сущностями. Это связи - ОБУЧАЕТСЯ (ученик в классе), ИЗЛАГАЕТ (учитель предмет для класса в кабинете) и т.п. Как правило, связи выражаются глаголами.

Связь между сущностями можно изобразить в виде линий между конкретными экземплярами. Ниже иллюстрируется связь ПОСЕЩАЕТ между сущностями УЧЕНИК и КРУЖОК. Если сущность можно представить в виде таблицы, то для представления связей нужно создать дополнительные таблицы, в которые помещают информацию о связываемых данных.

Объекты СУБД Access:

Таблица - организация хранения данных в виде двумерного массива. Она является основным объектом БД. Остальные - производные от таблицы.

Форма - помогает создавать интерфейс пользователя, ее используют для ввода, изменения или отображения данных.

Запросы - объекты для выбора и фильтрации данных таблицы по определенным критериям.

Отчет - формирование документа.

Макросы - описание действий в виде последовательности команд и их автоматического выполнения.

Модули - программы на языке Visual Basic, которые разрабатывает пользователь для реализации нестандартных процедур.

Создание таблиц.

Таблицы - это объекты, в которых непосредственно хранятся данные.

Создать таблицу можно, выбрав в окне БД на вкладке Таблица и используя Конструктор или Мастер. Но есть и другие способы (см. табл.).

Для заполнения таблицы необходимо перейти в режим заполнения таблицы, открыв ее.

Заполнение таблиц.

Таблицы состоят из полей и записей. Полями называют столбцы, а записями - строки. Внести запись в таблице означает заполнить строку. Чтобы создать таблицу, необходимо определить ее поля, типы данных этих полей, а иногда некоторые дополнительные свойства этих полей. Не все данные занимают в компьютере одинаковый объем. Для их компактного хранения необходимо четко определить их тип.

Типы данных.

В таблицах Access можно указать типы данных.

ФОРМА ИСПОЛЬЗУЕТСЯ ДЛЯ ОТОБРАЖЕНИЯ
Текст Короткие буквенно-цифровые значения, например фамилия или адрес.
Число Числовые значения, например расстояние. Обратите внимание, что для денежных единиц существует отдельный тип данных.
Денежная единица Денежные значения.
Да/Нет Значение "Да" и "Нет" и поля, содержащие только одно из двух значений.
Дата и врем Значения даты и времени для лет от 100 до 9999.
Форматированный текст Текст или сочетание текста и чисел, которое можно отформатировать с помощью элементов управления цветом и шрифтом.
Вычисляемое поле Результаты вычисления. В расчетах должны использоваться другие поля той же таблицы. Для создания вычислений используется построитель выражений.
Вложения Вложенные в записи базы данных, файлы электронных таблиц, документы, диаграммы и другие типы поддерживаемых файлов, подобно вложений в сообщениях электронной почты.
Гиперссылки Текст или сочетание текста и чисел, которое хранится в виде текста и используется как адрес гиперссылки.
Примечание Длинные фрагменты текста. Поле типа "Примечание" часто используется для хранения подробного описания продукта.
Подстановка Список значений из таблицы или запроса, или набор значений, указанных при создании поля. Поле подстановок можно создать с помощью мастера подстановок. Тип данных в поле подстановок текстовый или числовой, в зависимости от того, какие параметры были выбраны в мастере.

Ввод и редактирование.

Ввод и редактирование данных происходит путем переключения между режимами Представления таблицы и Конструктор.

Несмотря на то, что для ввода данных, особенно в базы данных Access с несколькими пользователями, лучше использовать формы, данные можно вводить и изменять непосредственно в таблице.

Тип данных, которые пользователь может вводить в таблицу, зависит от следующих аспектов.

По умолчанию поля в таблицы содержат определенный тип данных, например текст или числа. Следует вводить тот тип данных, который получает соответствующее поле.

Иначе отображается сообщение об ошибке.

Если к полю применена маска ввода, формат, состоящий из постоянных символов (таких как скобки, точки или дефисы) и специальных символов маски, указывающих, в какие позиции, в каком количестве и какого типа данные можно вводить, может возникнуть необходимость вводить данные в определенном формате.

За исключением вложений и многозначных списков в большинство полей можно вводить только один тип данных. Если неизвестно, может ли поле содержать вложения, просмотрите его свойства. Если поле - многозначный список, отображается флажок рядом с каждым элементом списка.

Понятие языка SQL.

Языковой поддержкой проведения транзакций является, как правило, язык SQL. Языки реляционного исчисления основаны на классическом исчислении предикатов. Они предоставляют пользователю набор правил для написания запросов к базам данных. В таком запросе содержится лишь информация о желаемом результате. На основе запроса система управления базами данных автоматически, путем формирования новых отношений, формирует желаемый результат. Языки реляционного исчисления являются непроцедурными. Первый язык реляционного исчисления ALFA была разработана самим Е.Ф.Коддом.

В настоящее время широкое распространение получил язык SQL (Structured Query Language). Язык SQL был разработан фирмой IBM в середине 70-ых годов, а затем одобрен и поддержан многими компаниями как стандарт языка управления реляционными базами данных. Эта речь была разработана на основе стандарта языка, которая использовалась в системе управления базами данных dBase. Международная федерация по обработке информации (AFIP) и международная организация по стандартизации (ISO) формируют и уточняют стандарты для дальнейших разработок языка SQL. Речь ориентирована на проведение операций с данными, которые подаются в виде логически взаимосвязанной совокупности таблиц. Основным отличием от исходного языка dBase является то, что язык SQL разработан для проведения операций с таблицами, в то время как язык dBase ориентирован на работу с записями.

Функции языка SQL.

Использование концепции операций, ориентированных на табличное представление данных, позволило создать компактный язык SQL с небольшим набором команд. Такой подход позволяет достаточно легко определять, выводить и обновлять информацию в базе данных, упростив программирование сложных запросов. Особенностью команд языка SQL является то, что они в большей степени ориентированы на конечный результат обработки данных, чем на процедуру этой обработки. Система определяет оптимальный путь до вывода данных. Язык SQL - это непроцедурная речь. Полный набор команд языка SQL включает около 30 команд.

Таблица языка SQL представляет собой совокупность строк и столбцов, в которых строкам таблицы соответствуют записи, а колонкам - поля. Кроме обычных таблиц, язык SQL позволяет создавать особый вид таблиц - выборку. Выборка - это подмножество строк и столбцов из одной или нескольких таблиц. Часто выборку называют виртуальной таблицей, поскольку она фактически не содержит данных, а лишь позволяет их воспроизводить. Данные в выборке отражают реальные изменения в соответствующих таблицах и наоборот, изменение данных в обновляемых выборках приводит к изменению этих данных в первичных таблицах.

Эффективное использование команд языка SQL реализуется благодаря использованию и созданию специальной информации, которая позволяет ссылаться на каждую таблицу и выборку. Эта информация содержится в файлах, которые называются каталогами таблиц, которые формируются во время создания базы данных. Каждая команда языка SQL заканчивается “;”. Каждая команда SQL, которая называется предложением, начинается глаголом, которое определяет имя базовой операции. В состав многих команд входят ключевые слова и предложения, которые уточняют выполнения базовых операций. Кроме того, в команду SQL нужно включить данные, которые будут обрабатываться и (или) операции, которые нужно над этими данными выполнить.

Язык SQL оперирует с понятием баз данных, содержащих всю информацию, которая необходима для обработки данных в прикладной программе. В полный состав баз данных SQL входят такие компоненты:

· таблицы - основные структуры данных в базах данных;

· выборки - тип виртуальной таблицы, которая обеспечивает ввод-вывод определенных строк и столбцов из одной или нескольких таблиц;

· синонимы - альтернативные имена таблиц и выборок;

· индексные файлы, которые присоединяются к таблицам для обеспечения быстрого поиска данных и поддержания целостности баз данных;

· каталоги - множество таблиц в каждой базе данных, описывающих базы данных и их содержание.

Развитие языка SQL.

Первый стандарт языка SQL появился в 1989 году (SQL-89) и поддерживался практически всеми коммерческими реляционными системами управления баз данных. Он имел общий характер и допускал широкое трактование. Преимуществами SQL-89 можно считать стандартизацию синтаксиса и семантики операторов выборок и манипулирования данными, а также фиксацию средств ограничения целостности базы данных. Однако в этой версии отсутствуют такие разделы, как манипулирования схемой базы данных и динамический SQL .

Неполнота требований SQL -89 привела к созданию в 1992 году следующей версии языка SQL -92, которая охватывала более широкий диапазон функций: манипулирование структурой базы данных, управление транзакциями и сессиями, динамический SQL. В стандартной версии предполагается три уровня: базовый, промежуточный и полный. Только последние версии систем управления базами данных обеспечивают совместимость с полным стандартом. Работа над совершенствованием этого языка не прекращается. Усовершенствования будут, в первую очередь, проводится в направлении включения механизма триггеров, определении произвольного типа данных.

План

1. Понятие модели данных, базы данных. Понятие и назначение систем управления базами данных.
2. Обзор реляционной модели данных. Модель «сущность-связь». Понятие отношения, атрибута, ключа, связи. Классификация связей с множественностью и полнотой. Правила построения модели данных предметной области.

3. Понятие таблицы, поля, записи. Основные этапы работы с базами данных в среде системы управления базами данных. Отображение модели «сущность-связь» базы данных. Свойства полей, типы данных. Ввод данных в таблицы. Сортировка, поиск и фильтрация данных.

4. Понятие запроса к реляционной базе данных. Понятие о языке запросов SQL.

5. Создание таблиц, форм, запросов и отчетов с помощью мастеров.

6. Обмен данными между СУБД и другими программами, предназначенными для обработки документов. Совместное использование базы данных.

Понятие модели данных, базы данных. Понятие и назначение систем управления базами данных.

База данных (БД) - это структурированная совокупность взаимосвязанных данных определенной предметной области (реальных о6ъектов, процессов, явлений и т.п.).

Примеры: БД о наличии медикаментов; БД в системе расписания самолетов, поездов или БД продажи билетов транспорта; БД документов учащихся школы, картотека отдела кадров или в библиотеки и т.д..

Появление компьютерной техники повысило эффективность работы с базами данных. Доступ к данным и управление ими происходит в среде специального программного пакета - системы управления базами данных (СУБД).

СУБД - это программа, с помощью которой осуществляется хранение, обработка и поиск информации в базах данных.

Организация данных во внутренней сфере характеризуется двумя уровнями - логическим и физическим. Физическая организация данных определяет способ размещения данных непосредственно на машинном носителе. Логическая организация данных на машинном носителе зависит от программных средств, организации и ведения данных во внутренней сфере. Метод логической организации данных определяется используемым типом структур данных и видом модели, которая поддерживается программными средствами.

Модель данных - это совокупность взаимосвязанных структур данных и операций над этими структурами. Для размещения одной и той же информации во внутренней сфере могут быть использованы различные структуры и модели данных. Это зависит от пользователя, от технического и программного обеспечения, определяется сложностью автоматизированных задач и объемом информации.

Существуют такие модели данных: иерархическая, реляционная, постреляционная, многомерная, объектно-ориентированная.

По структуре организации информации в БД различают такие модели баз данных: иерархическая, сетевая и реляционная.

Иерархическая модель базы данных . Эта модель представляет собой структуру данных, которые упорядочены по подчинению от общего к конкретному; напоминает «дерево» (граф), поэтому имеет такие же параметры: уровень, узел, связь. Модель работает по такому принципу: несколько узлов низшего уровня соединяются при помощи связи с одним узлом высшего уровня.

Иерархическая модель базы данных имеет такие свойства: несколько узлов низшего уровня связаны только с одним узлом высшего уровня; дерево иерархии имеет только одну вершину, что не подлежит другой; каждый узел имеет имя собственное, есть только один маршрут от вершины дерева (корневого узла) до любого узла структуры.

Сетевая модель базы данных . Общим видом она похожа на иерархическую. Имеет такие же составляющие структуры, отличается характером отношения между ними. Между элементами структуры произвольное, не ограниченное количество элементов-связь.

Реляционная модель базы данных . (Происхождение названия от латинского слова relatio - отношение). Модель построена на взаимоотношениях между составляющими структуры. Представляет собой одну таблицу или совокупность взаимосвязанных двумерных таблиц.

Реляционная модель создана на основе двухмерной таблицы.

Строка таблицы - это запись, которая содержит и

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Модели базы данных

Введение

информационный программный данные

Современная жизнь немыслима без эффективного управления. Важной категорией являются системы обработки информации, от которых во многом зависит эффективность работы любого предприятия ли учреждения. Такая система должна:

обеспечивать получение общих и/или детализированных отчетов по итогам работы;

позволять легко определять тенденции изменения важнейших показателей;

обеспечивать получение информации, критической по времени, без существенных задержек;

выполнять точный и полный анализ данных.

Современные СУБД в основном являются приложениями Windows, так как данная среда позволяет более полно использовать возможности персональной ЭВМ, нежели среда DOS. Снижение стоимости высокопроизводительных ПК обусловил не только широкий переход к среде Windows, где разработчик программного обеспечения может в меньше степени заботиться о распределении ресурсов, но также сделал программное обеспечение ПК в целом и СУБД в частности менее критичными к аппаратным ресурсам ЭВМ.

Среди наиболее ярких представителей систем управления базами данных можно отметить: Lotus Approach, Microsoft Access, Borland dBase, Borland Paradox, Microsoft Visual FoxPro, Microsoft Visual Basic, а также баз данных Microsoft SQL Server и Oracle, используемые в приложениях, построенных по технологии «клиент-сервер». Фактически, у любой современной СУБД существует аналог, выпускаемый другой компанией, имеющий аналогичную область применения и возможности, любое приложение способно работать со многими форматами представления данных, осуществлять экспорт и импорт данных благодаря наличию большого числа конвертеров. Общепринятыми, также, являются технологи, позволяющие использовать возможности других приложений, например, текстовых процессоров, пакетов построения графиков и т.п., и встроенные версии языков высокого уровня (чаще - диалекты SQL и/или VBA) и средства визуального программирования интерфейсов разрабатываемых приложений. Поэтому уже не имеет существенного значения на каком языке и на основе какого пакета написано конкретное приложение, и какой формат данных в нем используется. Более того, стандартом «де-факто» стала «быстрая разработка приложений» или RAD (от английского Rapid Application Development), основанная на широко декларируемом в литературе «открытом подходе», то есть необходимость и возможность использования различных прикладных программ и технологий для разработки более гибких и мощных систем обработки данных. Поэтому в одном ряду с «классическими» СУБД все чаще упоминаются языки программирования Visual Basic 4.0 и Visual C++, которые позволяют быстро создавать необходимые компоненты приложений, критичные по скорости работы, которые трудно, а иногда невозможно разработать средствами «классических» СУБД. Современный подход к управлению базами данных подразумевает также широкое использование технологии «клиент-сервер».

Таким образом, на сегодняшний день разработчик не связан рамками какого-либо конкретного пакета, а в зависимости от поставленной задачи может использовать самые разные приложения. Поэтому, более важным представляется общее направление развития СУБД и других средств разработки приложений в настоящее время.

1.Базы данных

Общие положения

Цель любой информационной системы -- обработка данных об объектах реального мира. В широком смысле слова база данных -- это совокупность сведений о конкретных объектах реального мира в какой-либо предметной области. Под предметной областью принято понимать часть реального мира, подлежащего изучению для организации управления и в конечном счете автоматизации, например, предприятие, вуз и т д.

Создавая базу данных, пользователь стремится упорядочить информацию по различным признакам и быстро извлекать выборку с произвольным сочетанием признаков. Сделать это возможно, только если данные структурированы.

Структурирование -- это введение соглашений о способах представления данных.

Неструктурированными называют данные, записанные, например, в текстовом файле.

Пользователями базы данных могут быть различные прикладные программы, программные комплексы, а также специалисты предметной области, выступающие в роли потребителей или источников данных, называемые конечными пользователями.

В современной технологии баз данных предполагается, что создание базы данных, ее поддержка и обеспечение доступа пользователей к ней осуществляются централизованно с помощью специального программного инструментария -- системы управления базами данных.

База данных (БД) -- это поименованная совокупность структурированных данных, относящихся к определенной предметной области.

Система управления базами данных (СУБД) -- это комплекс программных и языковых средств, необходимых для создания баз данных, поддержания их в актуальном состоянии и организации поиска в них необходимой информации.

Централизованный характер управления данными в базе данных предполагает необходимость существования некоторого лица (группы лиц), на которое возлагаются функции администрирования данными, хранимыми в базе.

Классификация баз данных

По технологии обработки данных базы данных подразделяются на централизованные и распределе нные.

Централизованная база данных хранится в памяти одной вычислительной системы. Если эта вычислительная система является компонентом сети ЭВМ, возможен распределенный доступ к такой базе. Такой способ использования баз данных часто применяют в локальных сетях ПК.

Распределенная база данных состоит из нескольких, возможно пересекающихся или даже дублирующих друг друга частей, хранимых в различных ЭВМ вычислительной сети. Работа с такой базой осуществляется с помощью системы управления распределенной базой данных (СУРБД).

По способу доступа к данным базы данных разделяются на базы данных с локальным доступом и базы данных с удаленным (сетевым) доступом.

Системы централизованных баз данных с сетевым доступом предполагают различные архите ктуры подобных систем;

* файл-сервер;

* клиент-сервер.

Файл-сервер. Архитектура систем БД с сетевым доступом предполагает выделение одной из машин сети в качестве центральной (сервер файлов). На такой машине хранится совместно используемая централизованная БД. Все другие машины сети выполняют функции рабочих станций, с помощью которых поддерживается доступ пользовательской системы к централизованной базе данных. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном и производится обработка. При большой интенсивности доступа к одним и тем же данным производительность информационной системы падает. Пользователи могут создавать также на рабочих станциях локальные БД, которые используются ими монопольно.

Клиент-сервер. В этой концепции подразумевается, что помимо хранения централизованной базы данных центральная машина (сервер базы данных) должна обеспечивать выполнение основного объема обработки данных. Запрос на данные, выдаваемый клиентом (рабочей станцией), порождает поиск и извлечение данных на сервере. Извлеченные данные (но не файлы) транспортируются по сети от сервера к клиенту. Спецификой архитектуры клиент-сервер является использование языка запросов SOL.

Структурные элементы базы данных

Понятие базы данных тесно связано с такими понятиями структурных элементов, как поле, запись, файл (таблица).

Поле -- элементарная единица логической организации данных, которая соответствует неделимой единице информации -- реквизиту. Для описания поля используются следующие характеристики:

имя, например. Фамилия, Имя, Отчество, Дата рождения;

тип, например, символьный, числовой, календарный;

длина, например, 15 байт, причем будет определяться максимально возможным количеством символов;

точность для числовых данных, например два десятичных знака для отображения дробной части числа.

Запись -- совокупность логически связанных полей. Экземпляр записи -- отдельная реализация записи, содержащая конкретные значения ее полей.

Файл (таблица) -- совокупность экземпляров записей одной структуры.

В структуре записи файла указываются поля, значения которых являются ключами первичными (ПК), которые идентифицируют экземпляр записи, и вторичными (ВК), которые выполняют роль поисковых или группировочных признаков (по значению вторичного ключа можно найти несколько записей).

2.Виды моделей данных
Общие положения

Ядром любой базы данных является модель данных. Модель данных представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.

Модель данных -- совокупность структур данных и операций их обработки.

СУБД основывается на использовании иерархической, сетевой или реляционной модели, на комбинации этих моделей или на некотором их подмножестве [I].

Рассмотрим три основных типа моделей данных: иерархическую, сетевую и реляционную.

Иерархическая модель данных

Иерархическая структура представляет совокупность элементов, связанных между собой по определе нным правилам. Объекты, связанные иерархическими отношениями, образуют ориентированный граф (перевернутое дерево).

К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь. Узел -- это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчиненную никакой другой вершине и находящуюся на самом верхнем (первом) уровне. Зависимые (подчиненные) узлы находятся на втором, третьем и т.д. уровнях. Количество деревьев в базе данных определяется числом корневых записей.

К каждой записи базы данных существует только один (иерархический) путь от корневой записи.

Сетевая модель данных

В сетевой структуре при тех же основных понятиях (уровень, узел, связь) каждый элемент может быть связан с любым другим элементом.

Реляционная модель данных

Понятие реляционный (англ. relation -- отношение) связано с разработками известного американского специалиста в области систем баз данных Е. Кодда.

Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

· каждый элемент таблицы -- один элемент данных;

· все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

· каждый столбец имеет уникальное имя;

· одинаковые строки в таблице отсутствуют;

· порядок следования строк и столбцов может быть произвольным.

Отношения представлены в виде таблиц, строки которых соответствуют кортежам или записям, а столбцы -- атрибутам отношений, доменам, полям.

Поле, каждое значение которого однозначно определяет соответствующую запись, называется простым ключом (ключевым полем). Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ.

Чтобы связать две реляционные таблицы, необходимо ключ первой таблицы ввести в состав ключа второй таблицы (возможно совпадение ключей); в противном случае нужно ввести в структуру первой таблицы внешний ключ -- ключ второй таблицы.

3.По нятие информационного объекта

Информационный объект -- это описание некоторой сущности (реального объекта, явления, процес са, события) в виде совокупности логически связанных реквизитов (информационных элементов). Т а кими сущностями для информационных объектов могут служить: цех, склад, материал, вуз, студент, сдача экзаменов и т.д.

Информационный объект определенного реквизитного состава и структуры образует класс (тип), которому присваивается уникальное имя (символьное обозначение), например Студент, Сессия, Ст ипендия.

Информационный объект имеет множество реализации -- экземпляров, каждый из которых представлен совокупностью конкретных значений реквизитов и идентифицируется значением ключа (простого -- один реквизит или составного -- несколько реквизитов). Остальные реквизиты информационного объекта являются описательными. При этом одни и те же реквизиты в одних информационных объектах могут быть ключевыми, а в других -описательными. Информационный объект может иметь несколько ключей.

4.Понятие нормализации отношений

Одни и те же данные могут группироваться в таблицы (отношения) различными способами, т.е. возможна организация различных наборов отношений взаимосвязанных информационных объектов. Группировка атрибутов в отношениях должна быть рациональной, т.е. минимизирующей дублирование данных и упрощающей процедуры их обработки и обновления.

Определенный набор отношений обладает лучшими свойствами при включении, модификации, удалении данных, чем все остальные возможные наборы отношений, если он отвечает требованиям нормализации отношений.

Нормализация отношений -- формальный аппарат ограничений на формирование отношений (таблиц), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных.

Выделены три нормальные формы отношений и предложен механизм, позволяющий любое отношение преобразовать к третьей (самой совершенной) нормальной форме.

Первая нормальная форма

Отношение называется нормализованным или приведенным к первой нормальной форме, если все его атрибуты простые (далее неделимы). Преобразование отношения к первой нормальной форме может привести к увеличению количества реквизитов (полей) отношения и изменению ключа.

Например, отношение Студент = (Номер, Фамилия, Имя, Отчество, Дата, Группа) наводится в первой нормальной форме.

Вторая нормальная форма

Чтобы рассмотреть вопрос приведения отношений ко второй нормальной форме, необходимо дать п ояснения к таким понятиям, как функциональная зависимость и полная функциональная зависимость.

Описательные реквизиты информационного объекта логически связаны с общим для них ключом, эта связь носит характер функциональной зависимости реквизитов.

Функциональная зависимость реквизитов -- зависимость, при которой экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита.

Такое определение функциональной зависимости позволяет при анализе всех взаимосвязей реквизитов предметной области выделить самостоятельные информационные объекты.

В случае составного ключа вводится понятие функционально полной зависимости.

Функционально полная зависимость не ключевых атрибутов заключается в том, что каждый не ключевой атрибут функционально зависит от ключа, но не находится в функциональной зависимости ни от какой части составного ключа.

Отношение будет находиться во второй нормальной форме, если оно находится в первой нормальной форме, и каждый не ключевой атрибут функционально полно зависит от составного ключа.

Третья нормальная форма

Понятие третьей нормальной формы основывается на понятии нетранзитивной зависимости.

Транзитивная зависимость наблюдается в том случае, если один из двух описательных реквизитов зависит от ключа, а другой описательный реквизит зависит от первого описательного реквизита.

Отношение будет находиться в третьей нормальной форме, если оно находится во второй нормал ьной форме, и каждый неключевой атрибут нетранзитивно зависит от первичного ключа.

Для устранения транзитивной зависимости описательных реквизитов необходимо провести "расщепление" исходного информационного объекта. В результате расщепления часть реквизитов удаляется из исходного информационного объекта и включается в состав других (возможно, вновь созданных) информационных объектов.

ТИПЫ СВЯЗЕЙ

Все информационные объекты предметной области связаны между собой. Различаются связи нескол ьких типов, для которых введены следующие обозначения:

один к одному (1:1);

один ко многим (1: М);

многие ко многим (М: М).

Связь один к одному (1:1) предполагает, что в каждый момент времени одному экземпляру информационного объекта А соответствует не более одного экземпляра информационного объекта В и наоборот.

При связи один ко многим (1:М) одному экземпляру информационного объекта А соответствует 0, 1 или более экземпляров объекта В, но каждый экземпляр объекта В связан не более чем с 1 экземпляром объекта А. Графически данное соответствие имеет вид.

Связь многие ко многим (М:М) предполагает, что в каждый момент времени одному экземпляру информационного объекта А соответствует 0, 1 или более экземпляров объекта В и наоборот.

Архитектура СУБД

Базы данных и программные средства их создания и ведения (СУБД) имеют многоуровневую архитектуру.

Различают концептуальный, внутренний и внешний уровни представления данных баз данных, которым соответствуют модели аналогичного назначения,

Концептуальный уровень соответствует логическому аспекту представления данных предметной области в интегрированном виде. Концептуальная модель состоит из множества экземпляров различных типов данных, структурированных в соответствии с требованиями СУБД к логической структуре базы данных.

Внутренний уровень отображает требуемую организацию данных в среде хранения и соответствует физическому аспекту представления данных. Внутренняя модель состоит из отдельных экземпляров записей, физически хранимых во внешних носителях.

Внешний уровень поддерживает частные представления данных, требуемые конкретным пользователям. Внешняя модель является подмножеством концептуальной модели. Возможно пересечение внешних моделей по данным. Частная логическая структура данных для отдельного приложения (задачи) или пользователя соответствует внешней модели или подсхеме БД. С помощью внешних моделей поддерживается санкционированный доступ к данным БД приложений (ограничен состав и структура данных концептуальной модели БД доступных в приложении, а также заданы допустимые режимы обработки этих данных: ввод, редактирование, удаление, поиск).

Появление новых или изменение информационных потребностей существующих приложений требуют определения для них корректных внешних моделей, при этом на уровне концептуальной и внутренней модели данных изменений не происходит. Изменения в концептуальной модели, вызванные появлением новых видов данных или изменением и структур, могут затрагивать не все приложения, т.е. обеспечивается определенная независимость программ от данных. Изменения в концептуальной модели должны отражаться и внутренней модели, и при неизменной концептуальной модели возможна самостоятельна модификация внутренней модели БД с целью улучшения ее характеристик (время доступа данным, расхода памяти внешних устройств и др.). Таким образом, БД реализует принцип относительной независимости логической и физической организации данных.

Понятие информационно-логической модели

Проектирование базы данных состоит в построении комплекса взаимосвязанных моделей данных.

Важнейшим этапом проектирования базы данных является разработка инфологической (информационно-логической) модели предметной области, не ориентированной на СУБД. В инфологической модели средствами структур данных в интегрированном виде отражают состав и структуру данных, а также информационные потребности приложение (задач и запросов).

Информационно-логическая (мифологическая) модель предметной области отражает предметную область в виде совокупности информационных объектов и их структурных связей.

Инфологическая модель предметной области строится первой. Предварительная инфологическая модель строится еще на пред проектной стадии и затем уточняется на более поздних стадиях проект ирования баз данных. Затем на ее основе строятся концептуальная (логическая), внутренняя (физическая) и внешняя модели.

5.Функциональные возможности СУБД

Обзор СУБД

Системой управления базами данных называют программную систему, предназначенную для создания на ЭВМ общей базы данных, используемой для решения множества задач. Подобные системы служат для поддержания базы данных в актуальном состоянии и обеспечивают эффективный доступ пользователей к содержащимся в ней данным в рамках предоставленных пользователям полномочий.

СУБД предназначена для централизованного управления базой данных в интересах всех работающих в этой системе.

По степени универсальности различают два класса СУБД:

системы общего назначения;

специализированные системы.

СУБД общего назначения не ориентированы на какую-либо предметную область или на информационные потребности какой-либо группы пользователей. Каждая система такого рода реализуется как программный продукт, способный функционировать на некоторой модели ЭВМ в определенной операционной системе и поставляется многим пользователям как коммерческое изделие. Такие СУБД обладают средствами настройки на работу с конкретной базой данных. Использование СУБД общего назначения в качестве инструментального средства для создания автоматизированных информационных систем, основанных на технологии баз данных, позволяет существенно сокращать сроки разработки, экономить трудовые ресурсы. Этим СУБД присущи развитые функциональные возможности и даже определенная функциональная избыточность.

Специализированные СУБД создаются в редких случаях при невозможности или нецелесообразности использования СУБД общего назначения.

СУБД общего назначения -- это сложные программные комплексы, предназначенные для выполнения всей совокупности функций, связанных с созданием и эксплуатацией базы данных информационной системы.

Рынок программного обеспечения ПК располагает большим числом разнообразных по своим функциональным возможностям коммерческих систем управления базами данных общего назначения, а также средствами их окружения практически для всех массовых моделей машин и для различных операционных систем.

Используемые в настоящее время СУБД обладают средствами обеспечения целостности данных и надежной безопасности, что дает возможность разработчикам гарантировать большую безопасность данных при меньших затратах сил на низкоуровневое программирование. Продукты, функционирующие в среде WINDOWS, выгодно отличаются удобством пользовательского интерфейса и встроенными средствами повышения производительности.

Рассмотрим основные характеристики некоторых СУБД -- лидеров на рынке программ, предназначенных как для разработчиков информационных систем, так и для конечных пользователей,

В рассматриваемую группу программных продуктов вошли:

dBASE IV 2.0, компании Borland International;

Microsoft Access 2.0;

Microsoft FoxPro 2.6 for DOS;

Microsoft FoxPro 2.6 for Windows, корпорации Microsoft Corp;

Paradox for DOS 4.5;

Paradox for Windows, версия 4.5 компании Borland.

Производительность СУБД

Производительность СУБД оценивается:

временем выполнения запросов;

скоростью поиска информации в неиндексированных полях;

временем выполнения операций импортирования базы данных из других форматов;

скоростью создания индексов и выполнения таких массовых операций, как обновление, вставка, удаление данных;

максимальным числом параллельных обращений к данным в многопользовательском режиме;

временем генерации отчета.

На производительность СУБД оказывают влияние два фактора:

СУБД, которые следят за соблюдением целостности данных, несут дополнительную нагрузку, которую не испытывают другие программы;

производительность собственных прикладных программ сильно зависит от правильного проектирования и построения базы данных.

Самые быстрые программные изделия отнюдь не обладают самыми развитыми функциональными возможностями на уровне процессора СУБД.

Самой быстрой СУБД является FoxPro 2.6, однако она не обладает средствами соблюдения целостности данных в отличие от более медленной СУБД Access 2.0.

Обеспечение целостности данных на уровне базы данных

Эта характеристика подразумевает наличие средств, позволяющих удостовериться, что информация в базе данных всегда остается корректной и полной. Должны быть установлены правила целостности, и они должны храниться вместе с базой данных и соблюдаться на глобальном уровне. Целостность данных должна обеспечиваться независимо от того, каким образом данные заносятся в память (в инт ерактивном режиме, посредством импорта или с помощью специальной программы).

К средствам обеспечения целостности данных на уровне СУБД относятся:

* встроенные средства для назначения первичного ключа, в том числе средства для работы с типом полей с автоматическим приращением, когда СУБД самостоятельно присваивает новое уникальное значение;

* средства поддержания ссылочной целостности, которые обеспечивают запись информации о связях таблиц и автоматически пресекают любую операцию, приводящую к нарушению ссылочной целостности.

Некоторые СУБД имеют хорошо разработанный процессор СУБД для реализации таких возможностей, как уникальность первичных ключей, ограничение (пресечение) операций и даже каскадное обновление и удаление информации. В таких системах проверка корректности, назначаемая полю или таблице, будет проводиться всегда после изменения данных, а не только во время ввода информации с помощью экранной формы. Это свойство можно настраивать для каждого поля и для записи в целом, что позволяет контролировать не только значения отдельных полей, но и взаимосвязи между несколькими полями данной записи.

Access и Paradox for Windows гораздо ближе других СУБД соответствуют реляционной модели по надежности сохранения целостности данных на уровне базы данных; правила хранятся вместе с базой данных и автоматически соблюдаются.

СУБД dBASE IV и FoxPro 2.6 (DOS и WINDOWS) совсем не обладают средствами этого рода, и ввод в программу процедур, обеспечивающих выполнение правил целостности, возлагается на программиста.

Обеспечение безопасности

Некоторые СУБД предусматривают средства обеспечения безопасности данных. Такие средства обеспечивают выполнение следующих операций:

* шифрование прикладных программ;

* шифрование данных;

* защиту паролем;

* ограничение уровня доступа (к базе данных, к таблице, к словарю, для пользователя).

Самый высокий уровень безопасности данных реализован в СУБД dBASE IV. Администратор может назначать системе различные права доступа на уровне файла, поля, а также организовать автоматическое шифрование данных.

Хорошими характеристиками обеспечения безопасности отличается Access 2.0. Он предусматривает назначение паролей для индивидуальных пользователей или групп пользователей и присвоение различных прав доступа отдельно таблицам, запросам, отчетам, макрокомандам или новым объектам на уровне пользователя или группы.

Работа в многопользовательских средах

Практически все рассматриваемые СУБД предназначены для работы в многопользовательских средах, но обладают для этого различными возможностями.

Обработка данных в многопользовательских средах.предполагает выполнение программным продуктом следующих функций: :

* блокировку базы данных, файла, записи, поля;

* идентификацию станции, установившей блокировку;

* обновление информации после модификации;

* контроль за временем и повторение обращения;

* обработку транзакций (транзакция -- последовательность операций пользователя над базой данных, которая сохраняет ее логическую целостность);

* работу с сетевыми системами (LAN Manager, NetWare, Unix).

Лучшими возможностями для работы в многопользовательских средах обладают СУБД Paradox for DOS 4.5, Access 2.0 и dBASE IV.

Импорт-экспорт

Эта характеристика отражает:

* возможность обработки СУБД информации, подготовленной другими программными средствами;

* возможность использования другими программами данных, сформированных средствами рассматриваемой СУБД.

Особый интерес представляют следующие форматы файлов: ASCII-файлы, .DBF,WK*, .XLS.

Все рассматриваемые здесь СУБД обладают хорошими возможностями импорта-экспорта данных.

Доступ к данным посредством языка SQL

Язык запросов SQL (Structured Query Language) реализован в целом ряде популярных СУБД для различных типов ЭВМ либо как базовый, либо как альтернативный. В силу своего широкого использования является международным стандартом языка запросов. Язык SQL предоставляет развитые возможности как конечным пользователям, так и специалистам в области обработки данных .

Совместимость с SQL-системами играет большую роль, когда предполагается проведение работы с корпоративными данными. СУБД, хорошо подготовленные к работе в качестве средств первичной обработки информации для SQL-систем, могут открыть двери в системы с архитектурой клиент-сервер.

СУБД имеют доступ к данным SQL в следующих случаях:

базы данных совместимы с ODBC (Open Database Connectivity -- открытое соединение баз данных);

реализована естественная поддержка SQL-баз данных;

возможна реализация SQL-запросов локальных данных.

Многие СУБД могут "прозрачно" подключаться к входным SQL-подсисТемам с помощью ODBC или драйверов, являющихся их частью, поэтому существует возможность создания прикладных программ для них. Некоторые программные продукты также с SQL при обработке интерактивных запросов на получение данных, находящихся сервере или на рабочем месте.

Access 2.0 и Paradox for Windows работают с источниками SQL-данных, совместимых с системой ODBC.

FoxPro (for dos и for Windows) поставляются с дополнительными библиотеками, которые обеспечивают доступ к SQL-базам данных, способным работать совместно с системой ODBC, но эта возможность менее интегрирована, чем средства первичного ввода информации в Access и Paradox for Windows.

Можно напрямую управлять базами данных Access с помощью языка SQL и передавать сквозные SQL-запросы совместимым со спецификацией ODBC SQL-базам данных, таким, как MS SQL Server и Oracle, так что Access способна служить средством разработки масштабируемых систем клиент-сервер.

Возможности запросов и инструментальные средства разработки прикладных программ

СУБД, ориентированные на разработчиков, обладают развитыми средствами для создания приложений. К элементам инструментария разработки приложений можно отнести:

* мощные языки программирования;

* средства реализации меню, экранных форм ввода-вывода данных и генерации отчетов;

* средства генерации приложений (прикладных программ);

* генерацию исполнимых файлов.

Функциональные возможности моделей данных доступны пользователю СУБД благодаря ее языковым средствам.

Реализация языковых средств интерфейсов может быть осуществлена различными способами. Для высококвалифицированных пользователей (разработчиков сложных прикладных систем) языковые средства чаще всего представляются в их явной синтаксической форме, В других случаях функции языков могут быть доступны косвенным образом, когда они реализуются в форме различного рода меню, диалоговых сценариев или заполняемых пользователем таблиц. По таким входным данным интерфейсные средства формируют адекватные синтаксические конструкции языка интерфейса и передают их на исполнение или включают в генерируемый программный код приложения. Интерфейсы с неявным использованием языка широко используются в СУБД для персональных ЭВМ. Примером такого языка является язык QBE (Query-By-Example).

Языковые средства используются для выполнения двух основных функций:

описания представления базы данных;

выполнения операций манипулирования данными.

Первая из этих функций обеспечивается языком описания (определения) данных (ЯОД). Описание базы данных средствами ЯОД называется схемой базы данных. Оно включает описание структуры базы данных и налагаемых на нее ограничений целостности в рамках тех правил, которые регламентированы моделью данных используемой СУБД. ЯОД некоторых СУБД обеспечивают также возможности задания ограничений доступа к данным или полномочий пользователей.

ЯОД не всегда синтаксически оформляется в виде самостоятельного языка. Он может быть составной частью единого языка данных, сочетающего возможности определения данных и манипулирования данными.

Язык манипулирования данными (ЯМД) позволяет запрашивать предусмотренные в системе операции над данными из базы данных.

Имеются многочисленные примеры языков СУБД, объединяющих возможности описания данных и манипулирования данными в единых синтаксических рамках. Популярным языком такого рода является реляционный язык SQL.

СУБД dBASE IV и FoxPro поддерживают язык программирования xBASE, который до сих пор является важным стандартом для баз данных.

FoxPro 2.6 придает xBASE-программам оконные, событийно-управляемые качества. При составлении прикладной программы FoxPro использует диспетчер проекта, управляющий различными файлами исходного текста и данных. Эта составляющая отслеживает индивидуальные элементы: программы, наборы экранных форм, отчеты и файлы баз данных и позволяет компилировать прикладную программу в исполнимый файл.

Язык программирования Access Basic содержит функции обеспечения связи по протоколу OLE 2.0, позволяющие управлять объектами из других прикладных программ, совместимых с OLE 2.0. Кроме того, этот язык позволяет создавать объекты баз данных (запросы, таблицы), изменять структуру базы данных и создавать индексы непосредственно из прикладной программы.

Все рассматриваемые программные средства обладают автоматизированными средствами создания экранных форм, запросов, отчетов, меню, наклеек, стандартных писем. Для создания указанных визуальных и структурных объектов ряд СУБД использует специальные инструментальные средства, называемые "мастерами" или " волшебниками".

6. Команды для выполнения типовых операций
Типовая структура интерфейса

При работе с СУБД на экран выводятся рабочее поле и панель управления. Панель управления при этом включает меню, вспомогательную область управления и строку подсказки. Расположение этих областей на экране может быть произвольным и зависит от особенностей конкретной программы. Некоторые СУБД позволяют выводить на экран окно директив (командное окно) или строку команд. Познакомиться с видом экрана таких программных средств можно на примере окна СУБД Access 2.0.

Строка меню содержит основные режимы программы. Выбрав один из них, пользователь получает доступ к ниспадающему подменю, содержащему перечень входящих в него команд. В результате выбора некоторых команд ниспадающего меню появляются дополнительные подменю.
Вспомогательная область управления включает:
* строку состояния;
* панели инструментов;
* вертикальную и горизонтальную линейки прокрутки.

В строке состояния (статусной строке) пользователь найдет сведения о текущем режиме работы программы, имени файла текущей базы данных и т. п. Панель инструментов (пиктографическое меню) содержит определенное количество кнопок (пиктограмм), предназначенных для быстрой активизации выполнения определенных команд меню и функций программы. Чтобы представить на экране области таблицы базы данных, формы или отчета, которые на нем в настоящий момент не отображены, используют вертикальную и горизонтальную линейки прокрутки.

Строка подсказки предназначена для выдачи сообщений пользователю относительно его возможных действий в данный момент.

Важная особенность СУБД -- использование буфера промежуточного хранения при выполнении ряда операций. Буфер используется при выполнении команд копирования и перемещения для временного хранения копируемых или перемещаемых данных, после чего они направляются по новому адресу. При удалении данных они также помещаются в буфер. Содержимое буфера сохраняется до тех пор, пока в него не будет записана новая порция данных.

Программы СУБД имеют достаточное количество команд, у каждой из которых возможны различные параметры (опции). Такая система команд совместно с дополнительными опциями образует меню со своими особенностями для каждого типа СУБД- Выбор определенной команды из меню производится одним из следующих двух способов;

наведением курсора на выбранную в меню команду при помощи клавиш управления курсором и нажатием клавиши ввода;

вводом с клавиатуры первой буквы выбранной команды.

Получить дополнительную информацию о командах, составляющих меню СУБД и их использовании можно, войдя в режим помощи.

Несмотря на особенности СУБД совокупность команд, предоставляемых в распоряжение пользователю некоторой усредненной системой управления базами данных, может быть разбита на следующие типовые группы:

команды для работы с файлами;

команды редактирования;

команды форматирования;

команды для работы с окнами;

команды для работы в основных режимах СУБД (таблица, форма, запрос, отчет);

получение справочной информации.

Команды для работы с файлами

При работе с файлами программа дает возможность пользователю:

* создавать новые объекты базы данных;

* сохранять и переименовывать ранее созданные объекты;

* открывать уже существующие базы данных;

* закрывать ранее открытые объекты;

* выводить на принтер объекты базы данных.

Процесс печати начинается с выбора драйвера принтера. Для каждого типа принтера необходим свой драйвер. Следующий шаг состоит в задании параметров страницы, формировании колонтитулов, а также в выборе вида и размера шрифта. Далее следует установить число копий, качество печати и количество или номера печатаемых страниц документа.

Команда предварительного просмотра позволяет получить представление об общем виде выводимой на принтер информации еще до печати. Размещение информации на странице может быть оптимально приспособлено к ее выбранным параметрам посредством масштабирования и центрирования.

В некоторых СУБД в рассматриваемую группу команд введены команды, обеспечивающие возможность экспорта-импорта и присоединения таблиц, созданных другими программными средствами.

Команды редактирования

Ввод данных и изменение содержимого любых полей таблиц БД, компонентов экранных форм и отчетов осуществляются с помощью группы команд редактирования, главными из которых являются перемещение, копирование и удаление.

Наряду с вышеуказанными операциями большая группа программ СУБД обладает возможностями вставки диаграммы, рисунка и т. п., включая объекты, созданные в других программных средах, установление связей между объектами.

Среди команд редактирования особое место занимают команды нахождения и замены определенного пользователем контекста в рамках всего документа или выделенной его части, а также отмена последней введенной команды (откатка).

Команды форматирования

Важное значение имеет визуальное представление данных при выводе. Большинство СУБД предоста вляют в распоряжение пользователя большое число команд, связанных с оформлением выводимой информации. При помощи этих команд пользователь может варьировав направление выравнивания данных, виды шрифта, толщину и расположение линий, высоту букв, цвет фона и т. п. При выполнении любой команды форматирования следует выделить

область, на которую распространяется действие команды. Если этого не сделать, то новые параметры форматирования будут определены только для активного компонента.

Выбор формата и направления выравнивания производится автоматически в зависимости от характера вводимых данных. Данные, интерпретируемые программой как текст, выравниваются по левому краю, а числа -- по правому. Автоматический выбор формата и способа выравнивания производится только в том случае, если для заполняемых ячеек пользователем предварительно не заданы другие параметры.

Команды для работы с окнами

Большинство СУБД дает возможность открывать одновременно множество окон, организуя тем самым "многооконный режим" работы; При этом некоторые окна будут видны на экране, другие находиться под ними. Открыв несколько окон, вы можете сразу работать с несколькими таблицами, быстро пер емещаясь от одной к другой. Существуют специальные команды, позволяющие открывать новое окно, переходить в другое окно, изменять взаимное расположение и размеры окон на экране. Кроме того, у пользователя имеется возможность разделить окно на две части для одновременного просмотра различных частей большой таблицы или фиксировать некоторую часть таблицы, которая не будет исчезать с экрана при перемещении курсора в дальние части таблицы.

Система получения справочной информации

Системы управления базами данных имеют в своем составе электронные справочники, предоставля ющие пользователю инструкции о возможностях выполнения основных операций, информацию по конкретным командам меню и другие справочные данные. Особенностью получения справочной информации с помощью электронного справочника является то, что она выдает информацию в зависимости от ситуации, в которой оказался пользователь. Так, если в меню пользователем была выбрана определенная команда, то после обращения к справочной системе (обычно инициируется клавишей ) на экране будет представлена страница справочника, содержащая информацию о выделенной команде. В некоторых СУБД возможно нахождение потребной информации в справочнике путем задания темы поиска.

Общее представление об этапах технологии

Каждая конкретная СУБД имеет свои особенности, которые необходимо учитывать.

Однако имея представление о функциональных возможностях любой СУБД, можно представить обобщенную технологию работы пользователя в этой среде.

В качестве основных этапов обобщенной технологии работы с СУБД, можно выделить следующие:

создание структуры таблиц базы данных;

ввод и редактирование данных в таблицах;

обработка данных, содержащихся в таблицах;

вывод информации из базы данных.

Создание структуры таблиц базы данных

При формировании новой таблицы базы данных работа с СУБД начинается с создания структуры та блицы. Этот процесс включает определение перечня полей, из которых состоит каждая запись таблицы, а также типов и размеров полей.

Практически все используемые СУБД хранят данные следующих типов: тексте (символьный), числовой, календарный, логический, примечание. Некоторые СУБД формируют поля специального типа, содержащие уникальные номера записей и используемые определения ключа.

СУБД предназначенные для работы в Windows, могут формировать поля типа объекта OLE, которые используются для хранения рисунков, графиков, таблиц.

Если обрабатываемая база данных включает несколько взаимосвязанных таблиц, то необходимо определение ключевого поля в каждой таблице, а также полей, с помощь которых будет организована связь между таблицами.

Создание структуры таблицы не связано с заполнением таблиц данными, поэтом) две операции можно разнести во времени.

Ввод и редактирование данных

Заполнение таблиц данными возможно как непосредственным вводом данных, так и в результате в ыполнения программ и запросов.

Практически все СУБД позволяют вводить и корректировать данные в таблицах двумя способами:

* с помощью предоставляемой по умолчанию стандартной формы в виде таблицы;

* с помощью экранных форм, специально созданных для этого пользователем,

СУБД работающие с Windows, позволяют вводить в созданные экранные формы рисунки, узоры, кнопки. Возможно построение форм, наиболее удобных для работы пользователя, включающих записи различных связанных таблиц базы данных.

Обработка данных, содержащихся в таблицах

Обрабатывать информацию, содержащуюся в таблицах базы данных, можно путем использования з апросов или в процессе выполнения специально разработанной программы.

Конечный пользователь получает при работе с СУБД такое удобное средство обработки информации, как запросы. Запрос представляет собой инструкцию на отбор записей.

Большинство СУБД разрешают использовать запросы следующих типов:

* запрос-выборка, предназначенный для отбора данных, хранящихся в таблицах, и не изменяющий эти данные;

* запрос-изменение, предназначенный для изменения или перемещения данных; к этому типу запросов относятся: запрос на добавление записей, запрос на удаление записей, запрос на создание таблицы, запрос на обновление;

* запрос с параметром, позволяющий определить одно или несколько условий отбора во время выполнения запроса,

Самым распространенным типом запроса является запрос на выборку. Результатом выполнения запроса является таблица с временным набором данных (динамический набор). Записи динамического набора могут включать поля из одной или нескольких таблиц базы данных. На основе запроса можно построить отчет или форму.

Вывод информации из базы данных

Практически любая СУБД позволяет вывести на экран и принтер информацию, содержащуюся в базе данных, из режимов таблицы или формы. Такой порядок вывода данных может использоваться только как черновой вариант, так как позволяет выводить данные только точно в таком же виде, в каком они содержатся в таблице или форме.

Каждый пользователь, работающий с СУБД, имеет возможность использования специальных средств построения отчетов для вывода данных. Используя специальные средства создания отчетов, пользователь получает следующие дополнительные возможности вывода данных:

* включать в отчет выборочную информацию из таблиц базы данных;

* добавлять информацию, не содержащуюся в базе данных;

* при необходимости выводить итоговые данные на основе информации базы данных;

* располагать выводимую в отчете информацию в любом, удобном для пользователя виде (вертикальное или горизонтальное расположение полей);

* включать в отчет информацию из разных связанных таблиц базы данных.

7. Информационная модель СУБД

Предварительное планирование, подготовка данных, последовательность создания информационной модели.

При проектировании системы обработки данных больше всего нас интересует организация данных. Помочь понять организацию данных призвана информационная модель.

Процесс создания информационной модели начинается с определения концептуальных требований ряда пользователей. Концептуальные требования могут определяться и для некоторых задач (приложений), которые в ближайшее время реализовывать не планируется. Это может несколько повысить трудоемкость работы, однако поможет наиболее полно учесть все нюансы функциональности, требуемой для разрабатываемой системы, и снизит вероятность переделки в дальнейшем. Требования отдельных пользователей должны быть представлены в едином «обобщенном представлении». Последнее называют концептуальной моделью.

Объект - это абстракция множества предметов реального мира, обладающих одинаковыми характеристиками и законами поведения. Объект представляет собой типичный неопределенный экземпляр такого множества.

Объекты объединяются в классы по общим характеристикам. Например, в предложении «Белый Дом является зданием», «Белый Дом» представляет объект, а «здание» - класс. Классы обозначаются абстрактными существительными.

Класс - это множество предметов реального мира, связанных общностью структуры и поведением.

Концептуальная модель представляет объекты и их взаимосвязи без указывания способов их физического хранения. Таким образом, концептуальная модель является, по существу, моделью предметной области. При проектировании концептуальной модели все усилия разработчика должны быть направлены в основном на структуризацию данных и выявление взаимосвязей между ними без рассмотрения особенностей реализации и вопросов эффективности обработки. Проектирование концептуальной модели основано на анализе решаемых на этом предприятии задач по обработке данных. Концептуальная модель включает описания объектов и их взаимосвязей, представляющих интерес в рассматриваемой предметной области и выявляемых в результате анализа данных. Имеются в виду данные, используемые как в уже разработанных прикладных программах, так и в тех, которые только будут реализованы.

Проектирование концептуальной модели базы данных:

Анализ данных: сбор основных данных (например, объекты, связи между объектами).

Определим первоначальные данные:

Заявки - поступающие от магазинов на определённый период.

Договора - заключаются с поставщиками на определённый вид товара.

Поставщики - организации или физические лица, с которыми заключаются договора на поставку товара.

Заказчики - в основном магазины, а также предприятия и организации, подающие заказ на приобретение того или иного товара.

Счета - ведутся на этапе заключения договором с поставщиками, а также с заказчиками.

Накладные - создаются на основании получения заказа о заказчика, для отгрузки.

Справки - получение/выдача различных справок как заказчику так и поставщику.

Товар - присутствует на основании заявки и договора с поставщиком.

Определение взаимосвязей.

Взаимосвязь выражает отображение или связь между двумя множес твами данных. Различают взаимосвязи типа «один к одному», «один ко многим» и «многие ко многим».

Например, если заказчик производит заказ на покупку товара впервые, осуществляется первичная регистрация его данных и сведений о сделанном заказе. Если же заказчик производит заказ повторно, осуществляется регистрация только данного заказа. Вне зависимости от того, сколько раз данный заказчик производил заказы, он имеет уникальный идентификационный номер (уникальный ключ заказа). Информация о каждом заказчике включает наименование заказчика, адрес, телефон, факс, фамилию, имя, отчество, признак юридического лица и примечание. Таким образом, свойствами объекта Заказчик являются «уникальный ключ заказчика», «наименование заказчика».

Следующий представляющий для нас интерес объект -- Товар. Этот объект имеет свойства «уникальный ключ товара», «наименование товара».

Второй рассматриваемый объект -- Поставщик. Его свойствами являются «уникальный ключ поставщика», «наименование поставщика».

Третий рассматриваемый объект -- Заказчик. Его свойствами являются «уникальный ключ заказчика», «наименование заказчика».

Взаимосвязь «один к одному» (между двумя типами объектов)

Допустим, в определенный момент времени один заказчик может сд елать только один заказ. В этом случае между объектами Заказчик и Товар устанавливается взаимосвязь «один к одному».

Взаимосвязь «один ко многим» (между двумя типами объектов)

В определенный момент времени один заказчик может стать облад ателем нескольких товаров, при этом несколько заказчиков не могут являться обладателями одного товара (на условии если заказчик не претендует на часть товара). Взаимосвязь «один ко многим» можно обозначить с помощью одинарной стрелки в направлении к «одному» и двойной стрелки в направлении ко «многим» .В этом случае одной записи данных первого объекта (его часто называют родительским или основным) будет соответствовать несколько записей второго объекта (дочернего или подчиненного). Взаимосвязь «один ко многим» очень распространена при разработке реляционных баз данных. В качестве родительского объекта часто выступает справочник, а в дочернем хранятся уникальные ключи для доступа к записям справочника. В нашем примере в качестве такого справочника можно представить объект Заказчик, в котором хранятся сведения о всех заказчиках. При обращении к записи для определенного заказчика нам доступен список всех покупок, которые он сделал, и сведения о которых хранятся в объекте Товар.

...

Подобные документы

    Понятие и структура банка данных. Основные структурные элементы базы данных. Система управления базами данных. Преимущества централизации управления данными. Понятие информационного объекта. Современные технологии, используемые в работе с данными.

    курсовая работа , добавлен 02.07.2011

    Обзор и сравнительная характеристика программного обеспечения для создания СУБД. Принципы организации данных. Основные возможности MS Access. Разработка структуры и реализация средствами SQL базы данных для учета заказов, наличия и продажи автозапчастей.

    курсовая работа , добавлен 27.05.2013

    Современные системы управления базами данных (СУБД). Анализ иерархической модели данных. Реляционная модель данных. Постреляционная модель данных как расширенная реляционная модель, снимающая ограничение неделимости данных, хранящихся в записях таблиц.

    научная работа , добавлен 08.06.2010

    Базы данных с двумерными файлами и реляционные системы управления базами данных (СУБД). Создание базы данных и обработка запросов к ним с помощью СУБД. Основные типы баз данных. Базовые понятия реляционных баз данных. Фундаментальные свойства отношений.

    реферат , добавлен 20.12.2010

    Технология отображения концептуальной модели базы данных на реляционную модель данных. Описание связей между атрибутами отношения при помощи функциональной зависимости. Нормализация как процесс последовательной замены таблицы ее полными декомпозициями.

    презентация , добавлен 19.08.2013

    Теоретические аспекты СУБД. Основные понятия. Функциональные возможности СУБД. Архитектура систем управления. Разработка базы данных. Крупные массивы данных размещают, как правило, отдельно от исполняемого программы, и организуют в виде базы данных.

    курсовая работа , добавлен 23.02.2006

    Концептуальная модель базы данных "Бюро по трудоустройству". Разработка информационного и программного обеспечения объектов автоматизации. Реализация базы данных в СУБД MsAccess. Запросы к базе данных. Таблицы, отчеты и макросы. Интерфейс пользователя.

    курсовая работа , добавлен 30.05.2016

    Порядок проектирования и разработки базы данных и программного обеспечения. Информация о структуре базы данных, созданных таблицах, формах, отчетах, запросах, хранимой информации. Логическая и концептуальная модели данных; выбор программного обеспечения.

    курсовая работа , добавлен 20.01.2010

    Развитая автоматизированная информационная система как условие обеспечения эффективного функционирования организации. Проектирование и построение информационной логической модели базы данных. Краткая характеристика Access. Разработка структуры таблиц.

    курсовая работа , добавлен 27.02.2009

    Классификация моделей построения баз данных. Работа с реляционными базами данных: нормализация таблиц, преобразование отношений полей, преобразование функциональной модели в реляционную. Понятие языка определения данных и языка манипуляции данными.

Это БД, основанная на древовидной структуре. По принципу построения она чем-то схожа с файловой системой компьютера. У использования такой модели есть свои достоинства и недостатки, которые будут рассмотрены в этой статье, вместе с подробными примерами.

Виды баз данных

Как известно, различают четыре вида посторения БД:

  • Реляционные - табличные СУБД, где информация представлена в виде строк-столбцов. По этому принципу строятся в "Аксесе", к примеру.
  • Объектно-ориентированные - тесно связаны с в котором идет работа с объектами), и это их главный плюс, но, учитывая их небольшую производительность, они пока значительно уступают в распространенности реляционным.
  • Гибридные - СУБД, вмещающие в себе сразу два указанных выше вида.
  • Иерархические - объект внимания данной статьи. характеризирующиеся древообразной структурой.

Наиболее известным примером иерархической базы данных является продукт, созданный компанией IBM ("АйБиЭм"), под названием Information Management System (переводится как "Информационная система управления"), сокращенно IMS. Первая версия IMS вышла еще в прошлом, двадцатом веке, в шестьдесят восьмом году. Она используется для хранения и контроля данных и поныне.

Принцип построения иерархической модели

Иерархическая модель данных строится по следующему принципу:

  • для каждого узла древовидной структуры ставится в соответствие некий сегмент;
  • под сегментом понимаются поля данных с присвоенным каждому полю именем и выстроенные в один линейный кортеж;
  • еще одно соответствие: один входной и несколько выходных сегментов для каждого исходного поля;
  • для каждого структурного элемента существует одно и только одно место в системе иерархии;
  • древовидная структура начинается с корневого элемента;
  • у каждого подчиненного узла только один предок, но у каждого исходного может быть несколько потомков.

Применение иерархической структуры данных

Иерархическая база данных - это хранилище, применимое для тех систем, которым изначально свойственна древовидная структура. Для них выбирать подобное моделирование - логично.

Пример иерархической базы данных с изначально систематизированными степенями - воинское подразделение, в котором, как известно, четко определены ранги. Также это могут быть сложные механизмы, состоящие из все более упрощающихся к низу иерархии частичек. Для моделирования таких систем и приведения их к виду рассматриваемой БД нет необходимости в декомпозиции. Тем не менее такая ситуация складывается не всегда.

Кроме того, существует тенденция, при которой направленный вниз по структуре запрос проще, чем аналогичный вверх.

Основные операции над БД, построенными на иерархической модели

Структура иерархической базы данных позволяет успешно и практически беспроблемно (в зависимости от навыков и умений) совершать следующие операции (представлены самые основные, список всегда можно расширить мелкими дополнениями):

  • поиск по базе данных того или иного элемента;
  • переход по базе данных - от дерева к дереву;
  • переход по дереву - от ветви к ветви;
  • соответственно, переход по ветвям - поэлементно;
  • работа с записями: вставка новой и/или удаление текущей, копирование, вырезание и т. д.

Обобщенное описание структуры

Термин "древовидная" для описания структуры упоминается в этой статье уже далеко не единожды. Пора рассказать, откуда он произошел. Все потому что иерархическая база данных - это такая БД, которая использует тип данных "дерево". Рассмотрим подробнее, что он из себя представляет.

Это составной тип: в каждый из элементов (узлов) вкладывается несколько последующих (один или более). А начинается все с одного корневого элемента. Суть в том, что каждый из кусочков типа "дерево", является подтипом, тоже "деревом". Много-много разветвленных, и все также упорядоченных структур.

Элементарные типы могут быть простыми и составными, но по существу это всегда записи. Но в простом записи присутствует один а в составном - целая их совокупность.

Иерархической модели свойственен принцип потомков, когда каждый предыдущий сегмент является предком для последующего. Кроме того, потомок по отношению к вышестоящему типу является типом подчиненным, в то время как равнозначные один другому записи считаются близнецами.

Наполнение БД

Основными данными иерархической БД являются значения (числа или символы), которые хранятся в записях. Обходят такую базу данных обычно снизу вверх и слева направо.

Достоинства

Иерархическая база данных - это имеющая корневую папку БД, постепенно разветвляющаяся книзу. Учитывая, что подобная структура весьма схожа с файловой системой, такие базы успешно применяются для выполнения различных операций над данными ЭВМ. Итог: рациональное распределение ее памяти, а также весьма достойные показатели времени, затраченного на работу.

Иерархическая модель идеальна для применения ее для упорядоченной информации.

Недостатки

Однако те же особенности рассматриваемых СУБД, которые стали их основными достоинствами, определяют также и их недостатки. К примеру, громоздкость и сложность логических связей - опытному специалисту при работе с ранее неизвестной базой будет трудно разобраться, а простой пользователь и вовсе в ней "заблудится". Эта сложность понимания приводит к тому, что на самом деле не так много СУБД построены на иерархической модели. Примером иерархической базы данных является, кроме уже описанного продукта компании "АйБиЭм", "Ока" и МИРИС (производство России), а также Data Edge и Team-UP (от зарубежных корпораций).

Примеры

Иерархическая база данных - это многообразие различных уровней, на которых строятся взаимосвязи. Схематично она выглядит как перевернутый граф. Пример иерархической базы данных - любое государственное административное учреждение. Взять, допустим, школу.

На самом верхней уровне будет располагаться "лидер" администрации - директор. В его подчинении завучи, у завучей - преподаватели, который руководят параллелями классов. В каждой параллели энное их количество, а в каждом классе есть некоторое число учеников.

По такому же принципу можно расписать и управление какой-нибудь корпорацией. Глава компании или даже совет директоров на самом верху. Далее - все большее количество подразделений, в каждом из которых действует своя структура. Есть и общие черты: начальник в каждом отделе, его помощник, его секретарь, собственно, офисные сотрудники и так далее.

Применение в ЭВМ

Могут быть и более серьезные области применения. Яркий пример иерархической базы данных- это файловая система. Всем привычный "Проводник" строится в самом ядре операционной системы "Виндоус" именно по такой схеме, так же, как и многие другие файловые менеджеры.

Сетевые базы данных

Существуют:

Почему мы вновь вспомнили о классификации? Поскольку, в отличие от реляционной, сетевая БД имеет с иерархической схожие черты.

Время вспомнить в базах данных. Есть связи "один-к-одному", "один-ко-многим" и "многие-ко-многим". Нас интересует последняя. В сетевой БД она проявляется следующим образом: у одного узла-наследника может быть сразу несколько предков. Свойство иметь несколько потомков также сохраняется. Можно сказать, что иерархические базы данных, сетевые базы данных сами по себе уже пример такого наследования. Предком в данном случае является именно иерархическая БД, так как принцип построения структуры в сетевых БД остается прежним.

Иерархия и реляционность

Название "реляционная" произошло от английского слова "отношение". Как уже упоминалось в начале статьи, они часто выражаются таблично. Но в предыдущем пункте мы указали, что иерархическая БД также может организовывать связи, значит ли это, что и между этими двумя типами есть некая объединяющая их тонкая ниточка?

Да. Помимо того, что и первый, и второй вид все еще относятся к базам данных, кроме этого признака есть еще одно общее свойство. Например, иерархическую БД (и сетевую заодно с ней) можно выразить в таблице. Суть здесь не в том, в каком виде представить информацию конечному пользователю (это уже вопрос юзабилити интерфейса), но по какому принципу была структурирована информация. Так, четкое деление на отделы со своими начальниками, подразделениями и прочим по-прежнему будет выражено в иерархии, но для удобства занесено в таблицу.

Любая БД отражает информацию об определенной предметной области. В зависимости от уровня абстракции, на котором представляется предметная область, существуют различные уровни моделей данных. Под информационной моделью данных подразумевается способ описания информации, содержащейся в предметной области. В дальнейшем будут рассматриваться структурированные модели данных. Для этих моделей существует четыре основных уровня моделей: инфологический (концептуальный), даталогический или логический, физический и уровень внешних моделей.

На первом уровне описание предметной области строится так, чтобы оно было как можно более общим, не зависело от особенностей выбираемой впоследствии СУБД, а информация была бы доступна широкой категории пользователей: от заказчиков до системных программистов, которые будут заниматься проектированием БД на основе этой модели. Для этого исходная информация о предметной области анализируется и представляется в некотором формализованном виде. Это формализованное описание предметной области должно отражать ее специфику и использоваться на следующих этапах проектирования структуры БД в контексте особенностей выбранной конкретной СУБД. Такое формализованное описание предметной области называется инфологической или концептуальной моделью.

Затем строится модель в терминах конкретной СУБД, выбранной для проектирования БД. Этот уровень называется даталогической (логической) моделью. Описание даталогической структуры БД на языке выбранной СУБД называется ее схемой.

Следующим уровнем является физическая модель данных. В рамках этой модели определяются способы физического размещения данных в среде хранения, разрабатывается так называемая схема хранения данных. Поскольку в разных СУБД имеются различные возможности и особенности физической организации данных, то физическое моделирование проводится только после разработки даталогической модели.

Ряд современных СУБД обладают возможностями описания структуры БД с точки зрения конкретного пользователя. Такое описание называется внешней моделью. Для каждого типа пользователей внешнее моделирование позволяет разработать подсхему БД исходя из потребностей различных категорий пользователей. Этот подход является удобным с точки зрения облегчения работы пользователей с БД, поскольку пользователь при этом может, не зная о всей структуры БД, работать только с той ее частью, которая имеет к нему непосредственное отношение. Кроме того, механизм создания подсхем служит дополнительным средством защиты информации, хранимой в БД.

Таким образом, если СУБД поддерживает возможность создания подсхем, то архитектура БД становится трехуровневой: уровень схемы хранения, уровень схемы и уровень подсхем.

Рассмотрим теперь основные типы моделей данных.

Иерархическая модель БД является одной из первых моделей БД. Это обусловлено прежде всего тем, что именно такая модель наиболее естественным образом отражает множественные связи между объектами реального мира, когда один объект выступает в качестве родительского, с которым связано большое количество подчиненных объектов.

Принцип иерархической модели БД заключается в том, что все связи между данными описываются с помощью построения упорядоченного графа (дерева). Дерево является упорядоченным в соответствии с иерархией наборов элементов, которые называются узлами. Все узлы связаны между собой ветвями. При этом для описания схемы иерархической БД понятие “дерево” используется как определенный тип данных. Этот тип данных является составным и может включать в себя подтипы или поддеревья. БД является совокупностью деревьев, каждое из которых на языке иерархической модели называется физической базой данных. Каждое дерево состоит из единственного корневого (главного, родительского) типа и связанного с ним упорядоченного множества подчиненных (дочерних) типов. Корневой тип - это такой тип, который имеет подчиненные типы и не имеет родительских. Дочерние типы, имеющие один и тот же родительский тип, называются близнецами. Каждый из подчиненных типов для данного корневого типа может являться как простым, так и составным типом “запись”.

Различают три вида деревьев - сбалансированные, несбалансированные и двоичные деревья. В сбалансированном дереве каждый узел имеет одно и то же количество ветвей. Такая организация данных физически является наиболее простой, однако часто логическая структура данных требует переменного количества ветвей в каждом узле, что соответствует несбалансированному дереву. Двоичные деревья допускают наличие не более двух ветвей для одного узла.

Таким образом, иерархическая модель БД может быть интерпретирована как упорядоченная совокупность экземпляров деревьев, каждое из которых содержит экземпляры записей. Собственно содержание БД хранится в полях записей. Под полем записи понимается минимальная, неделимая единица данных.

При построении иерархической модели БД всегда необходимо помнить о поддержке целостностей связей, подразумевая под этим, что:

  • - всегда имеется по крайней мере один родительский тип, который может иметь произвольное количество подчиненных типов;
  • - дочерние типы не могут существовать без наличия родительского типа, причем для каждого подчиненного типа в БД имеется единственный корневой тир;
  • - у корневого типа не обязательно должны иметься подчиненные типы.

Необходимо отметить, что в ряде нотаций может использоваться иная терминология. Так, в нотации Американской Ассоциации по базам данных DBTG (Data Base Task Group) термину “запись” соответствует термин “сегмент”, а записью называется все множество записей, которые относятся к одному экземпляру типа “дерево”.

Основным достоинством иерархической модели БД является относительно высокая скорость обработки информации при обращении к данным. К недостаткам следует отнести ее громоздкость при наличии сложных логических связей между данными.

Сетевая модель БД является в некотором смысле обобщением иерархической модели. Основное отличие сетевой модели от иерархической заключается в том, что в сетевой модели подчиненный тип может иметь произвольное количество родительских типов. Основными понятиями сетевой модели являются набор, агрегат, запись и элемент данных. Под элементом данных в данном случае следует подразумевать то же самое, что и в иерархической модели - минимальную единицу данных. Агрегаты данных бывают двух типов: агрегат типа вектор и агрегат типа повторяющаяся группа. Агрегат типа вектор соответствует набору элементов данных. Агрегат типа повторяющаяся группа соответствует совокупности векторов данных. Записью называется совокупность агрегатов данных. Каждая запись имеет определенный тип и состоит из совокупности экземпляров записи. Набором называется граф, связывающий два типа записи. Таким образом, набор отражает иерархическую связь между двумя типами записей. Родительский тип записи в данном наборе называется владельцем набора, а дочерний тип записи -- членом того же набора. Для каких-либо любых двух типов записей может быть задано любое количество связывающих их наборов. При этом между двумя типами записей может быть определено различное количество наборов. Однако один и тот же тип записи не может быть одновременно владельцем и членом набора.

Несомненным достоинством сетевой модели данных является возможность более гибкого отображения множественных связей между объектами. Один из наиболее существенных недостатков заключается в высокой сложности схемы построения БД, что усугубляется ослаблением контроля за целостностью связей ввиду их многочисленности.

В основе реляционной модели данных лежит понятие отношения, которое является двумерной таблицей, содержащей множество строк (кортежей) и столбцов (полей или атрибутов). Таблица соответствует определенному объекту предметной области, ее поля описывают свойство данного объекта, а строки - конкретным экземплярам объекта. В каждом отношении всегда должен присутствовать атрибут или набор атрибутов, однозначно определяющий единственный кортеж этого отношения - первичный ключ. Для отражения связи между объектами используется связывание таблиц по определенным правилам с использованием так называемых внешних ключей, которые будут подробно рассмотрены в следующих разделах.

Основное достоинство реляционной модели заключается в ее простоте и логической замкнутости, а недостатком является сложность системы описания различных связей между таблицами.

Развитие реляционной модели привело к появлению так называемой постреляционной модели данных, основным отличием которой является допустимость многозначных полей (полей, значения которых состоят из множества подзначений). Многозначные поля можно интерпретировать как самостоятельные таблицы, встроенные в исходную таблицу. Кроме того, в постреляционной модели поддерживаются множественные ассоциированные поля, в совокупности образующих ассоциацию: в каждой строке первое значение одного столбца ассоциации соответствует первым значениям всех остальных столбцов ассоциации.

Основное достоинство постреляционной модели заключается в том, что она позволяет более эффективно хранить данные, а количество таблиц в этой модели заметно меньше по сравнению с реляционной. Недостатком является сложность обеспечения поддержания логической согласованности данных.

Теория многомерных моделей данных активно развивается в последнее время. Понятие многомерной модели означает многомерность логического представления структуры информации. Основными понятиями многомерной модели являются измерение и ячейка.

Измерением называется множество данных одного типа, которые образуют грань n-мерного куба. Ячейкой является поле, значение которого определяется всей совокупностью измерений. Значение ячейки может быть переменной или формулой.

Для работы с многомерными моделями данных используются специальные многомерные СУБД, в основе которых лежат понятия агрегируемости, историчности и прогнозируемости. Под агрегируемостью данных подразумеваются различные уровни обобщения информации. Историчность данных означает высокий уровень статичности как самих данных, так и связей между ними, а также упорядочение данных во времени в процессе их обработки и представления пользователям. Обеспечение прогнозируемости задается использованием специальных функций прогнозирования.

Многомерные СУБД используют две схемы организации данных - поликубическую и гиперкубическую. В поликубической модели n-мерные кубы могут иметь как различные размерности, так и различные измерения-грани. В гиперкубической модели все размерности кубов одинаковы, а измерения различных кубов совпадают.

Срезом называется некоторое подмножество n-мерного куба, задаваемое фиксацией заданного количества измерений. Срез имеет размерность, меньшую n, и используется, в частности, для представления информации пользователям в виде читаемых двумерных таблиц. Вращение также часто используется для двумерного представления данных и заключается в изменении порядка измерений. Операции агрегации и детализации означают более общее или более детальное представление информации.

Многомерные модели данных особенно удобны для работы с большими БД, поскольку позволяют эффективно обрабатывать значительные объемы информации, и это является их несомненным достоинством.

Основным отличием объектно-ориентированной модели от рассмотренных выше является использование объектно-ориентированных методов манипулирования данными - инкапсуляции, наследования и полиформизма.

Инкапсуляция означает возможность разграничения доступа различных программ, приложений, методов и функций (в более широком смысле и доступа различных категорий пользователей) к различным свойствам объектов данных. В контексте термина “инкапсуляция” часто используется понятие видимости - степень доступности отдельных свойств объекта. В современных объектно-ориентированных системах программирования (таких как Delphi или С++ Builder) имеются следующие уровни инкапсуляции (видимости), которые принято называть разделами:

  • 1. Разделы Public, Published и Automated - с незначительными отличительными особенностями свойства объекта, описанные как принадлежащие к данным разделам, полностью доступны.
  • 2. Раздел Private - этот раздел накладывает наиболее жесткие ограничения на видимость свойств объекта. Как правило, такие свойства оказываются доступными только владельцу данного объекта (программному модулю, в котором этот объект создан).
  • 3. Раздел Protected - в отличие от раздела Private свойства объекта становятся доступными наследникам владельца объекта.

В отличие от инкапсуляции наследование предполагает полную передачу всех свойств родительского объекта дочерним объектам. При необходимости наследование свойств одного объекта можно распространить и на объекты, не являющиеся по отношению к нему дочерними.

Полиморфизм означает возможность одного и того же приложения манипулировать с данными разных типов - приложения (методы, процедуры и функции), обрабатывающие объекты различных типов, могут иметь одно и то же имя.

Основным достоинством объектно-ориентированых моделей является возможность моделировать разнообразные сложные взаимосвязи между объектами.

База данных (БД) – это совокупность взаимосвязанных, характеризующаяся возможностью использования для большого количества приложений, возможностью быстрого получения и модификации необходимой информации, минимальной избыточностью информации, независимостью прикладных программ, общим управляемым способом поиска

Возможность применения баз данных для многих прикладных программ пользователя упрощает реализацию комплексных запро­сов, снижает избыточность хранимых данных и повышает эффектив­ность использования информационной технологии. Основное свойство баз данных - независимость данных и использующих их программ. Независимость данных подразумевает, что изменение дан­ных не приводит к изменению прикладных программ и наоборот.

Ядром любой базы данных является модель данных. Модель данных – это совокупность структур данных и операций их обработки.

Модели баз данных базируются на современном подходе к об­работке информации, состоящем в том, что структуры данных об­ладают относительной устойчивостью. Структура информационной базы, отображающая в структурированном виде информационную мо­дель предметной области, позволяет сформировать логические за­писи, их элементы и взаимосвязи между ними. Взаимосвязи могут быть типизированы по следующим основным видам:

– "один к одному", когда одна запись может быть связана
только с одной записью;

– "один ко многим", когда одна запись взаимосвязана со многими другими;

– "многие ко многим", когда одна и та же запись может входить в отношения со многими другими записями в различных вариантах.

Применение того или иного вида взаимосвязей определило три основные модели баз данных: иерархическую, сетевую и ре­ляционную.

Для пояснения логической структуры основных моделей баз данных рассмотрим такую простую задачу: необходимо разработать логическую структуру БД для хранения данных о трех поставщиках: П 1 , П 2 , П 3 , которые могут поставлять товары Т 1 , Т 2 , Т 3 в следующих комбинациях: поставщик П 1 - все три вида товаров, поставщик П 2 - товары Т 1 и Т 3 , поставщик П 3 - товары Т 2 и Т 3 .

Иерархическая модель представляется в виде древовидного графа, в котором объекты выделяются по уровням соподчиненности (иерархии) объектов (рис. 4.1.)

Рис. 4.1. Иерархическая модель БД

На верхнем, первом уровне находится информация об объекте "поставщики" (П), на втором - о конкретных поставщиках П 1 , П 2 , П 3 , на нижнем, третьем, уровне - о товарах, которые могут поставлять конкретные поставщики. В иерархической модели дол­жно соблюдаться правило: каждый порожденный узел не может иметь больше одного порождающего узла (только одна входящая стрелка); в структуре может быть только один непорожденный узел (без входящей стрелки) - корень. Узлы, не имеющие входных стре­лок, носят название листьев. Узел интегрируется как запись. Для поиска необходимой записи нужно двигаться от корня к листьям, т.е. сверху вниз, что значительно упрощает доступ.

Достоинство иерархической модели данных состоит в том, что она позволяет описать их структуру, как на логическом, так и на физическом уровне. Недостатками данной модели являются жесткая фиксированность взаимосвязей между элемен­тами данных, вследствие чего любые изменения связей требуют изменения структуры, а также жесткая зависимость физической и логической организации данных. Быстрота доступа в иерархи­ческой модели достигнута за счет потери информационной гиб­кости (за один проход по дереву невозможно получить информа­цию о том, какие поставщики поставляют, например, товар Ti).

В иерархической модели используется вид связи между элементами данных "один ко многим". Если применяется взаимосвязь вида "многие ко многим", то приходят к сетевой модели данных.

Сетевая модель базы данных для поставленной задачи представлена в виде диаграммы связей (рис. 5.2.). На диаграмме указа­ны независимые (основные) типы данных П 1 , П 2 , П 3 , т.е. ин­формация о поставщиках, и зависимые - информация о товарах T 1 , T 2 , и Т 3 . В сетевой модели допустимы любые виды связей меж­ду записями и отсутствует ограничение на число обратных свя­зей. Но должно соблюдаться одно правило: связь включает ос­новную и зависимую записи

Рис. 4.2. Сетевая модель базы данных

Достоинство сетевой модели БД - большая информаци­онная гибкость по сравнению с иерархической моделью. Однако сохраняется общий для обеих моделей недостаток - доста­точно жесткая структура, что препятствует развитию информа­ционной базы системы управления. При необходимости частой реорганизации информационной базы (например, при исполь­зовании настраиваемых базовых информационных технологий) применяют наиболее совершенную модель БД - реляционную, в которой отсутствуют различия между объектами и взаимосвязями.

В реляционной модели базы данных взаимосвязи между элемен­тами данных представляются в виде двумерных таблиц, называе­мых отношениями. Отношения обладают следующими свойства­ми: каждый элемент таблицы представляет собой один элемент данных (повторяющиеся группы отсутствуют); элементы столб ца имеют одинаковую природу, и столбцам однозначно присво­ены имена; в таблице нет двух одинаковых строк; строки и стол­бцы могут просматриваться в любом порядке вне зависимости от их информационного содержания.

Преимуществами реляционной модели БД являются про­стота логической модели (таблицы привычны для представления информации); гибкость системы защиты (для каждого отноше­ния может быть задана правомерность доступа); независимость данных; возможность построения простого языка манипулиро­вания данными с помощью математически строгой теории реля­ционной алгебры (алгебры отношений).

Для приведенной выше задачи о поставщиках и товарах логи­ческая структура реляционной БД будет содержать три таблицы (отношения): R 1 , R 2 , R 3 , состоящие соответственно из записей о поставках, о товарах и о поставках товаров поставщиками (рис. 4.3.)



Рис. 4.3. Реляционная модель БД

СУБД и ее функции

Системой управления базами данных (СУБД) называют программную систему, предназначенную для создания на ЭВМ общей базы данных, используемой для решения множества задач. Подобные системы служат для поддержания базы данных в актуальном состоянии и обеспечи­вают эффективный доступ пользователей к содержащимся в ней данным в рамках предоставленных пользователям полномочий.

СУБД предназначена для централизованного управления базой данных в интересах всех работающих в этой системе.

По степени универсальности различают два класса СУБД:

– системы общего назначения;

– специализированные системы.

СУБД общего назначения не ориентированы на какую-либо предметную область или на информационные потребности какой-либо группы пользователей. Каждая система тако­го рода реализуется как программный продукт, способный функционировать на некоторой модели ЭВМ в определенной операционной системе и поставляется многим пользователям как коммерческое изделие. Такие СУБД обладают средствами настройки на работу с кон­кретной базой данных. Использование СУБД общего назначения в качестве инструменталь­ного средства для создания автоматизированных информационных систем, основанных на технологии баз данных, позволяет существенно сокращать сроки разработки, экономить трудовые ресурсы. Этим СУБД присущи развитые функциональные возможности.

Специализированные СУБД создаются в редких случаях при невозможности или не­целесообразности использования СУБД общего назначения.

СУБД общего назначения - это сложные программные комплексы, предназначенные для выполнения всей совокупности функций, связанных с созданием и эксплуатацией базы данных информационной системы.

Используемые в настоящее время СУБД обладают средствами обеспечения целостнос­ти данных и надежной безопасности, что дает возможность разработчикам гарантировать большую безопасность данных при меньших затратах сил на низкоуровневое программирование. Продукты, функционирующие в среде WINDOWS, выгодно отличаются удобством пользовательского интерфейса и встроенными средствами повышения производительности.

Производительность СУБД оценивается:

– временем выполнения запросов;

– скоростью поиска информации в неиндексированных полях;

– временем выполнения операций импортирования базы данных из других форматов;

– скоростью создания индексов и выполнения таких массовых операций, как обновление, вставка, удаление данных;

– максимальным числом параллельных обращений к данным в многопользовательском режиме;

– временем генерации отчета.

На производительность СУБД оказывают влияние два фактора:

– СУБД, которые следят за соблюдением целостности данных, несут дополнительную нагрузку, которую не испытывают другие программы;

– производительность собственных прикладных программ сильно зависит от правильного проектирования и построения базы данных.


Похожая информация.